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Abstract

This project investigates the use of multimodal vision-
language models for end-to-end (E2E) autonomous driving,
with a focus on improving performance in complex, edge-
case scenarios. The open-source code, OpenEMMA, is ap-
plied to the nuScenes mini dataset. OpenEMMA is an open-
source E2E driving framework that integrates large vision-
language models (MLLMs) with YOLO3D object detection.
The framework takes as input front-camera RGB video and
ego pose data to predict future vehicle trajectories and gen-
erate scene-level driving intent summaries. Additionally,
a ResNet18-based regressor is fine-tuned for 3D bounding
box estimation using KITTI data.

The experiments compare the performance of differ-
ent MLLMs, showing that GPT-4o paired with YOLO3D
achieves the lowest trajectory prediction error, albeit with
higher computational cost. Attempts to retrain YOLO3D
components led to marginal improvement, highlighting the
challenge of optimizing spatial reasoning components with
limited data. This work establishes a scalable pipeline for
E2E training and evaluation, and provides insight into the
trade-offs between model accuracy, interpretability, and re-
source efficiency. Future work includes scaling to larger
datasets like the Waymo E2E dataset, augmenting training
data and incorporating additional vision based modalities
such as lidar or radar.

1. Introduction
Autonomous driving systems must operate safely not

only in routine scenarios but also in rare, long-tail edge
cases that challenge model generalization. The problem in-
vestigated in this project is how accurately a vision-based,
end-to-end (E2E) autonomous driving model can predict
driving behavior, especially in such edge cases. End-to-
end driving refers to learning a direct mapping from sen-
sor inputs — such as raw images or video streams — to
driving outputs like vehicle trajectory, control signals, or in-
tent. While the E2E paradigm has been explored for over a
decade, recent advancements in vision-language and foun-

dation models warrant a fresh investigation into their effec-
tiveness, particularly under data-constrained conditions.

A key inspiration for this project is the Waymo End-to-
End Driving Challenge [20]. Given the scale of the dataset
and the author’s relative newness to the field, this project
sets simplified goals that align with and support the broader
objectives of the challenge. The goals of this project are (1)
to evaluate how newer multimodal vision-language archi-
tectures perform in E2E driving scenarios, and (2) to pro-
totype a simplified training and evaluation pipeline suitable
for future application to large-scale datasets.

In this project, OpenEMMA, a multi-modal vision based
model [21] is applied to a simplified version of the
NuScenes mini data set [2]. The primary inputs used are:

1. Front camera RGB video frames

2. Ego pose history

3. Pretrained MLLM and 3D object detection weights

Outputs of the model are:

1. Future vehicle trajectory

2. Scene images with 3D bounding boxes

3. Text based summaries with driving intent and decision
logs

4. Evaluation metrics comparing trajectory accuracy

Focusing on constrained inputs allows for a clearer eval-
uation of model components and their contributions to over-
all driving behavior. This work helps lay the groundwork
for scaling to larger, more diverse E2E datasets by estab-
lishing a training and evaluation pipeline. Through this pro-
totype, trade-offs are investigated between interpretability,
accuracy, and computational cost.

1.1. Related Work

A review of the latest challenges and modeling ap-
proaches in the end-to-end autonomous driving commu-
nity is provided to add context to the challenge pursued
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in this project. After review, the main obstacles found
are data quality, model generalisation, and interpretabil-
ity. Li et al. present a data-centric roadmap that views
closed-loop dataset integration, hardware development to
process large datasets and personalization as primary areas
to further improve performance [10]. Complementing this,
Chen et al. catalogue 270 + E2E papers and emphasize fo-
cus areas of data quality, causal confusion, and foundation-
model integration [3]. Earlier analysis by Chib & Singh [4]
and Singh [19] note the historical shift from modular
pipelines to imitation and reinforcement-based E2E meth-
ods. They emphasize the need for refined safety constraints
and transparent decision making. Recent reviews highlight
the promise of large language models (LLMs) and vision
language models (VLMs) integration for improving inter-
pretability and user alignment, while also acknowledging
the added uncertainty and complexity these models bring to
E2E driving.

Recent closed and open-source autonomous driving
models show a trend toward more multimodal learning
frameworks. The following trends characterize the latest
modeling strategies:

1. Multimodal, language-aligned architectures. There
is a growing emphasis on framing driving as a multi-
task problem where perception, planning, and reason-
ing are handled within a unified model. Language
serves as a common interface to align diverse modali-
ties and facilitate supervision across tasks.

2. Vision–language fusion for contextual awareness.
Models aim to mimic human-like attention mecha-
nisms and enhance decision-making in complex or am-
biguous driving scenes by integrating textual priors or
language-derived features into spatial representations
(e.g., BEV maps).

3. LLM-driven reasoning and explanation. Large lan-
guage models are increasingly used to supervise or
augment policy learning, enabling systems to gener-
ate interpretable rationales alongside control outputs.
This improves transparency and interpretability.

1.2. Model Architectures

A survey of autonomous driving models was performed
to identify architectures that could be applied or adapted to
the Waymo driving challenge. Identified models are sum-
marized below, beginning with closed-source models fol-
lowed by open-source alternatives.

EMMA leverages Gemini to cast all inputs and tasks as
text, achieving high motion-planning accuracy on nuScenes
and 3-D detection on the Waymo Open Dataset (WOD). Co-
training across planning, perception, and mapping yields

further gains. Limitations include computational expense
and does not incorporate lidar or radar. [9]

VLM-E2E focuses on attention semantics and modality
balance using a BEV-Text learnable weighted fusion strat-
egy, a spatio-temporal module to ensure temporal coher-
ence in dynamic scenes and a probabilistic future prediction
module with attention guided trajectory refinement. Radar
and lidar integration is planned for future development. [12]

DriveGPT4 applies Llama2 as a backbone to processes
monocular video, answers human queries, and produces
low-level control predictions. A bespoke tunning data set
was created for training. [22]

Here are open-source alternatives:

OpenEMMA built by Texas A&M University (TAMU)
implements an open-sourced version of EMMA with pre-
trained MLLMs and a fine-tuned YOLO3D model for ob-
ject detection, achieving generalizable and robust accuracy.
The model shows work is still needed in MLLMs to bridge
the gap in spatial accuracy. [21]

TransFuser introduces a multi-modal fusion transformer
that combines resnet and transformer architectures to inter-
pret single view images and lidar BEV images, reducing
collision rates by 76 % in adversarial scenarios compared
to geometry-based fusion [15]

The literature indicates a shift from modular model im-
provements toward knowledge and data-centric paradigms.
Applying language models as backbones in autonomous
driving architectures adds world knowledge, reasoning, and
interpretability into driving policies. Unresolved issues still
remain such as: scalable closed-loop evaluation, mitigat-
ing causal confusion, and aligning with safety-critical met-
rics [10, 3] Future E2E development appears to be focusing
on rigorous data-centric pipelines with foundation-model
reasoning to deliver robust and interpretable E2E driving
systems.

2. Methods
The approach taken to explore end-to-end autonomous

driving models involved experimenting with OpenEMMA
and training a subset of inputs to better understand the
framework’s structure and performance. The following fig-
ure illustrates the primary components of the OpenEMMA
architecture:

Main inputs to OpenEMMA are front camera images
and 5 second ego pose information. As described previ-
ously, OpenEMMA applies pre-trained multi-modal large
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Figure 1. OpenEMMA framework [21]

language models (MLLMs). Chain of thought reasoning
is employed to guide the models in generating detailed de-
scriptions of critical objects, behavioral insights, and driv-
ing decisions. The MLLMS are prompted to generate
speed and curvature vectors (vehicle turning rate). The four
MLLM options that are integrated into OpenEMMA are:

• Qwen2-VL-7B-Instruct [16]

• LLaVA-1.6-Mistral-7B [11]

• LLAMA-3.2-11B-Vision-Instruct [13]

• GPT-4o [14]

Qwen, LLaVa and LLama are all vision based LLMs
but the OpenEMMA group found there were limitations
with spatial reasoning. To address this they integrated
YOLO3D [1] with GPT-4o to improve perception capa-
bilities. YOLO3D performs 3D object detection, creating
3D bounding boxes on identifed objects. Three different
weights files are used in the YOLO3D pipeline to construct
and refine the 3D bounding boxes. The purpose and name
of the weight file is provided below for reference:

• 2D bounding box (yolo11n nuimages.pt)

• Initial 3D bounding box (yolov5s.pt)

• 3D bounding box fine tuning (resnet18.pkl)

In the OpenEMMA study [21] the YOLO3D 2D
bounding box identification was trained on the nuimages
dataset [2], a subset of the nuScenes dataset. This created
the yolo11n nuimages.pt weights. They kept the yolov5s.pt
weights which create the initial 3D bounding boxes. The
yolo3D repository in OpenEMMA allows the options to
train a regressor model which fine-tunes the 3D bounding
box orientation and size.

2.1. Baseline Method

The baseline evaluation involves applying OpenEMMA
with its integrated MLLMs and YOLO3D module using all
pretrained weights. Due to configuration constraints, the
Llama model was excluded from the analysis. The baseline
comparisons focuses on:

• Average displacement error (L2 distance) between pre-
dicted and ground-truth trajectories,

• Model interpretability via natural language reasoning
outputs,

• Computational efficiency, including runtime and cost.

2.2. Further training

Proceeding beyond the baseline configuration, a regres-
sion model is fine-tuned as a part of the YOLO3D pipeline.
The goal of the model is to be able to accurately predict
the 3D dimensions and orientation of objects from 2D im-
ages. The regression model training is trained on a subset
of KITTI training data [7] which provides monocular RGB
images, camera calibration files and annotated 3D bounding
boxes.

YOLO3D provides both ResNet18 [8] and VGG11 [18]
models for regression training. ResNet18 was chosen over
VGG11 for the regression training due to its improved train-
ing stability, lower parameter count, and stronger general-
ization on small datasets like KITTI. The residual connec-
tions in ResNet18 enable more efficient gradient flow which
leads to better performance under limited data conditions.

The loss function used is adapted from [1] and combines
3 components:

Ltotal = α · Ldim + Lconf + w · Lorient,

where:

• Ldim is a mean square error loss over object dimensions
(height, width, length)

• Lconf is a cross-entropy loss on confidence scores

• Lorient is an orientation loss

Default weights are set to α = 0.6 and w = 0.4 which were
likely created to balance dimensional accuracy and orienta-
tion quality.

Training is conducted using stochastic gradient descent
(SGD) with momentum. Loss metrics and model check-
points are logged using Comet.ml [5]. After training, the
model is evaluated in inference mode by projecting pre-
dicted 3D bounding boxes back onto the original images for
qualitative comparison with outputs applying the pretrained
regressor weights.
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2.3. Code Development

This project primarily utilized the existing OpenEMMA
codebase [21], with minor modifications made to be able
to execute the code. Most of the development effort fo-
cused on setting up the runtime environment and construct-
ing the data pipeline necessary for training and evaluation.
Additionally, GPU Finder [6] proved useful for identifying
available computing resources.

3. Dataset
One of the datasets used here is the nuScenes data

set mini [2] for running and testing OpenEMMA. The
nuScenes dataset containts various car driving scenarios.
The dataset contains 10 difference scenes captured at 20 fps
for 20 seconds. The data set consists of:

1. ego pose

2. 6 camera views

3. radar and lidar images

OpenEmma only relies on front camera views and his-
torical ego pose for predicting the next 5 seconds. so the
rest of the data set was not used. An example front camera
driving scene is shown in Figure 2. Many of the scenes like
this one contain maintenance or utility operation zones to
avoid.

Figure 2. Example NuScenes Front Camera Input [2]

The KITTI dataset [7]was used for ResNet18 training.
The KITTI data set contains 12 GB of mono RGB images
( 7500), camera calibrations files per image, and training
labels and boundaries. An example is shown in Figure 3.
Only a small subset ranging from 100 - 1000 images were
used in training while another 100 were used for testing.

As the long term intent is to analyze the Waymo E2E
dataset [17], the dataset is described here for reference. The
full data set consists of approximately 4k segments with ap-
proximately 10 difference driving scenarios. Training and
validation data spans 20 seconds and test data spans 12 sec-
onds. Each segment contains:

Figure 3. Example KITTI Scene with Boundaries [7]

1. vehicle trajectory

2. vehicle velocity and acceleration

3. command direction

4. 10 Hz camera images provide 360 degree coverage
with 8 views

5. rater feedback score for reviewing acceptable driving
scenarios

The full data set includes a total of about 600 files rang-
ing from 2 - 4 GB each which is approximately 1.8 ter-
abytes.

4. Experiments/Results/Discussion
The OpenEMMA model was evaluated across several

different configurations using the nuScenes dataset. In ad-
dition to testing various MLLM backbones, further train-
ing was conducted on the YOLO3D model with the KITTI
dataset. The results reveal how different model choices and
training strategies impact trajectory prediction and at what
analysis cost.

Results in this section are plotted from several different
driving scenes. Example scene descriptions of those
analyzed are provided here from the nuScenes data set for
context. The examples are diverse yet typical of many
driving scenarios. Given more time a good avenue to
explore would be model performance on very end-tail
scenarios.

”name”: ”scene-0103”, ”description”: ”Many peds right,
wait for turning car, long bike rack left, cyclist”

”name”: ”scene-1077”, ”description”: ”Night, big
street, bus stop, high speed, construction vehicle”

Within OpenEMMA three different models were run on
the nuScene mini dataset that produced trajectory predic-
tions. A comparison of L2 distance between the predicted
trajectory and ground truth is shown in Table 1 for scene
103. (The table is at the top of page 6) Average displace-
ment error is calculated as follows With P̂t reresenting pre-
dicted trajectory and Pt representing ground truth.

ADE =
1

T

T∑
t=1

∥p̂t − pt∥2
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While only a single scene is not sufficient to draw con-
clusions about overall model accuracy, in this instance
GPT-4o appears to perform the best. This supports Open-
EMMA’s findings that integrating YOLO3D can improve
trajectory prediction relative to other MLLM backbones. It
is worth noting that GPT-4o incurs a relatively high cost —
approximately $2 per scene which may become significant
when running large-scale simulations.

Two example scene outputs are shown with trajectories
overlaid for Qwen and GPT-4o in Fig 4 5. The outputs
show the Qwen trajectory veering towards a parked car. The
trajectory does correct back to center but in comparison the
GPT-4o + YOLO3D with bounding boxes appears superior.
The heightened spatial awareness results in the trajectory
down the center of the street.

Figure 4. Qwen Scene103 FrontCam with Trajectory

Figure 5. GPT-4o Scene103 FrontCam with Trajectory

For the above scene example, log outputs from the mod-
els are shown below which are produced by set prompts in
OpenEMMA. Qwen provides an inaccurate description of
the lane markings while GPT-4o identifies both the center
double yellow and bus lane.

Qwen: **Lane Markings**: The ego car is still in the
left lane, which is marked for a left turn. The lane markings
and the direction of the car suggest that the intent to turn
left remains unchanged.

GPT-4o: **Lane Markings:** - The lane markings are
clearly visible. The double yellow centerlines separate
the two directions of traffic, and white dashed lines guide
drivers within their lanes. - A ”BUS” lane is visible on the

right-hand side, suggesting it is designated for bus traffic or
other restricted vehicles.

4.1. YOLO3D training

As mentioned previously YOLO3D relies on 3 differ-
ent weights sets in creating 3D bounding boxes. Within
OpenEMMA there is an option to train the regression model
weights that are meant to provide bounding box size and
orientation. A baseline case was run using the default
Resnet18 pretrained weights on the KITTI test data set for
later qualitative comparison.

The regression model was then trained on a subset of the
KITTI training data with some cases using the pretrained
weights as a starting point. The training code was not set
up to split the training data into testing and validation sets
so as an intermediary means the test data was used as a
validation set for comparison, applying the trained weights
in YOLO3D inference mode. In the future the data will
be more appropriately split between training/validation and
test. The hyperparameters that were settled upon were as
follows:

1. learning rate: 1e-4

2. batch size: 32

3. momentum: 0.9

4. epoch: 30

5. α: 0.6

6. w: 0.4

These are close to the default hyperparemters in Open-
EMMA. Learning rate was adjusted but other values were
found to make the training worse. Number of epochs was
increased from 10 to 100 which appears to have slightly
improved the loss in some cases but also largely increased
training time. Training loss seemed to mostly settle by epic
30. α and w are hyperparamters specific to the YOLO3D
loss function and were kept as defaults.

Example training runs are shown in Figure 6 where
some were successful and others much less so, The re-
sults were from playing around with different learning rates,
dataset sizes, momentum and epoch lengths.

Example training losses, on the slightly better end, are
shown in Figure 7. The purple trace came from first apply-
ing pretrained weights and then training on a small KITTI
data set out to 100 epochs. Training loss showed a quick
improvement and then stayed at a relatively low level al-
though never fully stabilized. The final loss was similar to
non-pretrained data on a larger training set size shown in
blue. The blue trace showed good initial training loss and
then had a brief increase before coming back down. Given
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Table 1. Average Displacement Error (ADE) for Scene 103

Model L2 (m) 1s L2 (m) 3s L2 (m) avg hrs/scene
LLaVA-1.6-Mistral-7B 2.39 5.11 3.64 0.25
Qwen2-VL-7B-Instruct 3.40 6.16 4.54 1.25
GPT-4o 1.02 3.83 2.47 0.5

further time, methods would be explored to improve train-
ing loss convergence such as by expanding the training set
and applying image augmentation techniques.

Figure 6. YOLO3D Resnet18 Training Run Loss Examples

Figure 7. Slightly Better YOLO3D Resnet18 Training Run Loss
Examples. The blue trace uses a larger training data set and the
purple trace starts from pre-trained weights

Figure 8 shows results running YOLO3D in inference
mode with the pre-trained (left) and trained (right) weights
on the KITTI test set. The image on the left shows a
bounding box extending beyond the vehicle’s trunk while
the right shows a much more centered bounding box. This
was a more extreme example as throughout most of the test
scenes, the bounding boxes of the pre-trained vs trained
weights were very similar. Overall the training showed a
very small change in bounding box shape and a deeper dive
would be needed to confirm an overall improvement to the
bounding accuracy. As the training did not show a strong
improvment and due to time constraints a further test case
with OpenEMMA and the further trained YOLO3D weights
was not run.

Figure 8. YOLO3D inference runs pretrained (left) and trained
(right)

The results successfully demonstrate a functional
pipeline for analyzing autonomous driving data and fine-
tuning specific model components. Scaling this approach
to a larger dataset, such as the full Waymo E2E challenge,
would require careful consideration of model architecture
and training strategy as these choices can significantly im-
pact time and computational cost. While GPT-4o produced
the most robust trajectory predictions, its higher per-scene
cost could become prohibitive at scale.

5. Conclusion/Future Work

This project explored the performance of multimodal
vision-language models applied to end-to-end autonomous
driving scenarios using the OpenEMMA framework. By
leveraging pretrained MLLMs and integrating YOLO3D for
3D object detection, the system was able to generate tra-
jectory predictions, scene-level textual reasoning, and vi-
sualizations of driving intent. Among the models evalu-
ated, GPT-4o yielded the lowest average displacement error
(ADE), suggesting that the addition of spatially grounded
bounding box reasoning from YOLO3D improves predic-
tion quality. Using GPT-4o however came with an addi-
tional monetary cost per scene, indicating a trade-off be-
tween interpretability, accuracy, and scalability.

Training a ResNet18-based 3D bounding box regressor
on a subset of the KITTI dataset yielded only marginal im-
provements over pretrained weights and training loss was
also somewhat noisy. This suggests there is room to im-
prove training through using more diverse training data,
improved hyperparameter tuning, augmentation or all of
the above. With the increase in accuracy from incorporat-
ing YOLO3D, results suggest careful tuning of supporting
models within the OpenEMMA framework can play a criti-
cal role in enhancing overall performance.

Given more time, resources, and compute, future work
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would focus on three main directions: (1) scaling the
pipeline to larger, more realistic datasets like the Waymo
E2E Challenge to better assess generalization, (2) exper-
imenting with advanced augmentation techniques to im-
prove the regressor’s robustness, and (3) incorporating lidar,
radar or BEV representations that could enhance spatial rea-
soning in more occluded or cluttered environments.

6. Contributions Acknowledgments
The following codes were used in development of this

project:

• OpenEMMA [21]
https://github.com/taco-group/OpenEMMA

• gpu-finder [6] https://github.com/doitintl/gpu-finder

OpenEmma was the foundational code used in this
project. GPU finder was applied as a very useful tool in
searching for compute resources on Google Cloud Platform.
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