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Abstract

We propose a novel framework for video style transfer
that combines image-to-image models with reinforcement
learning to address the challenge of temporal inconsistency
across stylized frames. Although existing methods for im-
age style transfer yield high-quality results, applying them
independently to video frames often results in flickering ar-
tifacts and loss of temporal coherence. Our method refor-
mulates video stylization as a sequential decision-making
process, where a reinforcement learning agent adapts the
latent representation of a Stable Diffusion model to ensure
consistent style, content preservation, and smooth transi-
tions. The agent is trained using Policy Gradient methods
with a custom reward function that incorporates style sim-
ilarity, content fidelity, and bidirectional temporal consis-
tency measured via optical flow.

1. Introduction

Video style transfer aims to generate a stylized video that
preserves the content of the original video while applying
the visual style of a separate reference image. While image
style transfer has been well-studied and produces visually
appealing results for individual frames, naively applying
these methods frame-by-frame to a video often leads to no-
ticeable temporal inconsistencies—stylization varies from
frame to frame, causing flickering and other artifacts.

To address this challenge, we propose a novel framework
that formulates video style transfer as a sequential decision-
making problem, allowing us to enforce temporal coher-
ence across frames. Specifically, we design a reinforce-
ment learning (RL) agent that operates over video frames to
guide the stylization process toward consistent results. The
agent leverages prior stylized frames as context when gener-
ating each new frame, aiming to minimize stylistic variation
while maintaining visual fidelity to both the original content
and the target style.

The input to our algorithm is a video sequence V =
Iy,I5,...,Ir consisting of T frames and a single refer-

ence style image R. Our algorithm aims to produce a styl-
ized video S = 5S4, S,..., ST where each frame S; sat-
isfies the following criteria: (1) it reflects the style of R,
(2) it preserves the semantic content of the original frame
I, and (3) it is temporally coherent with neighboring styl-
ized frames. We build on the image-to-image style transfer
model DiffuseST [5], which outputs the latent representa-
tions for each stylized frame. Our main contribution is to
introduce a reinforcement learning (RL) policy that adjusts
these latent vectors to promote temporal consistency across
frames while maintaining and improving auxiliary loss like
style and content. The policy is trained using policy gradi-
ents methods and operates on the final latent representations
from the encoding stage of previous and current frames. It
outputs a residual adjustment term, which is added to the
current frame’s latent before decoding.

Our motivation for this work stems from the limitations
of current video style transfer techniques, which either suf-
fer from temporal artifacts or lack generalization capabil-
ity. Moreover, to the best of our knowledge, no exist-
ing approach integrates Stable Diffusion with reinforcement
learning for this task. By casting stylization as a reinforce-
ment learning problem, we open the door to more adaptive
and controllable stylization strategies for video generation.

Our method is shown to improve upon a baseline Diffus-
eST model by reducing temporal loss, while maintaining
comparable performance in style and content preservation
metrics. Furthermore, we observe a consistent increase in
the overall reward signal and a downward trend in the total
training loss across epochs. These results indicate that our
reinforcement learning agent successfully enhances tempo-
ral coherence in stylized videos without compromising vi-
sual quality.

2. Related Work

Video style transfer lies at the intersection of image style
transfer, temporal consistency in video generation, and rein-
forcement learning for vision tasks. Prior works can be cat-
egorized into three major groups: (1) classical image style
transfer, (2) diffusion-based style transfer approaches, and



(3) reinforcement learning (RL) for stylization and diffusion
guidance.

Classical Image Style Transfer: The foundational work
by Gatys et al.[4] introduced neural style transfer us-
ing Gram matrix statistics extracted from VGG features.
Follow-up works such as AdaIN[6] and WCT [7] proposed
feed-forward architectures for real-time inference. While
effective for individual images, these methods often pro-
duce artifacts when applied frame-by-frame to video.

Diffusion-Based Style Transfer: Diffusion models
have enabled high-quality and semantically aligned genera-
tion. DiffuseST [5] introduced zero-shot image style trans-
fer using pre-trained diffusion models with classifier-free
guidance. SDEdit [8] allows editing images by partially de-
noising and re-sampling. ControlNet [15] augments diffu-
sion models with structural guidance for more deterministic
generation. However, these methods generally focus on still
images, and naive application to video frames yields poor
temporal consistency.

Reinforcement Learning for Stylization and Diffu-
sion: Reinforcement learning offers a compelling frame-
work for sequential adaptation. RL-NST [2] applies RL to
image style transfer, tuning parameters for aesthetic out-
comes. DDPO [1] shows that RL can be used to control
diffusion generation toward high-level objectives by shap-
ing reward functions. While promising, these methods are
not focused on the objective of improving temporal loss in
terms of video generation.

State-of-the-Art Models: State-of-the-art video style
transfer models such as CoDeF [9] and CompoundVST [14]
rely on explicit motion modeling and attention for frame
alignment. However, most of them are limited to static
pipelines with fixed heuristics.

Our proposed method is unique in casting video styliza-
tion as an MDP, where an RL agent actively selects latent
conditioning strategies for each frame. This allows dynamic
adaptation to style, content, and temporal cues. While most
current systems are either fully supervised or require hand-
crafted loss terms, our approach enables learning more flex-
ible, data-driven strategies.

To our knowledge, no prior work has integrated Stable
Diffusion with reinforcement learning to address tempo-
ral stylization, making our contribution a novel step toward
more controllable and temporally-aware video generation.

3. Method

Our approach combines frame-by-frame style transfer
via Stable Diffusion with policy gradient reinforcement
learning method to ensure temporal and stylistic consis-
tency, as shown in Figure 1. We build on the existing code-
base of DiffuseST ! to extract latent representation for each
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Figure 1: Video style transfer proposed architecture

frame and perform encoding and decoding stage of the dif-
fusion model. All code for the policy gradient training
loop, the policy network architecture, reward calculation,
loss functions, and analysis is ours.

The pipeline consists of three key components:

3.1. Single Frame Style Transfer

The input video V is decomposed into individual frames
{I1,...,Ir}. Each frame I; is passed through a Stable
Diffusion-based image-to-image model Dy to produce a
stylized output S;:

St = Dy, (11, R) 6]

where R is the reference style image, and 6, is the latent-
conditioning parameter at timestep .

3.2. Policy Gradients Formulation

To guide consistent generation across frames, we for-
mulate the problem as a Markov Decision Process (MDP),
where at each timestep ¢:

¢ State:
s¢ = {1, 11, S¢—1} 2

The state includes the previous and current video
frames I;_1, I; and the previous stylized frame S;_1,
providing the agent with temporal context through the
temporal reward function.

¢ Observation:
Ot = {Lt—la Lt} 3)

The observation consists of the latent representations
produced by DiffuseST [5] for the previous and current
frame.

¢ Action:
a; = 0y NN(M>(72) “4)



At each timestep, the policy outputs a residual adjust-
ment term J; which is sampled from a learned distribu-
tion by the policy network. The distribution is condi-
tioned on the latent representations of the current and
previous frames. Specifically, the policy predicts the
mean u and a fixed standard deviation o of a Gaussian
distribution, from which ¢; is sampled. The adjusted
latent L; + ¢, is decoded to generate the stylized frame
St-

¢ Rewards:

Ty = _(Astyle : Rsty]e(Stv R) + )\cuntent : Rcomem(Stv It)
4)
+ >\temp : Rtemp(Sta St—l |It7 It—l)) (6)

Each term is scaled by a distinct A value to ensure con-
sistency in magnitude and contribution to the overall
reward. We define each reward as the negative of the
corresponding loss, since lower loss is better but higher
reward is preferred. The total reward encourages the
agent to generate frames that are

— Stylistically consistent: similarity of S; to the
reference style R

— Content preserving: similarity of S; to I;

— Temporally consistent: consistency between .Sy
and S;_1 using I;_; and I; as references

The policy is trained via policy gradient methods to op-
timize this reward, enabling adaptive adjustment of latent
representations that maximize the cumulative reward across
the video and preserve both visual fidelity and temporal co-
herence across frames.

3.3. Policy Network Architecture

The policy network is implemented as a lightweight con-
volutional model that takes the latent representations of two
consecutive frames—L;_; and L;—and predicts a distribu-
tion over the residual adjustment J;. The network first con-
catenates L;_1 and L; along the channel dimension and
processes the result through two convolutional layers fol-
lowed by instance normalization and ReLU activation. A
residual block further refines the feature representation.

The output is passed through a 1 x 1 convolution to pro-
duce the adjustment mean . A learnable gating parameter
modulates this mean to stablize early training, and the stan-
dard deviation o is modeled as a learnable scalar. The final
action &; is sampled from a Gaussian distribution A (j, o'2)
via reparameterization, and the log probability of the return
is fed back to the optimization loop to compute the policy
gradient updates. Figure 2 shows the policy network archi-
tecture.
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Figure 2: Policy predicts a Gaussian distribution from
which the adjustment term § is sampled and added to the
latent.

3.4. Frame-by-Frame Style Transfer Baseline

To establish a strong baseline, we adopt DiffuseST [5] to
perform per-frame style transfer. DiffuseST is a training-
free diffusion-based framework by disentangling content
and style representations, combining spatial and textual em-
beddings, and using step-wise nature of diffusion model for
content and style injection.

In the baseline setting, each video frame is processed in-
dependently. Given a content frame and a reference style
image, DiffuseST generates the stylized frame. This setup
inherits the strengths of DiffuseST, including rich expres-
sion of style and good content preservations. However, as it
lacks notion of temporal structure, the resulting video may
have inconsistency across frames, particularly in regions
with fine textures or motion details. To tackle this limita-
tion, we introduce a policy-gradient-based refinement stage
that learns to enforce consistency across time while retain-
ing the aesthetic quality of the style transfer. We adopt three
quantitative metrics: style loss, content loss and temporal
consistency score.

3.5. Reward Functions

Style Loss. To ensure each stylized frame adheres to the
desired artistic style, we compute the style loss between
each stylized frame and the style image using the Gram ma-
trix [3]. This loss captures the correlations between feature
activations in a pretrained network, effectively measuring
stylistic similarity. With this value, we guide the RL agent
to maintain the desired artistic style across frames.

Laye = 3 1Gi(S) = Gi(R)|3
l

where G () denotes the Gram matrix of the feature activa-
tions at layer [ for image . Gj(z) = ¢;(z)¢;(z) " is com-
puted from the vectorized feature map ¢;(z) from VGG.

Content Loss. To quantify content preservation in our
stylized outputs, we adopt the Learned Perceptual Image
Patch Similarity (LPIPS) metric [16]. LPIPS measures per-
ceptual similarity based on deep feature activations from
pretrained neural networks, correlating well with human vi-
sual judgments. A lower LPIPS score indicates that the styl-



(a) Style image.
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(b) Input Frame 1. (c) Input Frame 8.  (d) Input Frame 16.

Figure 3: Example style image and input video frames from
the dataset.

ized image remains perceptually closer to the original con-
tent. In our experiments, we use the AlexNet-based version
(version 0.1) of LPIPS as it provides a balanced trade-off
between performance and computational efficiency. This
metric enables us to objectively evaluate how well the se-
mantic content of the original video frames is preserved af-
ter style transfer.

Bidirectional Temporal Consistency Score. Temporal
consistency is measured using optical flow estimated by a
pretrained RAFT model [13]. Given two consecutive in-
put frames I; and I; 1, we compute forward and backward
optical flow fields, F}_,;4+1 and Fyyq_,; respectively, and
use them to warp the corresponding stylized frames S; and
S¢r1. The warped frame W(Sy, Fi_¢11) is expected to
align with S, 1, and vise versa. The loss is computed as the
L1 differences between the warped and target frames in both
directions. To avoid penalizing regions affected by occlu-
sion or flow uncertainty, we apply an occlusion mask based
on flow cycle consistency. This loss encourages smooth and
temporally consistent transitions in the output video.

4. Dataset and Features

Our dataset consists of two components: (1) style refer-
ence images and (2) short content video clips. For style
references, we curate high-resolution artworks from the
WikiArt dataset [11]. For content videos, we collect 10
short 2-second clips from Pexels [10], covering diverse
scenes such as nature, urban landscapes, people, and pets.
To ensure that the selected clips exhibit sufficient tempo-
ral dynamics for our model to learn from, we further filter
them based on the magnitude of motion present in each clip.

Each video contains approximately 20 frames, yielding a to-
tal of 200 video frames for stylization. Due to the limitation
of our compute, we were only able to train on 5 of those
videos.

To prepare the data, all videos are downsampled to a spa-
tial resolution of 256 x 256 and converted to RGB. We then
extract individual frames from each clip and store them as
PNG images. We split the dataset into 75% training, and
25% test. Due to compute limitation, we finally choose 5
videos from training set and 2 videos from test set for exper-
iments. Each stylization episode consists of a content video
clip and the style image. This results in stylization tasks
that vary significantly in texture, color palette, and spatial
composition.

Our reinforcement learning agent does not directly op-
erate on raw pixel data. Instead, it conditions the Stable
Diffusion pipeline via latent vector perturbations, which in-
directly control the output stylization. For each frame, we
extract 1000 latent vectors, one for each diffusion timestep,
and allow the agent to perturb these latents. These latent
vectors are learned over the course of training based on a
reward that is computed from the extracted perceptual and
temporal features described above. Before feeding images
to the diffusion model and calculating reward functions, we
normalize and transform our images. No other normaliza-
tion or whitening is applied to the inputs.

By designing the dataset and the preprocessing pipeline
in this way, we enable consistent evaluation of temporal sta-
bility and visual quality across varied stylistic contexts and
scene dynamics.

5. Experiments

We evaluate our baseline model on five videos featuring
diverse content types, including animals, human, flowers,
and natural scenery. For all experiments, we use The Starry
Night by Vincent van Gogh as the target style image (Fig-
ure 3a).

Hyperparameters. We conducted experiments varying
the number of training epochs and the learning rate. We
used the Adam optimizer. We experimented with running
for 2, 5, or 10 epochs and learning rate of le-4 and Se-
4. Our results indicate that training for more epochs con-
sistently improves performance, likely because the rein-
forcement learning agent has more opportunity to refine
the residual latents used to condition the diffusion model.
Among the learning rates tested, we found that le-4 yields
the most stable and effective training dynamics, striking a
good balance between convergence speed and policy stabil-

ity.
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Figure 4: Zoom-in to see detailed texture comparison between our method and the baseline.

5.1. Batched Gradient Accumulation Experiment

To improve training stability, we conducted an exper-
iment introducing batched gradient accumulation during
policy optimization. In our initial setup, the policy was up-
dated after computing rewards from each pair of consec-
utive frames. However, this approach resulted in unstable
training and poor stylization quality. We attribute this to the
high variance in reward signals between adjacent frames,
caused by both the stochastic nature of the diffusion model
and the variability in scene dynamics.

To address this, we introduced gradient accumulation
across multiple steps—specifically, accumulating gradients
over 4 consecutive frame pairs before applying an update.
This technique effectively reduces the variance of policy
gradient estimates and improves training stability. More-
over, for longer video sequences, gradient accumulation
over local temporal windows enables the agent to better cap-
ture short-term dependencies without processing the entire
sequence at once.

This strategy serves as a lightweight alternative to Trun-
cated Backpropagation Through Time (TBPTT), enabling
localized temporal credit assignment while maintaining
computational efficiency. By updating the policy based
on multi-step observations rather than single-frame transi-
tions, the agent learns smoother, more coherent stylization
policies that generalize better to longer and more complex
videos without suffering from temporal fragmentation.

5.2. Reward Weights Design Experiment

Our reward function is composed of three key compo-
nents: style fidelity, content preservation, and temporal con-
sistency. To ensure that each component contributes mean-
ingfully during training, we scaled the individual reward
terms to be of comparable magnitude, as referenced in Table
L.

We experimented with multiple weighting schemes and
ultimately found that assigning a weight of 10 to both the
style and temporal rewards, and a weight of 1 to the content
reward, consistently produced the most balanced and visu-

ally coherent results. This configuration reflects our goal
of improving temporal coherence without sacrificing visual
quality or semantic content.

We found that this balanced weighting encourages the
agent to generate stylized videos that are not only tempo-
rally stable, but also visually coherent and faithful to the
original content.

6. Results
6.1. Evaluation Metrics

We evaluate the final outputs of our method and the base-
line using a combination of quantitative and qualitative met-
rics. For quantitative evaluation, we rely on optimization-
based losses such as temporal consistency, content preserva-
tion, and style similarity. Additionally, we use CLIP-based
semantic similarity, all of which are commonly adopted in
prior work on video style transfer and related domains. For
qualitative comparison, we provide visualizations of repre-
sentative stylized frames and conduct detailed inspections
across the full set of output frames for each video, enabling
a comprehensive assessment of visual coherence and styl-
ization fidelity.

6.2. Qualitative Results

We compare stylized output frames produced by our
method against those from the baseline. Notably, although
we introduce additional noise into the latent space before
the diffusion decoding process—a step that typically dis-
rupts generation quality—the final outputs from our method
remain visually comparable to the baseline. This suggests
that our reinforcement learning agent effectively learns a
meaningful adjustment to the latent representations gener-
ated by the pretrained diffusion encoder.

When examining the fine-grained textures in the styl-
ized frames (see Figure 4), our method produces noticeably
stronger line strokes and richer texture details compared to
the baseline. We attribute this improvement to the use of
the Starry Night style image, which contains distinct and



Data Set | Content Loss | Style Loss | Temporal Loss
baselin train 0.3421 8.8020 0.1724
aseline test 0.3681 58211 0.1535
e train 0.3288 8.7992 0.1627
Diffusion w/rl (Ours) |- 0.3693 58312 0.1508

Table 1: Comparison of style, content, and temporal losses between the baseline and our proposed method. We then apply
scaling before calculating the total rewards.

data set | Content preservation | Style Similarity | Temporal Consistency
Baseline train 0.7249 0.6318 0.9767
test 0.6723 0.6316 0.9839
P train 0.7166 0.6322 0.9755
Diffusion w/ RL (Ours) 525 0.6690 0.6314 0.9833

Table 2: Comparison of CLIP-based style, content, and temporal evaluation between the baseline and our proposed method.

expressive artistic textures and that our model is better able
to capture and preserve.

Additional qualitative comparisons are shown in Figure
5, further demonstrating the coherence and quality achieved
by our approach.

6.3. Quantitative Results
6.3.1 Loss Evaluation

We first evaluate the individual loss components defined in
our reward function on the final stylized outputs produced
by our method and the baseline.

As shown in Table 1, our method outperforms the base-
line across all three metrics, demonstrating that our rein-
forcement learning framework provides consistent improve-
ments over the base DiffuseST model in terms of temporal
stability, stylistic fidelity, and content preservation. Further-
more, we observe that two of the three losses are lower on
the test set compared to the training set. This could be due
to the small size and the lack of diversity within the test set.
While this might not reflect the generalization of the results,
the consistent improvement across all losses still shows that
the model is able to learn meaningful policies.

6.3.2 CLIP Similarity

We also evaluate the stylized outputs from our method and
the baseline in a learned representation space. Specifically,
we extract CLIP [12] features for all video frames, leverag-
ing the strong semantic encoding capabilities of CLIP due to
its large-scale pretraining. This allows us to assess how well
the semantic content and style characteristics are preserved
in an embedding space aligned with human perception.

For each frame in the video, we extract the CLIP image
embedding and compare it to the embedding of the corre-
sponding input frame (content reference) or style reference.

We compute cosine similarity between these embeddings to
quantify how closely the stylized output matches the target
in CLIP space:

CLIPSim(z,y) = 2T W) 7
£ @I - 1F @)

where f(z) and f(y) denote the CLIP embeddings of
frames = and y, respectively, and (-,-) represents the dot
product.

As shown in Table 2, our method achieves performance
comparable to the baseline, despite the introduction of ad-
ditional noise in the latent space. This indicates that our
approach maintains semantic integrity in the stylized out-
puts. However, we believe there is room for improvement,
and a more detailed discussion of potential limitations and
influencing factors is provided in Section 6.4.1.

6.4. Discussion

Our experiments demonstrate consistent improvement
across temporal, style, and content loss metrics while op-
timizing the overall reward as could be seen in Figure 6
in the Appendix. Although the absolute improvements in
numerical values are small, this outcome is expected due
to the scale of the loss components and the limited dataset
used for training.

Notably, we observe a promising upward trend in the re-
ward signal and a steady decline in total loss over training
epochs. As shown in Table 1, while the final loss values
do not differ drastically from the baseline, their consistent
reduction provides evidence that the reinforcement learning
agent is effectively learning and improving its policy.

These trends suggest that our RL framework is capable
of gradually optimizing stylization quality across multiple
objectives, even under resource-constrained settings. This
proves our hypothesis that RL is beneficial for video style
transfer tasks in terms of improving loss.



Figure 5: More examples of output from our methods and baseline

6.4.1 Limitations

Through the experiments and analysis to our model, we also
identify several limitations that hinder our methods perfor-
mance. Understanding these limitations are crucial for fu-
ture improvements and optimizations.

Instability of Policy Gradient Training. We chose
to train with policy gradient method as it provides a
lightweight and straightforward testbed for our ideas. De-
spite its simplicity, policy gradient is known to exhibit high
variance and less stable convergence compared to methods
that use critic networks and value estimates. To address this
in future work, one could introduce a critic network to eval-
uate the latent action to reduce variance in the optimization.

Limited Compute and Data Due to constrained com-
putational resources, our experiments were conducted on
a relatively small dataset to ensure manageable comopute.
While the results demonstrate the learning capability of
our proposed method, we believe its generalization per-
formance could be significantly improved with access to
larger-scale datasets and greater compute. Scaling up train-
ing would likely allow the reinforcement learning agent
to better capture diverse motion patterns and style-content
variations across videos.

7. Conclusion and Future Work

Our RL-based method demonstrates a proof of concept
for using RL to improve video style transfer. While the
improvements over the baseline diffusion model are sub-

tle, they are notable given the limited compute and data
available during training. These results suggest that even
under constrained conditions and in the presence of model-
ing noise, RL can still yield measurable benefits in terms of
video coherence and consistency.

This outcome aligns with expectations, as RL frame-
works typically require significantly more data and training
steps to converge effectively, a trend also observed in prior
work.

Future directions could focus on scaling the RL train-
ing with larger datasets and more computational resources,
enabling more robust policy learning and more pronounced
improvements in temporal consistency and stylization qual-
ity.  Additionally, it would be valuable to investigate
whether the policy trained on Starry Night generalizes to
other distinct style transfer tasks, providing insight into the
adaptability and transferability of the learned stylization
policy.

8. Contributions

Sirui Chen: Implement content loss, policy gradient re-
wards and update, run experiments and evaluations.

Coco Xu: Data Processing, Implement Style Loss, CLIP
evaluation, Ran experiments.

Zhiyi Kuang: Implement temporal loss, policy network
architecture, policy gradient training loop, run experiments.

Sirui and Zhiyi are sharing this project with 224R.
Specifically, the parts done specifically for 231N include

1. Extraction of latent representations using the baseline
diffusion model DiffuseST



Formulation of the style loss function (Gram matrix),
content loss (LPIPS), temporal loss (RAFT and optical
flow)

Experiments for better performance and hyperparame-
ters

Formulation of evaluation metric using CLIP embed-
dings

Formulation and preprocessing of the Dataset

Appendix

(a) Reward (b) Content Loss

(c) Style Loss (d) Temporal Loss

Figure 6: Loss and reward trends across training epochs.
Each subfigure reports a key metric used to monitor learning
progress of the RL agent.
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