
Generalizing Discretization Representations for the Physical Solutions via
Flexible Spatial Image Data Structures

Zi Wang
Energy Science Engineering

Stanford University
ziwang3@stanford.edu

Abstract

This work highlights the relationship between computer
vision and discretization representations of physical prob-
lems. For partial differential equations governing the phys-
ical problems, solutions can be represented in spatial fields,
which is essentially the images of discretized physical quan-
tities. From a computer vision perspective, this work ex-
plores the implementation of deep learning models with
flexible spatial representations to predict physical solutions.
Two architectures are implemented on two different data
structures: an U-Net-based convolutional neural network
(CNN) and a transformer-based model. These can be in-
terpreted as learning from structured (grid-based) and un-
structured (graph-like) discretization of space, respectively.
Both the Unet and transformer achieves high accuracy on
the task. Although Unet is more accurate, transformer
shows better flexibility on spatial representation of physical
solutions, highlighting a more promising path of integrating
deep learning with general discretization data of physical
problems.

1. Introduction

The deep learning method has been widely used in the
computer vision domain, and shows its strong performance
for spatial and temporal tasks. In this work, we aim to ap-
ply advanced computer vision technique in the discretized
physical problems and reveal new insights on the relation-
ship between spatial physical field and computer vision
deep learning method.

For solving the physical problem, it’s actually the pro-
cess of finding solutions of partial differential equations in
a given spatial and temporal domain. The solutions can
be seen as dynamic images consisted of spatial distributed
values. From the mathematical perspective, the PDEs can
be solved by analytical methods, such as Green function,
Fourier transform and Laplace transform. However, when

the PDE system becoming more complex, these analytical
methods fails on the mathematical solving tasks. For these
complex but very common PDE systems in various engi-
neering problems, the numerical methods are the most reli-
able and powerful tools.

To start with, solving PDEs numerically, we need to dis-
cretized the spatial domain into several finite elements or
volumes, i.e. using mesh grid to represent the spatial space.
The target is to assigning the physical quantities’ value on
these finite elements and decreases the residual loss of the
original PDEs. It’s extremely interesting to find that the
discretized spatial domain can be highly aligned with im-
age data in computer vision field. The structured mesh grid
is representing the space by pixels, which is the same as the
traditional pixel-based image data in computer vision, en-
abling us using convolutional neural networks to capture the
local and global characteristics to predict the target value.
The unstructured mesh is usually generated by triangular
grid structure. The spatial domain is firstly described by set-
ting several discretized points, which is called nodes. These
node data can be seen as sparse sampling of a limited spa-
tial domain, which is aligned with the point cloud structure.
But in computer vision view, the point cloud data is usu-
ally sampled to maximize the representative capability of
the point cloud for the image information, and thus it is
usually more scattered and uniform in the entire domain.
However, when nodes of unstructured mesh are generated,
it tends to be more clustered in some regions with complex
geometry or shape, where the PDEs solutions are usually
sharp and unstable. It can enhance the solving accuracy
and the solution stability. Based in the generated nodes,
the triangular mesh is formed by connecting the neighbor-
ing nodes based on given scheme. As can be seen, the final
tridiagonal mesh not only represents the spatial domain with
a set of discretized points, but also induced some relations
among these points. The structure is highly aligned with the
graph data in computer vision view. It enables us to derive
what the physical value is on the given points from their
underlying relationship that is the partial differential equa-

1



tions. After discretizing the spatial domain into elements,
we need to solve a huge linear algebra system to get the ac-
curate solution. It is usually very computational expensive
and time consuming.

Therefore, from the point of view in the connections be-
tween discretized domain and computer vision, we aimed
to leveraging deep learning method bridging these two re-
search domains, to accelerate the solving process of PDEs.
My motivation is to explore how different image data struc-
tures can influence the deep learning prediction results on
the fluid flow problem. Inspired by the structured and un-
structured mesh concept in numerical method, the physical
solutions can be expressed in different forms which enable
us to explore the best discretized structure for deep learning
method that can reach the highest accuracy and prediction
efficiency.

2. Related Work
Deep learning for PDEs is a part of research in the field

of AI4Science, a lot of previous work has been extended to
integrate the deep learning method in the numerical solving
process. Due to the potential to overcome the lack of high
computational costs of the traditional numerical method,
this interdisciplinary research direction has gained huge fo-
cus, including data-driven methods, physics-driven meth-
ods and neural operators.

2.1. Data-driven Neural Network

The application of deep learning in solving physical
problems has witnessed significant growth, primarily due to
its potential to mitigate the high computational costs asso-
ciated with traditional numerical methods. Initially, data-
driven deep learning approaches were adopted to model
physical systems. Yang et al.[8] implemented fully con-
nected neural network on predicting the grid-based fluid
simulations, showing that the computational cost is de-
creased by using deep learning network. Cheng et al.[1]
adopted convolutional generative adversarial network to
predict the spatial and temporal fluid flow images, and ob-
tained high fidelity results that is consistent with numeri-
cal model. However, these methods often exhibit limited
generalization capabilities, being highly sensitive to specific
problem details and computational domains.

2.2. Physics-driven Neural Network

To overcome these limitations, researchers have focused
on integrating physical information directly into neural
network architectures. One well-known approach is the
Physics-Informed Neural Network (PINN)[5], which em-
beds governing equations into the loss function, enabling
the network to learn physical solutions from the underlying
physical principles. The results indicate that the physics-
informed method allows the neural network to learns more

physical informations with less data, and could predict
longer temporal behavior of physical systems. This method
has been widely adopted in many physical problems, such
as elastic mechanics, fluid mechanics and geosciences. It
shows better generalization ability than the data-driven neu-
ral network, and gives more flexibility for us to design what
physical information that we want to feed in the neural net-
work. However, one main limitation of this method arises,
it is found that the trained PINN only performs well on a
specific problems. It means that once we trained the PINN
with a fixed residual loss of PDEs, the network shows very
strong performance on that PDE system but performs ex-
tremely weak on any other problems. This conclusion again
indicates the weak generalization ability of neural networks
to different PDE systems.

2.3. Neural Operators

Beyond PINNs, the development of neural operators has
marked a significant advancement in modeling complex and
different physical systems. Instead of focusing on the spe-
cific problems, the neural operator aims at learning the rela-
tionship between vectors on one space and another space,
which means it focuses on learning the function of vec-
tor operations i.e. the differential operators. The Fourier
Neural Operator (FNO)[3] introduces a novel framework
by parameterizing integral kernels in Fourier space, facil-
itating efficient and accurate modeling of parametric par-
tial differential equations. Similarly, Deep Operator Net-
works (DeepONets)[4] are designed to learn nonlinear oper-
ators, effectively capturing the mappings between function
spaces. By combining the physics-informed method and the
concept of neural operators, the Euler operators is proposed
to predict the mis-specified fluid problem[2]. The neural
operator seems to be the most promising method for phys-
ical problem. However, it still faces the same problem of
weak generalization ability. The emergence of transformer
architectures has further expanded the capabilities of deep
learning in physical simulations. Transolver[7] leverages
transformer models to solve partial differential equations on
general geometries, demonstrating enhanced scalability and
adaptability.

However, none of the studies has dived into the relation-
ship between deep learning network and numerical solvers
deeply. he usage of deep learning in solving physical prob-
lems from strict view of discretizing spatial domain is unre-
vealed. For more promising methods of deep learning and
physical problems, the data structure should be further de-
signed carefully in order to capture the physical characteris-
tics. This work will explore how deep learning network can
perform with different discretization forms from numerical
solver.

2



Figure 1. Unet Convolutional Net Structure

3. Methods

In this work, the convolutional neural network on the
pixel image and the transformer on point cloud data are
implemented to predict the fluid flow field. The convolu-
tional neural network is designed to follow the architecture
of Unet consisted of encoding and decoding part. The trans-
former is directly applied on the point cloud data.

3.1. Unet CNN

Convolutional neural network is the most fundamental
and a very efficient model in computer vision area. Espe-
cially, the U-net structured CNN shows its strong ability in
different research area. The Unet structure in this work is
shown in Fig. 1.

Both encoding and decoding blocks contain five convo-
lutional layers. In detail, the encoder part uses the convo-
lutional net and the decoder part uses the transposed con-
volutional net, which achieves the down sampling and up
sampling, respectively. Except for the last transposed con-
volutional net of the decoder, after every convolutional net,
the batch normalization layer and LeakyReLU activation
are applied. The detail setting of convolutional layers are
shown in Table. 1. It should be mentioned that the skip
connection is introduced between corresponding layers be-
tween encoders and decoders, which is marked by grey
dashed line in the figure. This skip connection allows us to
enhance data information fusion and gradient calculation.

The structured mesh describe the spatial domain pixel-
wisely. By using convolutional neural networks, the local
and neighbor information can be captured by the convolu-
tional kernel. In detail, calculating the gradient of velocity
is actually using neighboring pixel values. For example,
when calculating the first-order gradient of x velocity, we
only need to use a 3×3 convolutional kernel with a fixed
kernel value of ((0,0,0), (1,0,1), (0,0,0)). Therefore, con-
volutional neural networks are expected to fully capture the
local gradient information.

Table 1. Convolutional Layers Configuration
Layer Channel Kernel Stride Pad Dilute
Conv1 (2, 8) (4, 4) 2 1 1
Conv2 (8, 32) (4, 4) 2 1 1
Conv3 (32, 128) (3, 3) 1 0 1
Conv4 (128, 256) (3, 3) 3 0 1
Conv5 (256, 512) (3, 3) 1 0 1

ConvT1 (512, 256) (3, 3) 1 0 1
ConvT2 (256, 128) (3, 3) 3 0 1
ConvT3 (128, 32) (3, 3) 1 0 1
ConvT4 (32, 8) (4, 4) 2 1 1
ConvT5 (8, 2) (4, 4) 2 1 1

3.2. Transformer

The Transformer[6] is a neural network architecture
originally introduced for natural language processing tasks,
which has since become a foundational model across di-
verse domains, including computer vision, point cloud anal-
ysis, and scientific computing. Its key innovation lies in the
use of self-attention mechanisms, which allow the model
to capture long-range dependencies and contextual relation-
ships between elements of the input sequence without rely-
ing on recurrent or convolutional structures, as shown in
Fig. 2. In scientific applications, the Transformer can be
adapted to attend over coordinates, features, or latent rep-
resentations, providing a powerful framework for learning
from structured, irregular, or high-dimensional data.

In this project, we adapt the Transformer architecture to
a point cloud regression task, where each data sample con-
sists of a set of spatial points characterized by their 2D co-
ordinates and associated physical features given from the fi-
nite element method. Unlike pixel-based data, point clouds
are more irregular. But it is more efficient for represent-
ing physical problem in the spatial domain. To address
this, we leverage the Transformer’s self-attention mecha-
nism to model interactions between all node points within
point cloud, allowing the network to learn global geomet-

3



Table 2. Transformer Net Architecture for Point Cloud Regression
Stage Layer Input Shape Output Shape

Input Projection Linear (2 → 96) (N, 2) (N, 96)
LayerNorm (N, 96) (N, 96)
Multihead Attention (4 heads) (N, 96) (N, 96)

Transformer Encoder 1 Residual Connection (N, 96) (N, 96)
LayerNorm (N, 96) (N, 96)
Feedforward: Linear (96 → 256 → 96), ReLU (N, 96) (N, 96)

Transformer Encoder 2–8 Repeat same structure as Encoder 1 (N, 96) (N, 96)
Output Head MLP: Linear (96 → 96 → 2), ReLU (N, 96) (N, 2)

Figure 2. Schematic of Original Transformer[6]

ric relationships and local feature dependencies simultane-
ously. Each point attends to others based on both feature
similarity and spatial proximity, enabling the model to in-
fer underlying patterns in the data. The goal is to predict
two target values at each point—representing discretization
nodes, including the flow velocities along x direction and y
direction.

The transformer net is consisted of three parts, includ-
ing the linear projection, the transformer encoder and fi-
nal output layer. The input projection takes the point cloud

data (B, N, 4) as input, and projects the data to the Q/K/V
domain by a fully connected layer, leading to the output
Q/K/V data of shape (B, N, 96). Then these Q/K/V data is
fed into the transformer encoder layer consisted of 8 trans-
former encoder block. For each transformer encoder block,
it is consisted of 4 self-attention heads with standard dot
product attention, feedforward layer with 256 hidden di-
mensions and the ReLU activation functions. The pre-layer
normalization is adopted before all encoder blocks. For the
output layer, it’s consisted of two fully connected layer with
ReLU activation functions, which transfer the data from 96
dimensions to 2 dimensions. The two dimensional output
data is our target fluid velocity (u, v) at all data positions.
The details of the transformer net is given in Table. 2. It
should be mentioned that the positional encoding has not
been implemented here, and the experiments indicates that
the transformer still shows good performance without po-
sitional encoding on our tasks. It is due to that our input is
the point coordinate, the positional information is implicitly
embedded into the input data and is enough for transformer
to learn the spatial relationship.

4. Datasets
Pore-scale fluid flow is difficult to be numerically solved

due to the complexity of porous structures. Herein, we
aimed at the pore-scale fluid flow inside circular package
structures, as shown in Fig. 3(a), where region outside the
circles represents the fluid flow space and the circle region
represents the solid structures.

4.1. Porous Structure Image Generation

Circular packed porous structures are generated by Ran-
dom Monte Carlo movement of circular. Initially, several
circulars are fixed at given locations in a square domain
with pixel size of (240, 240). Then all criculars are ran-
domly moved inside this region, and they will collide with
each other but follows two principles: 1. Their collision
is elastic, which means there will be no overlap, 2. The
boundary of the region is periodic, the part of circle out-
side the boundary will appears on the other side. When the
random movement is evolving with time, several structures

4



Figure 3. Schematic of Image Data Structure

with different distributions of circles are generated. In total,
8600 structures are generated, and they are used to simulate
the fluid flow and used as training dataset.

4.2. Fluid Flow Data Generation

The fluid flow data is generated by numerical simulation
of fluid flow inside porous media. The graph-like unstruc-
tured data is generated by COMSOL simulation, a commer-
cial software based on finite element methods. The fluid
is injected from the left boundary with a given inlet veloc-
ity, and then flows out the domain through the right bound-
ary. The solutions can be represented as about thousands
of nodes from the tri-diagonal mesh, as shown in Fig. 3(b).
The data is consisted of node points and the triangular el-
ements, where the triangular elements are formed by con-
necting the nodes. Currently, we only focus on the node
points and implement transformer on the point cloud con-
sisted of these node points. By saving the simulation results
from COMSOL, the node points data can be saved in a point
cloud of size (N, 4), where N is the node point number, the
four dimension columns represent the coordinates (x, y) and
the fluid velocity in horizontal and vertical direction (u, v),
respectively.

4.3. Data Pre-process

In total, 8600 point clouds with shape of (N, 4) are gen-
erated by above procedure, as shown in Fig. 4(b). For ev-
ery point cloud, the number of nodes is different, because it
is automatically generated by COMSOL, which is the best
representation for corresponding geometry. In general, the
point number varies from 1793 to 3284. Since the nodes
number (the point density) is not in this work’s scope, we
simply sampled 1793 points from every point cloud, and use
it as our dataset. It should be mentioned that such random
sampling may be not the best operation here, there could
be better choice like padding or farthest point sampling.
However, these random sampled points don’t influence our
goal to test transformer on this unstructured discretization
data. In future work, the data should be taken more care-
fully, such as using a mask-mounted padding or embedding

Figure 4. Dataset of Physical Images on Different Mesh

in the latent space. The dataset is also preprocessed before
training. Since the coordinates should be used for positional
encoding and we want to maintain its spatial relative corre-
lation, the coordinates and the velocities are preprocessed
separately. For the coordinates, the min-max normalization
is adopted, as given in Eq. (1). For the velocity, the mean-
deviation normalization is adopted, as given in Eq. (2). The
8600 pairs of point clouds are divided into training, valida-
tion and test dataset as 6300:1800:500 pairs.

x =
x− xmin

xmax − xmin
(1)

u =
u− xmean

ustd
(2)

5. Experiments and Results
The fluid flow field is predicted by both Unet and trans-

former based on pixel-based image and point cloud, respec-
tively. In this work, the variations of loss function, the dis-
tributions of fluid velocity and the relative error of velocity
field are compared between these two networks. The main
target is to evaluate how the different image data structure
(discretization generalization form) and corresponding neu-
ral networks could perform on predicting the flow field.

5.1. Training Settings

For both the Unet and the transformer training, the Adam
optimizer and the mean squared error loss function (MSE)

5



are adopted. The Adam optimizer shows good performance
on most tasks without careful tuning of parameters, and thus
it is adopted for this work. The prediction of velocity field
is essentially the regression task of features on given spa-
tial locations. Therefore, the MSE loss function is adopted
which can be calculated by

LMSE =
∑
i

(ui,pred − ui,truth)
2(3)

For the learning rate, the scheduled changing learning rate
strategy on the Unet is experimented, in which the learn-
ing rate is continuously decreased by 10 times if the rela-
tive error of validation set doesn’t decrease in 20 batches.
Currently, the fixed learning rate as is adopted for the trans-
former training. The initial learning rate for both network is
set as 10−3.

5.2. Unet Prediction on Pixel-based images

By using Adam optimizer with change learning rate
based on scheduled alteration, the loss variations and chang-
ing learning rate can be seen in Fig. 5. It can be demon-
strated that both the training loss and validation loss are
decreased extremely fast during the training process. It in-
dicates the U-net performs extremely well on the velocity
field prediction. It should be mentioned that this extremely
low loss on both training and validation set is attributed to
the physics-informed settings. As mentioned in the physics-
driven neural network, the physics-informed procedure is
applied before the Unet, and thus the input data can be em-
bedded with physical information in advance, leading to
significant improvement on the training process and net-
work performance. This fast decreasing trend of loss is the
reason that we implement the decreasing learning rate based
on validation error. We tried to further decrease the predic-
tion error, but the profit is much less. Note that, the physics-
informed part is not this work’s focus, and thus we’d like not
to discuss this in detail.

The trained U-net is further tested on the unknown test
dataset. One velocity field result is shown in Fig. 6, in
which the first row is the velocity along horizontal direction,
the second row is the velocity along vertical direction. It can
be seen that the velocity field is almost the same between the
ground truth and prediction results. Especially for the high
velocity region, the prediction results is well consistent with
the ground truth.

Based on the distribution of velocity, the performance is
further evaluated by using relative error of the whole veloc-
ity field as calculated in Eq. (4).

Error =
|ui,pred − ui,truth|

|ui,truth|
(4)

As can be seen from the relative error map, most error is
distributed near the solid surface of circular. Besides, the

Figure 5. Unet training loss variations

Figure 6. Prediction Results of Unet

large error is also concentrated in the region where flow ve-
locity is relative low, as can be seen from Fig. 6. From the
perspective of physical science, it is caused by lower value
near solid surface, the low velocity has too much value dif-
ference from the velocity in the channel center, leading to
the numerical error. From the perspective of computer vi-
sion, the pixels almost have the same value near circular
surface, and thus very little difference can lead to huge rel-
ative error in velocity field. In general, the average relative
error of test dataset is 0.0939.

5.3. Transformer Prediction on Point Clouds

During the training process of transformer, the variations
of MSE loss on training dataset and validation dataset are
shown in Fig. 7. It can be seen that the MSE loss is higher
than the Unet training, which is caused by two reasons.
Firstly, the transformer doesn’t have the physics-informed
block, which lacks physical information for the input data.
Secondly, the data for transformer is consisted of the sparse
points of the domain due to our simplification. There-
fore, the MSE loss decreases slightly within the increasing

6



Figure 7. Loss Variations of Transformer

epochs, and finally stabilizes around 0.1. The MSE loss of
training and validation set decreases at the same time and
maintains in the similar range. Therefore, the transformer
is well trained without overfitting or underfitting. More im-
provement procedure will be implemented to transformer in
the future work, such as physics-informed block, padding
sequence and learning rate tuning. However, the current
results are enough to show the ability of transformer with
point-wise data on prediction of flow field. The trained
transformer is further tested on the unknown test dataset.
For three test data, the distributions of horizontal and ver-
tical velocities are shown in Fig. 8 and Fig. 9, respec-
tively. The distributions are similar with the Unet results.
The prediction velocity is almost the same with the ground
truth. As can be seen from the results, under the point-wise
data structure, the prediction results shows very good per-
formance without physics-informed block and learning rate
tuning, indicating the great potential of node point spatial
data from unstructured triangular mesh. It should be noted
that only 1793 points are included for a geometry, which is
far less than the pixel-based image of (240, 240). It demon-
strated that the triangular mesh data can provide larger po-
tential for expressing the physical problem in the spatial
domain. The saved computational resources enables us to
build larger model with higher generalization ability.

The relative error is shown in Fig. 8 and 9, it can be
seen that the relative error is still concentrated in the region
where the flow velocity is relative low. It is consistent with
our conclusion from Unet. However, the transformer shows
one advantages on dealing with the boundary nodes. It can
be seen that more node points are distributed in some nar-
row space near the boundaries. It increases the data density
in the boundary surface, which helps improving the local
accuracy. By calculating the global relative error, the trans-
former reaches 0.1625 on the test dataset, which is higher
than the Unet.

5.4. Discussions

By comparing the prediction results from the Unet with
pixel-wise data and the transformer with point-wise data,
both of them performs well on our task. The Unet achieves
higher accuracy than transformer due to physics-informed
block and fine-tuned learning rate. However, more im-
portantly, the undesigned transformer with randomly sam-
pled point clouds shows strong capability on prediction. It
should be foreseen that using transformer with unstructured
mesh data can provide a better generalization of spatial dis-
cretization for physical problems. It not only allows more
flexible and efficient spatial data input, but also saves the
computational resources for data. allowing us to further ex-
tend the model.

6. Conclusions and Future Work
6.1. Conclusions

The discretization form is the most important part to nu-
merically solving physical problems. It describes the phys-
ical system (PDEs) from continuous equation view in the
spatial domain. It not only determines the accuracy of solu-
tions, but also influences the efficiency of solving process.
From the computer vision view, leveraging deep learning
method in the physical images represented by different data
structures (discretization forms) is a promising routine to
lead the innovation of numerical solutions of PDEs.

In this work, with focus on fluid flow inside porous me-
dia, the spatial solution is represented in pixel-based images
and point clouds, and the Unet and transformer are imple-
mented on each data form. The results show that the Unet
exhibits a stronger performance on our task, while the trans-
former performs weaker. It should be mainly caused by the
implemention of physics-informed block in Unet. However,
the pixel-based images lacks flexibility on the discretiza-
tion forms, with computational waste on the solid region
where fluid flow doesn’t happen. The transformer can han-
dle more flexibile data structure, which should be a more
promising solutions. In conclusion, generalizing flexible
unstructured mesh into point form or graph form data and
leveraging deep learning methods shows good performance
on flow prediction, and it should be further investigated.

6.2. Future Work

1. Implement physics-informed block in transformer to
improve its performance.

2. Apply padding and mask technology or the latent
space prediction. Embed more spatial information of
physical problem into the image structure. From the
computer vision view, reveal the best data structure for
discretization form with the richest and strongest rep-
resentative ability.

7



Figure 8. Prediction Results of Transformer on Horizontal Velocity

Figure 9. Prediction Results of Transformer on Vertical Velocity

8



References
[1] M. Cheng, F. Fang, C. C. Pain, and I. Navon. Data-driven

modelling of nonlinear spatio-temporal fluid flows using a
deep convolutional generative adversarial network. Computer
Methods in Applied Mechanics and Engineering, 365:113000,
2020.

[2] C. Cowen-Breen, Y. Wang, S. Bates, and C.-Y. Lai. Euler
operators for mis-specified physics-informed neural networks.
In ICML 2024 AI for Science Workshop.

[3] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhat-
tacharya, A. Stuart, and A. Anandkumar. Fourier neural
operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020.

[4] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learn-
ing nonlinear operators via deeponet based on the universal
approximation theorem of operators. Nature machine intelli-
gence, 3(3):218–229, 2021.

[5] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear par-
tial differential equations. Journal of Computational physics,
378:686–707, 2019.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. Advances in neural information processing systems,
30, 2017.

[7] H. Wu, H. Luo, H. Wang, J. Wang, and M. Long. Tran-
solver: A fast transformer solver for pdes on general geome-
tries. arXiv preprint arXiv:2402.02366, 2024.

[8] C. Yang, X. Yang, and X. Xiao. Data-driven projection
method in fluid simulation. Computer Animation and Virtual
Worlds, 27(3-4):415–424, 2016.

7. Contributions and Acknowledgments
The physics-informed block of Unet is from my previous

work, and it is re-implemented here. I acknowledge Stan-
ford Sherlock Computing Center for the GPU resources.

9


