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Abstract

Deepfake detection is critical for preserving the integrity
of digital media, yet frame-based approaches often suffer
from temporal inconsistency and sensitivity to irrelevant vi-
sual noise. We propose a multimodal, region-guided spa-
tiotemporal deepfake detection framework that leverages
both video content and associated textual metadata to fo-
cus on manipulation-prone segments. Our method performs
semantic temporal downscaling to isolate key video mo-
ments — such as speech or expressive facial movements —
where deepfake artifacts are most likely to appear. Within
these moments, a region proposal network extracts high-
salience facial regions and assembles them into short clips.
These clips are processed using a 3D convolutional neu-
ral network (3D CNN) to capture spatiotemporal inconsis-
tencies indicative of manipulation. The resulting features
are fused with encoded action descriptions derived from
video metadata to produce the final prediction. Our multi-
modal approach achieves superior accuracy and robustness
compared to frame-based baselines with a test accuracy of
95.92%, F1-score of 0.977, and AUC of 0.904, demonstrat-
ing high reliability in distinguishing between real and deep-
fake instances despite class imbalance.

1. Introduction

The proliferation of deepfake videos — synthetically
manipulated videos generated using deep learning tech-
niques — poses a growing threat to information authen-
ticity, individual privacy, and public trust. Deepfakes are
increasingly realistic and accessible to generate, making it
difficult for both humans and traditional automated systems
to detect them reliably. This has serious implications in do-
mains such as journalism, politics, cybersecurity, and digi-
tal forensics where video authenticity is critical. Our work
aims to develop a robust and effective method for deep-
fake video detection by leveraging both visual and textual
modalities.

1.1. Motivation

Despite advances in deepfake detection, most existing
approaches rely primarily on visual cues, such as frame-
level inconsistencies or subtle artifacts. While effective in
controlled environments, these methods often fail in real-
world settings due to variability in lighting, pose, and edit-
ing artifacts. Our motivation stems from the need for more
robust and context-aware detection systems that incorporate
additional modalities beyond raw visual input.

To address this challenge, we propose leveraging textual
metadata, such as video descriptions or subtitles, in con-
junction with visual spatiotemporal information. The ratio-
nale is that semantic inconsistencies between a video’s vi-
sual content and its associated textual metadata may serve
as strong signals of manipulation. By combining these
modalities, we hypothesize that we can achieve more re-
silient and accurate deepfake detection, particularly under
challenging conditions.

1.2. Problem Definition

We define the problem as a binary classification task.
The input is a video sample V , which consists of a sequence
of RGB frames {f1, f2, . . . , fT } where T is the total num-
ber of frames in the video, accompanied by a textual de-
scription (e.g. ”outside talking pan laughing”). The output
of our algorithm is a binary label ŷ ∈ {0, 1}, where ŷ = 0
indicates a real video and ŷ = 1 indicates a manipulated
(deepfake) video.

Our baseline algorithm takes the RGB frames and uses
a 2D CNN to process each frame independently, producing
a frame-level binary prediction. A majority voting scheme
is then applied over all frame-level predictions to output the
final video-level binary label.

Our proposed algorithm takes the RGB frames and the
associated textual description. For visual feature extraction,
we explore two distinct pre-processing methods:

1. Interval Downscaling: We sample frames at a regular
temporal interval throughout the video and compress
each frame into a low-resolution square image.
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2. Region-Guided Cropping: We employ a region
proposal network (RPN), specifically leveraging
MTCNN’s facial confidence scores and a custom win-
dow scoring mechanism, to automatically identify and
select high-salience facial regions within key frames.
This produces high-resolution crops of consistent spa-
tial and temporal dimensions.

The selected frames are then passed through a 3D CNN
to extract rich spatiotemporal visual features that capture
both motion and localized artifacts. In parallel, the asso-
ciated textual description is passed through a Transformer-
based text encoder to extract semantic textual features. Fi-
nally, the extracted visual and textual feature representa-
tions are fused and passed through a sequential linear clas-
sification head to produce the predicted binary label.

2. Related Work

Deepfake detection has rapidly evolved along with deep-
fake generation and manual human detection is ineffec-
tive, shifting the task towards automated detection meth-
ods. Existing research falls into several key categories, each
contributing to the field’s deeper understanding of detec-
tion methods. Here, we provide an overview of prominent
approaches, their strengths and weaknesses, and how our
proposed multimodal, region-guided spatiotemporal frame-
work builds upon and differentiates itself from prior work.

2.1. Spatiotemporal Feature Extraction with 3D
CNNs

Early efforts in deepfake detection leveraged 3D CNNs
to capture both spatial and temporal inconsistencies inher-
ent to manipulated videos. These models are designed to
analyze sequences of frames, modeling motion patterns and
localized artifacts simultaneously.

1. Ganiyusufoglu et al. [5] proposed using 3D CNNs
to model spatiotemporal features, showing improved
generalization across various manipulation techniques
compared to traditional image-based classifiers.

2. De Lima et al. [3] introduced spatiotemporal convolu-
tional methods, outperforming frame-based detection
methods on the Celeb-DF dataset.

3. Tariq et al. [21] developed CLRNet, a Convolutional
LSTM-based residual network that learns temporal in-
formation from consecutive frames to detect unnatural
artifacts present between frames.

4. Guo et al. [7] proposed a guided residuals net-
work (GRNet) that fuses spatial-domain and residual-
domain features to expose generated face images.

While these methods effectively capture motion and tem-
poral inconsistencies, their primary weakness lies in their
susceptibility to very subtle artifacts, particularly those in-
troduced by sophisticated deepfake techniques. Further-
more, they typically require large datasets for training and
can be computationally intensive. Our approach simi-
larly utilizes 3D CNNs for spatiotemporal feature extrac-
tion, aligning with these foundational methods’ strengths.
However, we augment this by introducing semantic tempo-
ral downscaling and region-guided cropping, enabling our
model to focus on more manipulation-prone segments.

2.2. Attention Mechanisms and Temporal Modeling

To address the limitations of earlier models, subsequent
research has incorporated attention mechanisms and ad-
vanced temporal modeling techniques.

1. Gu et al. [6] proposed the Spatial-Temporal Inconsis-
tency Learning (STIL) framework, introducing mod-
ules to capture spatial and temporal inconsistencies,
enhancing detection performance.

2. Chen et al. [1] developed a model focusing on local-
ized manipulative signatures using spatial and tempo-
ral attention mechanisms, achieving significant perfor-
mance improvements.

3. Lu et al. [14] introduced a spatial-temporal model with
a long-distance attention mechanism to capture arti-
facts in both spatial and temporal domains.

4. Li et al. [13] introduced a novel transformer architec-
ture with a texture-aware branch, a bidirectional in-
teraction cross-attention module, and a shape-guided
Gaussian mapping strategy.

These attention-driven approaches significantly improve
the model’s ability to focus on subtle and localized arti-
facts, making them highly effective. However, their in-
creased complexity can lead to higher computational costs
and a greater risk of overfitting without sufficient data. Our
framework directly benefits from insights gained from these
methods, specifically in our strategy to extract high-salience
temporal and region frames. By selecting key moments
and regions, our system implicitly employs a form of atten-
tion, guiding the 3D CNN to where inconsistencies are most
likely to occur, without necessarily adding the overhead of
explicit attention layers across the entire video.

2.3. Multimodal and Hybrid Learning

Recognizing the importance of integrating multiple
modalities and scales, several recent studies have explored
multimodal learning frameworks.



1. Wu et al. [8] introduced the Spatial-Temporal Deep-
fake Detection and Localization (ST-DDL) network,
combining spatial and temporal features, utilizing the
Anchor-Mesh Motion (AMM) algorithm for precise
facial micro-expression modeling.

2. Chen et al. [2] focused on compressed deepfake
videos, using 3D spatiotemporal trajectories to detect
manipulations in compressed formats.

3. Saikia et al. [20] proposed a hybrid CNN-LSTM
model leveraging optical flow features, achieving com-
petitive performance with reduced sample sizes.

4. Mallet et al. [15] developed a hybrid model utiliz-
ing multilayer perceptron and long short-term memory
networks, achieving accuracies up to 74.7%.

The primary strength of these methods is their en-
hanced robustness across various video qualities, manipu-
lation techniques, and diverse artifact types. However, a
common weakness is their requirement for extensive com-
putational resources, complex data synchronization, and ex-
tensive fine-tuning across different datasets due to the inte-
gration of multiple data streams or models.

Our approach falls directly into this category of multi-
modal learning, but with a different emphasis. While pre-
vious multimodal works often focus on integrating various
visual cues, our approach directly leverages semantic in-
consistencies between video content and external textual
descriptions. We also prioritize identifying and preserving
high-resolution features within specific facial regions where
deepfake artifacts are most prevalent. This combined strat-
egy of targeted visual analysis and multimodal fusion pro-
vides a more comprehensive and robust detection capability
than pure visual or hybrid visual approaches.

3. Methods

3.1. Baseline Method

As a baseline, we implement a frame-level classification
strategy leveraging a pre-trained 2D CNN. Each input video
is decomposed into individual RGB frames, which are pro-
cessed independently by a ResNet-18 model [10] fφ and
fine-tuned to classify each frame ft. The output fφ(ft) is
a probability score pt ∈ [0, 1], which is thresholded at 0.5
into to a binary prediction ŷt ∈ {0, 1}.

ŷt =

{
1 if fφ(ft) ≥ 0.5

0 otherwise

To obtain a video-level prediction from frame-level
scores, we apply majority voting across all T frames:

ŷ =

{
1 if

∑T
t=1 ŷt >

T
2

0 otherwise

This approach benefits from being computationally
straightforward and compatible with existing large-scale
image models. However, it presents several key drawbacks:

1. No Temporal Modeling: Each frame is treated inde-
pendently, preventing the model from leveraging mo-
tion cues or detecting inconsistencies over time.

2. Uniform Importance of Frames: The model gives
equal weight to all frames, including potentially un-
informative frames.

3. Sensitivity to Noise: Frame-level classifiers are vul-
nerable to compression artifacts and occlusions, which
can obscure deepfake traces.

Despite its limitations, this serves as a strong and com-
monly used baseline in deepfake detection literature, estab-
lishing a basis for the improvements we introduce.

3.2. Proposed Method

Our proposed system is a multimodal, region-guided,
spatiotemporal deepfake detection framework. It consists
of three main components: visual feature extraction (with
two distinct pipelines), visual and textual feature encoding,
and multimodal fusion for the final classification.

3.2.1 Visual Feature Extraction

1. Interval Downscaling (Evenly Spaced Frames)
Given an input video represented as a sequence of RGB
frames {f1, . . . , fT }, we select k = 16 evenly spaced
frames across the video. The indices fi are given by fi =
round

(
(i+ 0.5)× T

k

)
for i = 0, . . . , k − 1.

2. Region-Guided Cropping (Optimal Consecutive Clip)
This pipeline focuses on extracting high-resolution visual
features from manipulation-prone facial regions within an
optimal consecutive video clip. For each original video,
we first apply Multi-task Cascaded Convolutional Networks
(MTCNN) [22] at a configurable interval M . MTCNN em-
ploys a proposal, refine, and output network for efficient
face detection. Each detected bounding box is assigned a
score based on its MTCNN confidence and we propose to
scale this with a spatial integrity component (defined as the
fraction of its pixels residing inside the frame). This incen-
tivizes larger and more complete detections. These scores
are then used to identify the single optimal 16-frame clip
within the video that exhibits the highest overall facial ac-
tivity and confidence. After, we apply MTCNN densely



across each frame in this clip to extract high-resolution fa-
cial crops. This strategy reduces overall computational cost
by a factor of M to identify a coarse segment, then focuses
dense processing only where most impactful. The output is
a single spatiotemporal patch, Vfacial ∈ R16×224×224×3, rep-
resenting the high-resolution facial crop across the chosen
consecutive frames.

3.2.2 Visual and Textual Feature Encoding

We applied adaptive average pooling to each selected frame
to resize into 112 × 112. This approach preserves global
structural information by aggregating spatial features, rather
than discarding them. Compared to center cropping, which
may remove salient peripheral information, or linear inter-
polation, which may introduce artifacts or blur fine-grained
details, adaptive average pooling offers a content-aware re-
sizing mechanism. It ensures all regions of the frame con-
tribute proportionally to the final representation, thereby
retaining more semantically meaningful context. These k
frames are prepared as a single input sequence (Vlinspace
from Interval Downscaling, or Vfacial from Region-Guided
Cropping) and passed through a 3D CNN, gθ. Unlike the 2D
CNNs used in the baseline, 3D CNNs apply convolutional
filters in both spatial and temporal dimensions, allowing the
model to capture patterns such as unnatural motion, flick-
ering, or asynchronous lip movements. The 3D CNN pro-
cesses the 16-frame sequence and outputs a compact visual
feature representation, Fvisual ∈ Rdvisual .

To further enhance detection, we incorporate semantic
features derived from associated video metadata. The video
title text is encoded using all-MiniLM-L6-v2 [18], a pre-
trained Transformer-based text encoder. This produces a
textual feature vector Ftext ∈ Rdtext .

3.2.3 Multimodal Classification

The final prediction ŷ is computed by fusing the visual and
text features through a multi-layer perceptron (MLP):

ŷ = W3 · ϕ (W2 · ϕ (W1 · [Fvisual;Ftext] + b1) + b2) + b3

• Fvisual ∈ R512 is the visual feature vector extracted
from the pre-trained 3D ResNet-18 model, after re-
moving the final classification head.

• Ftext ∈ R512 is the projected textual feature vector of
the 384-dimensional output from the all-MiniLM-L6-
v2 encoder.

• [Fvisual;Ftext] ∈ R1024 denotes concatenation.

• W1 ∈ R1024×1024, W2 ∈ R1024×512, W3 ∈ R512×C

are the weight matrices of the fusion MLP layers and

• b1, b2, b3 are the corresponding bias vectors.

• ϕ(·) represents the ReLU activation function.

3.3. Criterion and Optimizer

3.3.1 Optimization and Loss Function

We use the Adam optimizer [12] to train our models. Adam
combines the benefits of RMSProp and momentum by
adaptively adjusting learning rates for each parameter based
on estimates of first and second moments of the gradients.
The parameter update rule at iteration t is:

θt = θt−1 − α · m̂t√
v̂t + ϵ

• mt = β1mt−1 + (1 − β1)∇θLt is the exponentially
weighted average of the gradients,

• vt = β2vt−1 + (1 − β2)(∇θLt)
2 is the exponentially

weighted average of the squared gradients,

• m̂t and v̂t are bias-corrected estimates,

• α is the learning rate and ϵ is a small constant to pre-
vent division by zero.

We use weighted binary cross-entropy loss to handle
class imbalance. Deepfake datasets often contain a skewed
distribution of real and fake examples, which can bias the
model toward predicting the majority class. To correct this,
we apply weights inversely proportional to class frequen-
cies. The weighted cross-entropy loss for a single predic-
tion ŷ ∈ (0, 1) and ground truth label y ∈ {0, 1} is:

LWCE(y, ŷ) = −w1y log(ŷ)− w0(1− y) log(1− ŷ)

where w1 and w0 are the weights of the positive and neg-
ative classes, respectively. These are computed as:

wc =
1

frequency of class c
, c ∈ {0, 1}

This approach is especially important given the signif-
icant class imbalance in the DFDC dataset (363 original
videos compared to 3,068 manipulated videos). Without
correction, this imbalance would cause the model to dispro-
portionately favor the majority class, leading to high overall
accuracy but poor recall on the minority class. By incorpo-
rating weighting into the loss function, we guide the model
to treat both classes with appropriate significance, improv-
ing performance on real video detection and ensuring a ro-
bust classifier that can be applied to other deepfake datasets.



3.4. Implementation Notes

Our codebase is based on PyTorch and is built upon
publicly available MTCNN, ResNet [10], 3D ResNet [9],
and Sentence Transformer [18] implementations. We im-
plemented the preprocessing RPN, metadata parser, loss
weighting, and multimodal fusion from scratch. The tem-
poral cropping and patch selection pipeline was also cus-
tomized to interface with pre-trained detection and recogni-
tion models.

The raw input consists of MP4 video files uploaded and
stored in an Amazon S3 bucket. We set up two pipelines,
with variations that work both locally and via cloud. A dis-
tributed processing script handled custom preprocessing:

1. Frame extraction: select a specified number of frames
using either (1) linearly spacing condensed frames
across the duration of the video or (2) high-resolution,
continuous facial crops.

2. Description: parse the MP4 title for a text description
of the video content. In our dataloader, a pre-trained
transformer maps this into an embedding space.

3. Label: parses the directory name to identify the label.

These were then zipped into a tar.gz file for efficient stor-
age and retrieval, and saved into a separate sharded S3 di-
rectory. The training infrastructure contains logic to handle:

1. WebDataset loaders to handle data extraction, train-
validation-test splits, and data normalization. To ad-
dress the significant class imbalance, we implemented
stratified sampling during the train-validation-test split
to ensure each subset maintained approximately the
same label distribution as the overall dataset. This mit-
igates bias in model evaluation and prevents the train-
ing process from overfitting to overrepresented classes.
We enumerated all available S3 shards and extracted
their corresponding labels. Then, we performed splits
preserving the original class proportions, with a fixed
random seed for reproducibility.

2. Model training that loads a pre-trained 3D ResNet-18
model and all-MiniLM-L6-v2 encoder, runs the data
through these models, and fuses the results together to
generate the final prediction. We implemented a dual-
stream architecture combining visual and textual input
information from both modalities. Then, we concate-
nate the projected text and video embeddings, forming
a fused 1024-dimensional feature vector. This vector
is passed through a feedforward neural network with
two hidden layers (1024 and 512 units respectively),
each followed by ReLU activation and dropout (p =
0.2) to prevent overfitting. The final layer maps the
fused representation to the number of target classes

(binary classification in our case). The model is trained
using an Adam optimizer with differential learning
rates: a lower learning rate (1e-5) for fine-tuning the
pre-trained video encoder and a higher learning rate
(1e-3) for the fusion layers and text projection head.
This helps retain generalizable features learned from
large-scale pretraining while adapting the model to the
downstream task.

3. Functionality to save the model state with the best per-
formance on the validation set, per-epoch checkpoint-
ing, and the ability to resume training from the last
saved epoch checkpoint. This allowed us to perform
longer training runs, while protecting against interrup-
tions and avoid starting training from scratch.

4. Dataset and Features

We leverage the DeepFake Detection Challenge (DFDC)
dataset, a large-scale benchmark designed to support build-
ing deepfake detection systems introduced by Dolhansky et
al. [4]. The dataset exhibits a significant class imbalance,
posing a challenge for model training as discussed in Sec-
tion 3.3.1. Each video is annotated with a short descrip-
tion in the file title. Manipulated content was generated us-
ing a variety of facial synthesis and replacement techniques.
DFDC’s diversity in manipulation methods, actors, scenes,
and lighting conditions make it a comprehensive and chal-
lenging benchmark to evaluate model robustness.

We implement the following preprocessing pipeline:

1. Frame Sampling: As described in Section 3.2.1, we
uniformly sample 16 non-consecutive frames for Inter-
val Downscaling or identify and extract an optimal 16-
frame contiguous clip containing high-salience facial
activity for Region-Guided Cropping. The choice of
16 frames strikes a balance between computational ef-
ficiency and temporal coverage. This number is com-
monly used in prior video analysis works, including
C3D and I3D, and has been shown to provide suffi-
cient temporal context for capturing motion cues and
facial artifacts indicative of deepfake manipulations.

2. Frame Resizing: Each sampled frame is resized from
the original dimensions of 1920x1080 down to a
square spatial resolution of 112×112 [16]. This size is
a widely adopted standard in image and video recog-
nition models, such as ResNet and I3D. Working
within this resolution enables compatibility with trans-
fer learning from ImageNet or Kinetics-400 pretrained
models. Additionally, 112×112 provides a balance be-
tween computational efficiency and sufficient spatial
resolution to preserve facial features and subtle manip-
ulation artifacts crucial for deepfake detection.



3. Normalization: The resized frames are normalized
using the mean and standard deviation correspond-
ing to the pre-trained model used for transfer learn-
ing (e.g., ImageNet: mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225] [19]; or Kinetics-400:
mean = [0.43216, 0.394666, 0.37645], std = [0.22803,
0.22145, 0.216989] [11]). This step ensures that pixel
intensities fall within a consistent range, which is im-
portant to ensure compatibility with transfer learning
from ImageNet-pretrained models, as these networks
expect inputs to follow the same distribution. Normal-
ization also contributes to training stability, faster con-
vergence, and helps prevent issues such as vanishing
or exploding gradients during backpropagation.

4. Augmentation: No augmentation was done here. This
allows us to preserve the original artifact, as well as
ensure cohesiveness with the textual description.

5. Splitting the Dataset: To ensure fair and reproducible
evaluation, we perform an 80-10-10 split of the dataset
into mutually exclusive train, validation, and test sets
of respective sizes 2738, 342, and 343, using a consis-
tent random seed [17]. We stratified by class label to
ensure that each fold had representative proportions of
real and fake videos. We follow the standard practice
of training purely on the training set, using the valida-
tion set to identify the best-performing model variant,
and running the model with the best performance on
the validation set on the unseen test set at the end of
training. This provides a solid method of evaluating
the effect of hyperparameter tuning.

6. Features: Our model leverages two primary types of
features: visual features derived from the preprocessed
video frames (either V textID or V RGC) and tex-
tual features extracted from the associated video de-
scriptions. The visual features are learned implicitly
by the 3D CNN from the spatiotemporal sequences,
while the textual features are obtained through a pre-
trained Transformer-based encoder.

7. Dataloader Construction: The preprocessed sequences
of frames, along with their corresponding labels, are
encapsulated into a PyTorch dataloader to facilitate ef-
ficient training and validation operations.

5. Results
5.1. Experiments and Hyperparameters

Preliminary experiments were conducted on a subset
(30%) of the DFDC dataset using Colab. This process was
critical in designing the model architecture and training pro-
tocol, particularly given the dataset’s significant class im-
balance.

Figure 1: Example frames from an original (real) video in
the DFDC dataset. The associated textual description is
”outside, talking, pan, laughing”.

Figure 2: Consecutive video frames preserving resolution
determined via MTCNN facial recognition.

We trained our models using the Adam optimizer with
a learning rate of 1 × 10−3, chosen after preliminary tun-
ing using a held-out validation set and comparison to the
RMSProp optimizer. We explored a variety of batch sizes
(4, 8, 16, 32, 64, 128, 256) to balance convergence speed
with memory constraints on different hardware (NVIDIA
T4 and NVIDIA A10G) and mixed precision. All models
were trained for 10 epochs, with model checkpoints saved
based on the best validation performance.

From these preliminary experiments, our final model was
trained using the Adam optimizer with a learning rate of 1×
10−3, a batch size of 64, and non-mixed-precision training
on an NVIDIA A10G GPU, balancing convergence speed,
stability, and efficient resource usage.

5.2. Evaluation Metrics

To rigorously assess performance, we report standard
classification metrics commonly used in related literature:
Accuracy, Precision, Recall, F1-Score, and AUC.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Accuracy measures the overall correctness by computing
the ratio of correctly predicted instances to the total number
of instances. TP (True Positives) and TN (True Negatives)
are correctly classified videos and FP (False Positives) and
FN (False Negatives) are misclassified videos.

Precision =
TP

TP + FP
(2)



Figure 3: Proposed Method: training loss over epochs.

Precision quantifies the number of correctly predicted
positive instances among all instances predicted as positive.
High precision indicates a low false positive rate, which is
particularly important when minimizing false alarms.

Recall =
TP

TP + FN
(3)

Recall measures the model’s ability to correctly identify
all actual positive instances. A high recall value ensures
the model captures most of the deepfake content without
missing significant instances.

F1-Score = 2 · Precision · Recall
Precision + Recall

(4)

F1-score is the harmonic mean of precision and recall,
providing a single metric that balances both concerns, espe-
cially useful in imbalanced datasets.

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
(5)

AUC is the area under the Receiver Operating Charac-
teristic (ROC) curve and ranges from 0 to 1, where a value
closer to 1 indicates better discriminative capability.

5.3. Results

Table 1: Proposed Method: validation classification report.

Class Precision Recall F1-score Support

Real (0) 0.93 0.83 0.88 35
Fake (1) 0.98 0.99 0.98 307

Accuracy 96.20%
Macro avg 0.96 0.91 0.93 342
Weighted avg 0.97 0.96 0.96 342

Table 1 reports the classification performance of the best
model, selected based on its highest validation accuracy,
which occurred at Epoch 7. The model demonstrates strong
performance across both classes, achieving a weighted av-
erage F1-score of 0.96 and a macro average of 0.93. Specif-
ically, the classifier achieves 98% precision and 99% recall

Figure 4: Proposed Method: evaluation metrics over
epochs.

on the majority class, and 93% precision and 83% recall on
the minority class. Despite the class imbalance, the model
maintains relatively strong recall and precision for the un-
derrepresented class.

Table 2: Proposed Method: validation confusion matrix.

Predicted: Real (0) Predicted: Fake (1)

Actual: Real (0) 29 6
Actual: Fake (1) 3 304

This performance is further clarified by the confusion
matrix shown in Table 2. Out of 35 real instances, 29 were
correctly identified, while 6 were misclassified as deepfake.
The model made only 3 errors on the deepfake class, show-
casing excellent sensitivity.

Table 3: Proposed Method: performance of the best model
on the test set.

Metric Accuracy Precision Recall F1-score AUC

Score 95.92% 0.980 0.974 0.977 0.904

To evaluate generalization, we measured model accu-
racy on a held-out test set. From Table 3, the model
achieves 95.92% accuracy, 0.977 F1-score, 0.980 precision,
and 0.974 recall. The AUC score of 0.904 indicates the
model effective distinguishes the two classes across a range
of thresholds, reinforcing its robustness. The close align-
ment between the validation and test metrics suggests that
the model generalizes well and has not overfit. Our results
achieve superior accuracy and robustness compared to the
baseline model, which achieved only 94.5% accuracy and
poor AUC score of 0.542 (shown in appendix 7.1).



Figure 3 and Figure 4 visualize the training loss and
key performance metrics over 10 epochs. The training
loss decreases sharply from Epoch 1 to Epoch 5, and
then continues to decline more gradually, stabilizing around
Epoch 7. Similarly, the training accuracy steadily increases
and plateaus around 96–97%, with the validation accuracy
showing a peak at Epoch 7. Despite the training accuracy
reaching nearly 99.7%, the validation accuracy remains sta-
ble after Epoch 7. This gap, while non-trivial, is not sub-
stantial enough to indicate significant overfitting. The con-
sistency between validation and test performance further
supports this conclusion.

To mitigate overfitting, we employed several strategies to
ensure the model maintained generalization capability with-
out memorizing the training data. Early stopping was ap-
plied based on the validation accuracy, with the best model
saved at Epoch 7. Explicit class imbalance handling, imple-
mented via weighted loss function, was crucial in guiding
the model to learn representative features for both classes,
thereby improving generalization beyond just the majority
class. We applied regularization via dropout and ensured
that the model architecture was not overly deep.

(a) False positive (b) False negative

Figure 5: Examples of false detections.

Figure 5a illustrates a challenging case from the test set
where our model incorrectly classified a real video as fake
(false positive). While pinpointing the exact cause of mis-
classification can be difficult, several factors may contribute
here. The subject’s side-profile facial orientation might
present a more complex learning challenge compared to
frontal views, as key facial features are partially obscured.
Furthermore, closer inspection reveals subtle visual incon-
sistencies in her facial features across frames that could mis-
lead the model. For instance, the ends of her eyebrows ap-
pear to curve downwards then abruptly upwards, the tilt of
her head as she talks varies significantly between frames,
and the curvature of her mouth changes as she speaks.

Figure 5b illustrates a case from the test set where our
model incorrectly classified a fake video as real. The most

prominent characteristic is the extreme zoom level of the
subject’s face. This presents a direct challenge to our crop-
ping methodology. A common indicator of deepfake ma-
nipulation lies in the detection of inconsistencies around
edges. However, in this highly zoomed-in scenario, many
of these are simply not visible within our constraimed crop.
This highlights a limitation of our current approach: while
region-guided cropping can focus on high-salience areas, it
may exclude important information if the spatial scale dif-
fers significantly from the training distribution.

6. Conclusion and Future Work

In this work, we presented a multimodal, region-guided
spatiotemporal framework for deepfake detection, directly
addressing key limitations in traditional frame-based de-
tection approaches. By incorporating both video content
and associated textual metadata, our system focuses on
manipulation-prone segments, significantly improving de-
tection accuracy and robustness. Our proposed pipeline
leverages semantic temporal downscaling to isolate expres-
sive video moments, employs a region proposal network
to extract salient facial regions. These are processed by a
3D CNN to capture subtle spatiotemporal inconsistencies.
Fusion with metadata-derived action descriptions results in
more informed predictions.

Among the components of our framework, the region-
guided 3D CNN consistently demonstrated the highest per-
formance. This stems from its ability to preserve tempo-
ral continuity and focus on high-salience regions, rather
than processing entire, potentially irrelevant frames uni-
formly. Moreover, the integration of textual metadata pro-
vided complementary context, improving accuracy in am-
biguous scenarios and under challenging conditions like
compression artifacts or occlusions. The failure of frame-
only models under these settings highlights the importance
of jointly modeling temporal and semantic information.

Looking ahead, several promising avenues could extend
this work. Expanding multimodal inputs to include audio
cues or speaker identity verification could offer additional,
powerful signals for manipulation detection. Based on our
observed failure cases, future efforts should also focus on
robustly handling diverse video characteristics, such as pro-
cessing multiple clips within the same video (potentially
using the text metadata to guide the region proposal net-
work) and adapting to varying zoom levels. With access
to larger-scale annotated datasets and more computational
resources, we would also aim to train end-to-end architec-
tures with improved generalization to unseen manipulation
techniques. Furthermore, integrating cross-attention mech-
anisms or transformer-based modules could enhance the
framework’s ability to model long-range temporal depen-
dencies and complex multimodal interactions.



Figure 6: Baseline Method: training loss over epochs.

Figure 7: Baseline Method: training accuracy over epochs.

7. Appendices

7.1. Baseline Results

Figure 6 shows the training loss over 10 epochs. The
model’s training loss decreased from an initial value of
0.632 to 0.534 by the final epoch, demonstrating moder-
ate learning progress. The use of a weighted loss func-
tion — with higher weight assigned to real samples due to
their lower representation in the dataset — contributed to
the slower convergence, as the model was penalized more
heavily for misclassifying real samples.

Figure 7 shows the training accuracy over the same pe-
riod. The model’s training accuracy started at 88.32% and
decreased to 87.27% at the final epoch. This fluctuation
may indicate the model adjusted to the class imbalance, pri-
oritizing recall for the minority class at the expense of over-
all accuracy. The weighted loss objective may have led the
model to be too conservative in classifying samples as fake,
which could benefit real sample recall but reduce short-term
accuracy. These training metrics suggest the model is learn-
ing under the influence of the weighted loss and may benefit
from further fine-tuning or additional epochs to stabilize its
performance.

Table 4 reports class-wise evaluation metrics on accu-
racy, precision, recall, F1-score, and support. The model
achieved an overall accuracy of 94.5%, largely attributed to
strong performance on the majority class. For the majority
class, precision and recall were 94.47% and 100.00%, re-
spectively, resulting in a high F1-score of 97.16%, which
indicates the model’s consistent success in detecting fake

Table 4: Baseline Method: validation classification report.

Class Precision Recall F1-score Support

Real (0) 1.00 0.08 0.15 12
Fake (1) 0.94 1.00 0.97 188

Accuracy 94.50%
Macro avg 0.97 0.54 0.56 200
Weighted avg 0.95 0.94 0.92 200

content.

Table 5: Baseline Method: validation confusion matrix.

Predicted: Real (0) Predicted: Fake (1)

Actual: Real (0) 1 11
Actual: Fake (1) 0 188

Table 5 shows the model correctly identified all fake
videos but misclassified 11 out of 12 real videos. This led
to a low recall of only 8.3% for real samples, despite perfect
precision for that class due to the absence of false positives.
The macro-averaged recall was 54.0%, highlighting the im-
balance. This discrepancy is also reflected in the AUC-ROC
score of 0.542, suggesting that the model’s discriminative
capability across decision thresholds is marginally better
than random. These results underscore the primary limi-
tation of the baseline approach - its inability to generalize
effectively to the minority class. Although a weighted loss
function was employed to mitigate class imbalance, it was
insufficient to achieve balanced performance.
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