
Multi-Agent Deep Learning for Visual T Cell Behavioral Modeling

Joseph Li
shoupei@stanford.edu

Sean Tsung
stsung@stanford.edu

Adrian Molofsky
molofsky@stanford.edu

Abstract

Chimeric Antigen Receptor (CAR) T cell therapy repre-
sents a revolutionary approach in cancer treatment, lever-
aging engineered T cells to target and eliminate cancer
cells. Understanding the collaborative dynamics and move-
ment patterns of these T cells is crucial for optimizing ther-
apeutic efficacy. In this study, we employ state-of-the-art
computer vision and deep learning architectures to model
and predict the behavior of CAR T cells using time-lapse
microscopy data. Our approach utilizes a Vision Trans-
former (ViT) as the spatial encoder and a Transformer as
the temporal decoder, effectively capturing complex spatial-
temporal interactions. The input to our models consists of
segmented video frames depicting T cell interactions with
cancer cells, and the output is a set of predicted future coor-
dinates for the T cells. Through extensive experimentation,
we achieved a high prediction accuracy of 98% in coordi-
nate predictions, demonstrating the potential of our method
to enhance the understanding of T cell dynamics. These
findings provide valuable insights into the mechanisms of T
cell collaboration and offer a promising direction for im-
proving CAR T cell therapy.

1. Introduction

The collaborative dynamics of T cells, including spatial
coordination, signaling, and adaptive movement patterns,
are critical components in the development of effective im-
munotherapies such as Chimeric Antigen Receptor (CAR)
T cells and T cell receptor (TCR) T cells [6]. These ther-
apies offer promising anti-cancer treatments by engineer-
ing T cells to specifically recognize and target cancer cells.
However, the underlying mechanisms of T-cell collabora-
tion remain poorly understood, posing a significant chal-
lenge to optimizing these therapies for improved patient
outcomes.

Our motivation for pursuing this problem stems from
the potential to enhance the efficacy of T-cell-based im-
munotherapies by gaining a deeper understanding of T-
cell dynamics. By modeling T cell attack strategies using
time-lapse microscopy data, we aim to decode how genetic

knockouts alter T cell behavior and predict T cell move-
ment patterns in unseen scenarios. This research could pro-
vide valuable insights into the mechanisms of T-cell col-
laboration, ultimately contributing to the development of
more effective cancer treatments. The input to our al-
gorithm consists of consecutive frames from segmented
live-cell microscopy videos, capturing the interactions be-
tween TCR T cells and cancer cells. We employ three dis-
tinct architectures—ResNet-LSTM, ViT-LSTM, and ViT-
Transformer output predicted sets of future T cell coor-
dinates. Each T cell is represented as an agent, and ex-
pert trajectories are computed from segmentation masks and
cell tracking data provided by the Caliban and Occident
pipelines.

Our objective is to predict future T cell positions by con-
sidering the locations of neighboring T cells and cancer
cells, thereby decoding the signals driving coordinated be-
haviors such as aggregation, swarming, proliferation, and
recruitment. By comparing the predictive accuracy of these
models, we aim to identify the most effective approach for
accurately modeling T cell dynamics. Our findings indi-
cate that ViT-Transformer model achieved superior perfor-
mance, with an accuracy of 93%, highlighting its potential
for advancing the field of T-cell-based immunotherapy.

2. Related Work

The study of T cellular behavior modeling has seen sig-
nificant advancements through various approaches, particu-
larly in the context of live-cell imaging and machine learn-
ing techniques. This section categorizes existing research
into three main areas: antigen sensitivity enhancement, T
cell signaling regulation, and computational modeling of
cellular interactions.

Carnevale et al. [3] demonstrated that RASA2 knock-
out can significantly improve antigen sensitivity and persis-
tence in T cells. This work is pivotal as it highlights a ge-
netic modification approach to enhance immune response.
However, the study primarily focuses on in vitro experi-
ments, which may not fully capture in vivo complexities.
The strength of this approach lies in its potential for targeted
genetic interventions, though its applicability in clinical set-
tings requires further exploration.
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Research on the CUL5 E3 ligase complex [8] has shown
its role in enhancing anti-tumor responses by regulating
CD8+ T cell signaling. This study provides insights into
the molecular mechanisms that can be leveraged to boost
immune responses against tumors. While the findings are
promising, the challenge remains in translating these molec-
ular insights into therapeutic strategies. The work is com-
mendable for its detailed mechanistic exploration, yet it
lacks a comprehensive analysis of potential side effects in
therapeutic applications.

Verma et al. [10] analyzed TCR T cell–cancer cell in-
teractions using live-cell imaging, laying the groundwork
for computational modeling of these interactions. Building
on this, we draw inspiration from a predator-prey frame-
work and coordinated multi-agent imitation learning, as de-
scribed by Le et al. [7], to model T-cell cooperative behav-
iors. This approach is innovative in its use of policies de-
rived from expert demonstrations, offering a robust frame-
work for simulating complex cellular interactions.

Moen et al. [9] developed convolutional neural networks
for subcellular structure identification, which is crucial for
accurate modeling of cellular environments. Their work
is notable for its high accuracy in identifying subcellular
components, though it requires substantial computational
resources. Similarly, Bochinski et al. [2] applied recon-
struction methods for densely packed cell populations, pro-
viding a high-speed solution for cell tracking. While effec-
tive, these methods often struggle with scalability in larger
datasets.

The current state-of-the-art in T cellular behavior model-
ing involves a combination of genetic, molecular, and com-
putational approaches [1] [4]. While many studies still rely
on manual analysis, there is a clear trend towards automa-
tion and machine learning-driven methodologies. The inte-
gration of deep learning techniques, such as those by Moen
et al. [9] and Greenwald et al. [5], represent a significant
advancement in the field. However, challenges remain in
terms of scalability and real-world applicability.

In conclusion, while each approach has its strengths and
weaknesses, the combination of genetic insights and com-
putational modeling offers a promising path forward. Fu-
ture research should focus on integrating these methodolo-
gies to develop comprehensive models that can be applied
in clinical settings.

3. Data
The dataset utilized in this study originates from three

distinct medical laboratory experiments, designated as
SafeHarbor, CUL5, and RASA2. Each experiment com-
prises five microscopic videos capturing the activities of T-
cells over a 24-hour period, with frames recorded at four-
minute intervals. Consequently, each video consists of ap-
proximately 350 frames, each with a resolution of 600x600

pixels. The laboratory has provided annotations indicat-
ing the pixel positions of T-cells and cancer cells within
each frame. Our research specifically focuses on the CUL5
dataset, which includes certain test T-cells.

Figure 1. Segmented Live-Cell Image

Observations indicate that T-cells exhibit minimal dra-
matic movement. To enhance the sample size, we cropped
the original 600x600 frames into 224x224 patches with a
stride of 38 pixels. This preprocessing step yields approxi-
mately 35,000 samples per video. For our experiments, we
utilized four videos, resulting in a total of 140,000 samples
for the training dataset. Additionally, half a video, equat-
ing to 12,500 samples, was allocated for validation, and the
remaining 12,500 samples were reserved for testing.

Given our objective to predict T-cell trajectories, the
dataset inherently encodes both spatial and temporal infor-
mation. We define a sample as a sequence of T consecutive
frames (e.g., T = 5, 8, 12). The number of T-cells present
in each frame varies due to annotation errors and the nat-
ural lifecycle of T-cells. To standardize our approach, we
limit the number of T-cells to N (e.g., N = 50) per sample.
We identify all unique T-cell IDs within the samples and
randomly select N T-cells for model training.

The laboratory annotations also include T-cell positions
within the frames, which we utilize to compute the centroid
of each T-cell. These centroids serve as the coordinates for
the T-cells. The centroid calculation involves summing the
pixel positions annotated for each cell and computing the
mean.

The processed dataset comprises cropped frame images
and the computed T-cell coordinates. The dimensions for
images in a single sample are T x H x W, and for coordi-
nates, they are T x N x 2. During model training, we em-
ploy batches of samples, resulting in dimensions of B x T x
H x W for images and B x T x N x 2 for coordinates, where
B represents the batch size, T is the number of consecutive
frames, and H = W = 224. N denotes the maximum num-
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ber of T-cells in a sample, set to 50 based on the observed
maximum in a 224x224 patch. If fewer than N T-cells are
present in a frame, zero-padding is applied.

We noted that the initial frames were suboptimal in qual-
ity and thus excluded them from analysis. Additionally,
some T-cells were not consistently annotated across consec-
utive frames. To address these inconsistencies, we trained
models using different frame numbers for N = 5, 8, and 12.

Figure 2. Masked Live-Cell Image

Additionally, the annotated positions of T-cells and can-
cer cells are employed to create masks for the images, facil-
itating illustration and visualization purposes, as depicted in
the accompanying figures.

In addition to randomly selecting T-cells across frames,
we also experimented with selecting T-cells that consis-
tently appear in all frames within a sample. While this ap-
proach ensures temporal consistency in the data, it is com-
putationally more intensive and reduces the available sam-
ple size for training.

4. Methods
The objective of this study is to model the behavior of

T-cells and predict their movement trajectories, a task that
inherently involves both spatial and temporal dimensions.
To address this challenge, we propose a model architecture
that incorporates a spatial encoder and a temporal decoder.
Convolutional Neural Networks (CNNs) are well-suited for
spatial feature extraction due to their ability to capture local
patterns effectively. Recently, Vision Transformers (ViTs)
have also emerged as a promising alternative for spatial fea-
ture encoding, offering advantages in capturing global con-
text.

For temporal decoding, Long Short-Term Memory
(LSTM) networks are traditionally employed for sequence

modeling, given their capability to handle temporal depen-
dencies. Additionally, transformer decoders have demon-
strated significant power in sequence prediction tasks. In
this section, we introduce and evaluate three model archi-
tectures: CNN-LSTM, ViT-LSTM, and ViT-Transformer,
analyzing their potential effectiveness in predicting T-cell
trajectories.

4.1. CNN-LSTM Model

In this approach, we model T-cell trajectories using a
Convolutional Neural Network (CNN) for spatial feature
extraction and a Long Short-Term Memory (LSTM) net-
work for capturing temporal dynamics.

Figure 3. ResNet LSTM Hybrid Architecture

4.1.1 Spatial Encoder (CNN)

The spatial encoder employs a pretrained ResNet-50 to ex-
tract spatial features from video frames. The input to the
CNN is a sequence of video frames, and the output is a se-
quence of feature maps:

Ft = CNN(It) ∈ RC
′
×H

′
×W

′

where Ft is the feature map at time t.

4.1.2 Temporal Encoder (LSTM)

The LSTM processes a sequence that combines CNN-
extracted spatial features and coordinate embeddings to
model temporal dependencies.For each time step t, the fea-
ture map Ft and the coordinate embedding et are concate-
nated:

xt = Concat(Ft, et)

The LSTM updates its hidden state ht using:

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt + Ucht−1 + bc)

ht = ot ⊙ tanh(ct)

where it, ft, ot are the input, forget and output gates. The
coordinate is predicted by ât = Linear(ht).
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The CNN-LSTM model benefits from the robust feature
extraction capabilities of the pretrained ResNet-50, enhanc-
ing spatial representation. However, the sequential nature of
LSTM can limit scalability and efficiency, particularly with
longer sequences. This model is effective for capturing lo-
cal spatial patterns but may struggle with complex temporal
dependencies.

During prediction, the LSTM operates in an autoregres-
sive manner. Starting with the initial coordinates, the model
predicts the next set of coordinates, which are then fed back
as input for subsequent predictions. The LSTM’s hidden
and cell states are maintained across steps to ensure tempo-
ral continuity.

4.2. ViT-LSTM model

Similar to CNN-LSTM model, the ViT-LSTM model
combines the strengths of Vision Transformers (ViT) for
spatial encoding with LSTMs for temporal sequence mod-
eling.

4.2.1 Spatial Encoder (ViT)

The Vision Transformer processes video frames using a
pretrained ViT model. Each frame is divided into non-
overlapping patches, which are flattened and linearly pro-
jected into a d-dimensional space. Positional encodings are
added to retain spatial order. The transformer encoder ap-
plies multi-head self-attention to these embeddings, captur-
ing global spatial dependencies.

4.2.2 Temporal Encoder (LSTM)

The LSTM processes the sequence of spatial features, sim-
ilar to the CNN-LSTM model, but benefits from the ViT’s
ability to capture more comprehensive spatial information.

The ViT-LSTM model enhances spatial feature extrac-
tion through the Vision Transformer, offering improved
spatial context understanding. However, it still relies on
LSTMs for temporal modeling, which may not fully exploit
the temporal dynamics present in the data.

Similar to the CNN-LSTM model, the ViT-LSTM uses
an autoregressive approach during testing. The initial coor-
dinates are used to start the prediction, and each predicted
set of coordinates is fed back into the LSTM for the next
prediction step.

4.3. ViT-Transformer model

This model employs a Vision Transformer for spatial en-
coding and a Transformer decoder for temporal modeling,
aiming to fully leverage the transformer architecture’s capa-
bilities.

The ViT-Transformer model excels in capturing complex
temporal patterns and interactions, offering superior scala-
bility and parallelization compared to LSTM-based models.

Figure 4. ViT Encoder Transformer Decoder Architecture

Its ability to process sequences in parallel and capture long-
range dependencies makes it particularly advantageous for
T-cell prediction tasks, where intricate spatial-temporal in-
teractions are prevalent. The model architecture allows it to
efficiently handle large datasets and complex patterns, mak-
ing it a promising choice for accurately predicting T-cell
trajectories.

4.3.1 Spatial Encoder (ViT)

The spatial encoder is identical to that in the ViT-LSTM
model, utilizing a pretrained ViT for robust spatial feature
extraction. Here we provide a high level description of the
encoder for later experiment analysis.

Input The encoder receives video frames with dimen-
sions size B×T×H×W×C (e.g. 16×5×244×244×3).

Patch Embedding Each frame is divided into N non-
overlapping patches of size P × P . This division allows
the model to process smaller, manageable sections of the
image, capturing local features. Each patch I

(i)
t from frame

t is flattened into a vector and linearly projected into a d-
dimensional embedding space.

z
(i)
t = Linear(Flatten(I(i)t )) ∈ Rd

This transformation enables the model to represent each
patch as a point in a high-dimensional space, facilitating the
learning of complex spatial patterns.

Positional Encoding To retain the spatial order of
patches, learnable positional embeddings Epos ∈ RN×d

are added to the patch embeddings. This step is crucial for
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maintaining the spatial context that is lost during the flat-
tening process.

Zt = [z
(1)
t + E(1)

pos, . . . , z
(N)
t + E(N)

pos ]

The positional encoding helps the model understand the
relative positions of patches within the frame, which is es-
sential for tasks involving spatial relationships.

MultiHead Attention The sequence of patch embed-
dings, now enriched with positional information, is pro-
cessed using a multi-head self-attention mechanism. This
mechanism allows the model to weigh the importance of
different patches relative to each other, capturing global
spatial dependencies.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

Here Q,K and V represent the query, key, and value
matrices, respectively, and WO is the output projection ma-
trix. The multi-head attention enables the model to focus
on different parts of the input simultaneously, enhancing its
ability to learn complex spatial patterns.

4.3.2 Temporal Decoder (Transformer)

Input The temporal decoder receives historical T-
cell coordinates, represented as a sequence a1:t =
(x1, y1), . . . , (xt, yt), which are embedded into a d-
dimensional space. This embedding allows the model to
process the coordinates in a format compatible with the
transformer architecture.

Causal Masking Causal masking is applied to ensure that
predictions ât+1 depend only on past coordinates a1:t.This
masking prevents information from future time steps from
influencing the current prediction, maintaining the autore-
gressive nature of the model.

Cross-Attention The cross-attention mechanism fuses
spatial features from the ViT encoder with temporal embed-
dings from the coordinate sequence. This integration allows
the model to leverage both spatial and temporal information
when making predictions.

CrossAttention{Qdec,Kenc, Venc}

Here, Qdec represents the query from the decoder, while
Kenc and Venc are the key and value from the encoder. This
mechanism enables the model to align spatial features with
temporal dynamics effectively.

Output The final output of the temporal decoder is the
predicted coordinates ât+1. These predictions are generated
by considering both the historical trajectory and the spatial
context provided by the ViT encoder.

During testing, the ViT-Transformer model uses an au-
toregressive approach with causal masking. Starting with
the initial coordinates, the model predicts the next set of
coordinates, which are then used as input for subsequent
predictions. The use of causal masking ensures that each
prediction is based only on past information, maintaining
the autoregressive nature of the process.

5. Experiments

5.1. Setup

The experiments were conducted using a cluster
equipped with four NVIDIA A30 GPUs, which provided
the necessary computational power to efficiently train the
models. We initially selected a batch size of 4, but found
that this underutilized the GPUs’ parallel processing capa-
bilities. To improve training efficiency and better leverage
the available hardware, we increased the batch size to 16.

The models were trained using a scheduled learning rate
strategy, beginning with an initial learning rate of 1×10−4.
The Adam optimizer was employed to facilitate conver-
gence, leveraging its adaptive learning rate capabilities to
optimize the training process. The duration of training var-
ied between 2 to 3 hours per model, contingent upon the
number of consecutive frames included in each sample.

The maximum number of T-cells per sample was identi-
fied as a critical parameter influencing both model quality
and training duration. Initially, the models were configured
with 80 T-cells per sample, which substantially increased
the training time. To mitigate this, we decided to reduce
the number of T-cells tracked to 50 per sample when train-
ing models with shorter sequence lengths (5 frames and 8
frames; see below for details), since shorter sequences con-
tain fewer cells on average. However, when training the
models with a 12-frame sequence length, we ran the model
with 80 cells per sample due to the higher average number
of observed cells. This adjustment significantly decreased
the training time for the models run on shorter sequence
lengths while maintaining a satisfactory level of model per-
formance.

We trained models with three different sequence lengths:
5, 8, and 12 consecutive frames. We hypothesized that,
within the range of sequence lengths considered, model
performance might increase with longer sequence lengths.
However, we knew that the longer the sequence length, the
longer it would take to train the models.

The choice of batch size and the number of T-cells per
sample were pivotal in balancing training efficiency and
model accuracy. The scheduled learning rate and the use
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of the Adam optimizer contributed to stable convergence
across different model architectures. These experiments un-
derscore the importance of parameter tuning in optimizing
the training process for complex spatial-temporal models.

5.2. Metrics

In the context of T-cell trajectory prediction, it is crucial
to define appropriate metrics that account for the spatial na-
ture of the data. Since T-cells are not point entities, we em-
ploy accuracy within a specified pixel radius as a success
criterion.

Specifically, an accuracy of 90% within 10 pixels indi-
cates that the predicted trajectory falls within 10 pixels of
the ground truth 90% of the time. This metric provides a
spatial tolerance that is essential for evaluating predictions
in biological imaging contexts. In addition to spatial accu-
racy, we utilize several standard metrics for trajectory pre-
diction to comprehensively assess model performance:

Mean Absolute Error (MAE): MAE measures the av-
erage magnitude of errors between predicted and true trajec-
tories, without considering their direction. It is calculated
as the mean of the absolute differences between predicted
and actual positions over all time steps. MAE provides a
straightforward measure of prediction accuracy, with lower
values indicating better performance.

Average Displacement Error (ADE): ADE is the aver-
age Euclidean distance between predicted and true trajec-
tories over all time steps. It is computed by averaging the
displacement errors at each time step across the entire tra-
jectory. ADE is particularly useful for evaluating the overall
accuracy of a predicted trajectory, as it considers the entire
sequence of predictions.

Final Displacement Error (FDE): FDE measures the
Euclidean distance between the predicted and true positions
at the final time step of the trajectory. This metric focuses
on the endpoint accuracy of the prediction, which is criti-
cal in applications where the final position is of particular
importance.

These metrics collectively provide a comprehensive
evaluation framework for trajectory prediction models, al-
lowing for nuanced assessments of both spatial accuracy
and temporal prediction quality. By employing these met-
rics, we ensure that our models are rigorously evaluated and
capable of producing reliable predictions in complex bio-
logical environments.

5.3. Results

The performance of the models was evaluated on the
final validation set using three different sequence lengths
(5, 8, and 12 frames). The results are summarized in Ta-
bles 1–3, which report the accuracy, Mean Absolute Error
(MAE), Average Displacement Error (ADE), and Final Dis-
placement Error (FDE) for each model configuration. Fol-

lowing model training and validation, we selected the best-
performing model and evaluated its performance on a hold-
out test set.

5-Frame Sequence Evaluation As shown in Table 1,
the ViT-Transformer model significantly outperformed the
other architectures in the 5-frame sequence evaluation. It
achieved an impressive accuracy of 93.61%, with MAE,
ADE, and FDE values of 2.0287, 3.1328, and 3.1453, re-
spectively. This indicates that the ViT-Transformer model
is highly effective in capturing the spatial and temporal dy-
namics of the T-cell trajectories.

In contrast, the ResNet-LSTM and ViT-LSTM models
demonstrated considerably lower performance, with accu-
racies of 8.71% and 8.02%, respectively. Their MAE, ADE,
and FDE metrics were substantially higher, reflecting less
precise trajectory predictions. These results suggest that the
combination of Vision Transformer (ViT) and Transformer
architectures provides a superior framework for modeling
complex trajectory data.

Table 1. Final validation set metrics: 5 frames
Model Type Accuracy MAE ADE FDE

ResNet–LSTM 8.71% 41.9796 63.2818 63.3383
ViT–LSTM 8.02% 43.5380 65.5375 65.1746
ViT–Transformer 93.61% 2.0287 3.1328 3.1453

8-Frame Sequence Evaluation The evaluation with 8-
frame sequences, detailed in Table 2, further highlights the
robustness of the ViT-Transformer model. It achieved an
accuracy of 96.79%, with MAE, ADE, and FDE values of
1.2261, 1.8884, and 1.8742, respectively. These metrics un-
derscore the model’s ability to maintain high prediction ac-
curacy over longer sequences, which is crucial for applica-
tions requiring extended temporal analysis.

The ResNet-LSTM and ViT-LSTM models showed im-
proved performance compared to the 5-frame evaluation,
with accuracies of 16.20% and 16.31%, respectively. How-
ever, their error metrics remained significantly higher than
those of the ViT-Transformer, indicating that while they
benefit from longer sequences, they still fall short in terms
of precision and reliability.

Table 2. Final validation set metrics: 8 frames
Model Type Accuracy MAE ADE FDE

ResNet–LSTM 16.20% 31.0874 46.7935 46.8892
ViT–LSTM 16.31% 30.6151 46.0481 45.4517
ViT–Transformer 96.79% 1.2261 1.8884 1.8742

12-Frame Sequence Evaluation Table 3 presents the
results for the 12-frame evaluation, where the ViT-

6



Transformer again demonstrated exceptional performance,
achieving an accuracy of 97.74% and even lower MAE,
ADE, and FDE metrics (0.8787, 1.3592, and 1.3354). The
performance gap with LSTM-based baselines is still wide,
with their accuracies only reaching 20.77% and 24.10% and
error metrics still an order of magnitude higher.

Table 3. Final validation set metrics: 12 frames
Model Type Accuracy MAE ADE FDE

ResNet–LSTM 20.77% 26.4346 39.6137 39.7748
ViT–LSTM 24.10% 22.9939 34.5097 33.8738
ViT–Transformer 97.74% 0.8787 1.3592 1.3354

In summary, the ViT-Transformer achieved remarkable
accuracy levels of 93.61%, 96.79%, and 97.74% for the
5-frame, 8-frame, and 12-frame sequences, respectively.
These results underscore the model’s ability to consis-
tently deliver precise predictions, even as the sequence
length increases. The high accuracy indicates that the
ViT-Transformer effectively captures the intricate spatial-
temporal dependencies inherent in T-cell movement, setting
a new benchmark for trajectory prediction tasks.

The results clearly demonstrate the exceptional effective-
ness of the ViT-Transformer model in trajectory prediction
tasks. Its superior performance—evidenced by high ac-
curacy and low error metrics across the 5-frame, 8-frame,
and 12-frame sequence evaluations—shows that it effec-
tively leverages the strengths of both Vision Transformers
and Transformer architectures to capture complex spatial-
temporal patterns. The substantial performance gap be-
tween the ViT-Transformer and other models underscores
the critical importance of architectural choices in achieving
state-of-the-art results. The following section delves deeper
into the model’s capabilities and provides a visual analysis
of its predictions.

The validation step accuracy, depicted in Figure 5, illus-
trates the model’s robust performance across different vali-
dation scenarios. The figure highlights the model’s ability to
maintain high accuracy throughout the validation process,
demonstrating its reliability and generalization capabilities.

Figure 6 presents visualizations of the trajectories pre-
dicted by the ViT-Transformer model. These visualiza-
tions provide qualitative insights into the model’s predic-
tive prowess. The predicted trajectories closely align with
the ground truth, showcasing the model’s proficiency in ac-
curately forecasting both the direction and magnitude of
T-cell movements. The visualizations reveal that the ViT-
Transformer not only predicts the overall trajectory path but
also captures subtle variations in movement patterns. This
precision is crucial for applications requiring detailed and
accurate modeling of cellular dynamics, such as in drug de-
velopment and immunotherapy research.

Figure 5. ViT-Transformer Validation Accuracy

Figure 6. Predicted Trajectory vs. Ground Truth

Test Set Evaluation Finally, we evaluated the test-set per-
formance of our best-performing model, the 12-frame ViT-
Transformer. The model achieves 98.20% accuracy and ex-
tremely low MAE, ADE, and FDE values (0.8145, 1.2607,
and 1.2981). We used a holdout test set containing frames
that were never seen during training or validation. The ex-
cellent performance on the test set strongly suggests that our
model did not overfit to the training data and has the poten-
tial to produce accurate trajectory predictions on unseen live
cell microscopy samples.

Table 4. Test set metrics for ViT-Transformer
Accuracy MAE ADE FDE

98.20% 0.8145 1.2607 1.2981

5.4. Discussion

The ViT-Transformer’s superior performance can be at-
tributed to its architectural design, which leverages the
strengths of Vision Transformers for spatial feature extrac-
tion and Transformers for temporal sequence modeling.
This combination allows the model to effectively handle the
complex, high-dimensional data characteristic of T-cell tra-
jectories.
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The substantial performance gap between the ViT-
Transformer and other models, such as ResNet-LSTM and
ViT-LSTM, highlights the importance of selecting appro-
priate architectures for trajectory prediction tasks. The ViT-
Transformer’s ability to maintain high accuracy and low er-
ror rates across varying sequence lengths positions it as a
state-of-the-art solution in the field.

Future research could explore the integration of addi-
tional contextual information, such as environmental fac-
tors or cell-cell interactions, to further enhance the model’s
predictive capabilities. Additionally, optimizing hyperpa-
rameters and exploring alternative training strategies could
yield further improvements in performance.

6. Conclusion
In this study, we explored the efficacy of various

deep learning architectures for predicting T-cell trajecto-
ries, with a particular focus on the ViT-Transformer model.
Our comprehensive evaluation demonstrated that the ViT-
Transformer significantly outperformed other models, such
as ResNet-LSTM and ViT-LSTM, in 5-frame, 8-frame,
and 12-frame sequence evaluations. The ViT-Transformer
achieved remarkable accuracy levels while maintaining
low error metrics across all evaluated scenarios. Indeed,
the best-performing ViT-Transformer model was found to
achieve an extremely high test-set accuracy of 98.20%.
These results underscore the model’s ability to effectively
capture the complex spatial-temporal dependencies inher-
ent in T-cell movement.

The superior performance of the ViT-Transformer can be
attributed to its architectural design, which combines the
strengths of Vision Transformers for spatial feature extrac-
tion with Transformers for temporal sequence modeling.
This synergy allows the model to handle high-dimensional
data and accurately predict both the direction and magni-
tude of T-cell movements. In contrast, the ResNet-LSTM
and ViT-LSTM models struggled to achieve comparable ac-
curacy, highlighting the importance of selecting appropriate
architectures for trajectory prediction tasks.

Looking forward, there are several avenues for future re-
search that could further enhance the predictive capabilities
of the ViT-Transformer model. With additional time, team
members, or computational resources, we would explore the
integration of contextual information, such as environmen-
tal factors or cell-cell interactions, to provide a more holistic
understanding of T-cell dynamics. Additionally, optimizing
hyperparameters and experimenting with alternative train-
ing strategies could yield further improvements in model
performance. Finally, extending the model to predict longer
sequences or incorporating real-time data processing capa-
bilities could broaden its applicability in clinical and re-
search settings, ultimately contributing to advancements in
immunotherapy and personalized medicine.

7. Contribution

Joseph worked on live-cell image processing and cell
coordinates calculation for labels. Joseph authored the
ResNet-LSTM, Vit-Transformer, and Vit-LSTM models.
Joseph also drafted the final report.

Sean worked on the training framework, model devel-
opment, and script setup. Sean migrated the model to the
lightning framework, trained all models, and compiled the
results.

Adrian worked on the data pipleline and spearheaded on
additional model architecture (e.g. 3D CNN), and explored
some other data processing approaches that resulted in the
milestone results.

All three of them contributed equally to the discussion.
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8. Appendix

Figure 7. ViT-Transformer Predicted Trajectory
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