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Abstract

Motion remains a major challenge in MRI due to long
acquisition times, with nonrigid motion particularly prob-
lematic in body imaging. While several classical and deep
learning-based methods have addressed motion artifacts,
many rely on additional measurements, pre-training, or lack
generalization across subjects and protocols. We propose a
self-supervised, interpretable framework for nonrigid mo-
tion modeling and correction using implicit neural rep-
resentations (INRs). Our neural space-time architecture
jointly trains a scene network to represent anatomy and a
motion network to predict time-resolved deformation fields.
Training these networks on a per-subject basis should im-
prove adaptability and eliminate the need for supervised
datasets or external motion measurements. Incorporating
a lightweight rigid motion network further stabilizes and
accelerates training.

Using simulated data with combined rigid and nonrigid
motion, we demonstrate accurate reconstruction across a
wide range of motion amplitudes (0–50 mm). Reconstruc-
tion quality was highly sensitive to the nonrigid motion net-
work’s capacity and regularization strength, with at least 8
levels of hash encoding required to achieve SSIM > 0.90.
We also evaluated the impact of imaging parameters, find-
ing that calibration line count had minimal effect, while
increased acceleration led to a gradual decline in recon-
struction performance. These results highlight the proposed
framework’s flexibility and data efficiency, showing strong
potential for robust, motion-resolved MRI without reliance
on external priors.

1. Introduction/Related works
Magnetic Resonance Imaging (MRI) is highly suscepti-

ble to motion artifacts due to long acquisition times. This
is especially problematic in high-resolution head imag-
ing, where even small head or neck movements can blur
the image, and in body imaging, where involuntary mo-
tions—such as breathing and heartbeat—introduce com-
plex, nonrigid deformations. Although rigid-body motion

models are often assumed in head imaging, they tend to
break down in areas like the neck, where motion varies
across space. In body imaging, motion is inherently non-
rigid but can sometimes be locally approximated as rigid.

Conventional motion correction techniques typically rely
on motion tracking using navigator signals or external sen-
sors, and often assume rigid-body motion. Navigator sig-
nals may be obtained from low-resolution image navigators
[1], dedicated k-space lines [2], or external sources such
as optical tracking systems [3] or radiofrequency sensors
like pilot tone [4]. These approaches estimate motion pa-
rameters (typically six degrees of freedom per shot) from
multi-coil data using the forward model. However, these
methods face several limitations: external devices require
an extra calibration, solving for nonrigid motion becomes
intractable with many variables, and navigator-based meth-
ods can reduce scan efficiency by taking up additional ac-
quisition time.

To address nonrigid motion, several methods have been
proposed for dynamic abdominal and cardiac imaging.
One classical approach, XD-GRASP [5], separates motion
phases into respiratory and cardiac bins and jointly recon-
structs images across bins. This method has been widely
adopted at clinical sites around the world due to its robust-
ness and effectiveness. However, it requires manual extrac-
tion of motion states, assumes periodic motion, and lim-
its temporal resolution due to predefined binning. As a
result, it performs suboptimally in the presence of irregu-
lar or bulk motion. Recently, an end-to-end deep learning
alternative was introduced, combining an auto-navigation
network (RANGR) with a motion-compensated reconstruc-
tion network (Movienet). This approach automates motion
state extraction and achieves higher acceleration factors in
free-breathing dynamic imaging. Unlike classical methods,
the deep learning pipeline requires supervised pretraining
on approximately 40 clean datasets but eliminates the need
for handcrafted binning and manual motion labeling.

More advanced nonrigid motion correction strategies in-
corporate motion directly into the image reconstruction pro-
cess. Model-based approaches and motion-informed en-
coding (MIE) techniques integrate nonrigid deformation
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fields into the signal model and jointly estimate both mo-
tion and image content during reconstruction [6, 7, 8]. In
parallel, several data-driven methods have emerged, includ-
ing MedGAN [9], BladeNet [10], and LAPA+ (A-LIK)-
Net [11], which leverage learning-based architectures to im-
prove motion-robust imaging. Notably, LAPNet [12] is a
promising cardiac imaging method that employs a learned
affine parameterization for nonrigid motion correction. It
demonstrates high-quality reconstruction performance but
relies on pretraining with a large representative dataset and
incorporates hand-crafted motion priors to guide learning.

Recently, an interpretable implicit neural representa-
tion (INR) approach was proposed for dynamic contrast-
enhanced (DCE) MRI of the liver. This method models
post-contrast dynamic images as a function of spatial co-
ordinates and learnable temporal latent variables, parame-
terized by normally distributed variables. The learned tem-
poral variables can be interpreted as encoding either con-
trast dynamics or motion, offering new insights into tempo-
ral variations in DCE-MRI. Compared to XD-GRASP-PRO
[13], the approach demonstrated comparable or improved
quality in both motion-resolved image reconstructions and
quantitative contrast uptake curves. While promising, the
method does not explicitly estimate motion fields, and its
generalizability to other sampling patterns beyond radial ac-
quisitions or to non-contrast imaging remains uncertain.

Building on these ideas, we propose an end-to-end
framework for nonrigid motion estimation and correction
in multi-shot MRI, leveraging space-time neural model-
ing [14]. Our method jointly learns two implicit neural rep-
resentation (INR) functions defined over spatiotemporal co-
ordinates. The first is a scene network, which maps 2D spa-
tial coordinates (x, y) to static complex-valued image in-
tensities. The second is a motion network, which maps 3D
spatiotemporal coordinates (x, y, t) to a smooth, nonrigid
displacement field (δx, δy) that deforms the static image at
each time point.

The predicted deformation fields are applied via spatial
warping, followed by a non-uniform fast Fourier transform
(NUFFT) and multi-coil encoding to synthesize k-space
data. The scene and motion networks are jointly trained to
minimize a composite loss consisting of: (1) a data fidelity
term comparing the synthesized and measured k-space, and
(2) a motion regularization term enforcing spatial and tem-
poral smoothness of the deformation fields.

In contrast to prior INR-based approaches that encode
temporal variation implicitly through latent variables, our
method explicitly estimates motion fields with a dedicated
network and regularization strategy. This formulation en-
ables structured, interpretable modeling of motion and im-
proves data consistency. To further enhance stability and
disentangle global motion from local deformation, we in-
troduce a lightweight rigid motion network, which takes ac-

quisition time t as input and outputs in-plane translation and
rotation parameters. These are used to apply an initial rigid
alignment before estimating nonrigid motion.

Our framework is fully self-supervised, requiring no
navigators, external sensors, or pretrained components. It
directly learns both motion and image content from un-
dersampled k-space data, enabling end-to-end optimization
without auxiliary supervision. By explicitly modeling com-
plex, potentially aperiodic nonrigid motion, the method of-
fers a flexible and data-efficient solution for dynamic MRI
reconstruction, with broad applicability across anatomical
regions, contrast mechanisms, and sampling trajectories.

2. Method

2.1. Neural Space-Time Model Architecture

Our method formulates motion-corrected MRI recon-
struction as a joint learning problem of a static scene and
dynamic motion within a unified neural space-time frame-
work. Specifically, we represent the static 3D image as a
coordinate-based neural field Fθ, and the time-varying mo-
tion as a function Mϕ that outputs a deformation field for
each time point (or shot index). To account for both rigid
and nonrigid motion components, we decompose Mϕ into
a global rigid transformation R(t) and a nonrigid displace-
ment field Dϕ(x, t).

Scene Network: The static scene is modeled by an im-
plicit neural network Fθ(x), which maps a spatial coor-
dinate x ∈ R3 to the complex-valued image intensity at
that location. We implement Fθ as a multi-layer percep-
tron (MLP) and apply multi-scale hashed positional encod-
ing to x, normalized to the range [−1, 1]3, to enable high-
frequency detail representation. This formulation allows
Fθ to compactly represent a high-resolution volumetric MR
image.

Motion Network: The motion field is defined as a func-
tion Mϕ that produces a 3D displacement for each spatial
coordinate x at time t. We parameterize Mϕ as the compo-
sition of a rigid motion model R(t) and a nonrigid deforma-
tion model Dϕ(x, t). The rigid component R(t) applies a
global transformation parameterized by six degrees of free-
dom (three translations and three rotations), which are pre-
dicted per time point. The nonrigid component Dϕ(x, t)
is modeled by an MLP that outputs a local displacement
vector ∆x for each spatial coordinate and time, enabling
spatially varying motion.

Coordinate Warping: The full motion at time t defines
a mapping from static to displaced coordinates as:

M(x, t) = R(t)(x) +Dϕ(x, t), (1)

where R(t) denotes the rigid transformation, and Dϕ is the
nonrigid displacement field.
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To synthesize the image at time t, we query the scene
network at the corresponding static coordinate that maps to
x̂ after motion. Assuming small deformations, we apply
backward warping:

Ît(x̂) = Fθ

(
R−1(t)(x̂)−Dϕ(x̂, t)

)
. (2)

2.2. MRI Forward Model

To simulate k-space measurements from motion-
corrupted images, we integrate a differentiable MRI for-
ward model into the network training loop. For each shot
t and coil c, the forward operator A applies coil sensitiv-
ity modulation followed by a Fourier transform. Let Sc(x)
denote the known sensitivity profile of coil c, and let Ît(x)
be the reconstructed image at time t. The fully-sampled,
continuous k-space signal for coil c is given by:

Y full
c,t (k) =

∫
x

Sc(x) Ît(x) e
−j2πk·x dx. (3)

In practice, each shot samples only a subset of k-space.
We model this by applying a binary sampling mask Mt(k)
specific to shot t, resulting in:

Yc,t(k) = Mt(k) · Y full
c,t (k). (4)

This forward model is implemented as a differentiable
pipeline consisting of coil sensitivity weighting, a 2D FFT,
and element-wise masking in k-space using precomputed
undersampling patterns. The output is the predicted k-space
data {Y (pred)

c,t }, which is compared against the acquired data
during training to enforce data fidelity.

2.3. Loss Function and Regularization

We jointly train the scene and motion networks in a fully
unsupervised manner, relying only on the discrepancy be-
tween predicted and measured k-space data. The primary
data fidelity term enforces consistency with the acquired
multi-coil k-space and is defined as:

Ldata =

Nt∑
t=1

Nc∑
c=1

∥∥∥Y (pred)
c,t − Y

(meas)
c,t

∥∥∥2
2
, (5)

where Y
(pred)
c,t and Y

(meas)
c,t denote the predicted and mea-

sured k-space for coil c at shot t.
To promote realistic and stable motion estimation, we in-

troduce two regularization terms. The first enforces spatial
smoothness and sparsity in the nonrigid deformation field:

Lnonrigid = ∥∇xDϕ∥1 + ∥∇yDϕ∥1 + ∥Dϕ∥1 , (6)

where ∇x and ∇y denote finite differences along spatial
axes.

Figure 1. Schematic overview of the proposed Neural Space-Time
Model (NSTM) for motion estimation and motion-corrected re-
construction. The model consists of two jointly trained networks:
a motion network and a scene network. Both take spatial (and
temporal) coordinates as input. The motion network outputs time-
resolved motion parameters, while the scene network predicts the
corresponding complex image intensities at those coordinates. The
networks are optimized together using an Mean Squared Error
(MSE) data consistency loss, computed by evaluating the MRI for-
ward model on the motion-corrected images.

The second penalizes excessive global motion by con-
straining the predicted rigid transformations:

Lrigid = Et [∥R(t)∥1] , (7)

where R(t) represents the 6-DoF rigid motion parameters
at time t.

The total loss function is given by:

Ltotal = Ldata + λrigidLrigid + λnonrigidLnonrigid, (8)

where λrigid and λnonrigid are tunable weights that control the
contribution of the respective regularization terms.

2.4. Optimization and Training Strategy

We optimize the model parameters using the Adam op-
timizer with a default learning rate of 10−2. Training is
performed on a per-volume basis and typically converges
within 1000 iterations. To improve convergence and stabil-
ity, we adopt a two-phase training strategy:

1. Rigid pretraining: The rigid motion parameters R(t)
and the scene network Fθ are optimized while keeping
the nonrigid motion network Dϕ frozen.

2. Joint optimization: All components—including R(t),
Fθ, and Dϕ—are jointly trained.

Figure 1 illustrates the overall architecture of our proposed
end-to-end framework for motion-corrected MRI recon-
struction.

2.5. Experiment Design

We conducted a series of experiments to isolate and eval-
uate the impact of key modeling decisions:
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1. Motion Model Variants:

• Model A: Full model with both rigid and non-
rigid components, trained in two stages. It first
learns rigid motion then adds nonrigid motion.

• Model B: Nonrigid-only model using Dϕ, with-
out rigid motion estimation.

• Model C: Rigid-only model using R(t), without
nonrigid deformation.

2. Motion Magnitude: We evaluated reconstruction per-
formance under increasing levels of motion, varying
the standard deviation of nonrigid deformation.

3. Regularization Parameters: We varied λrigid and
λnonrigid to assess their influence on motion field
smoothness, training stability, and image reconstruc-
tion accuracy.

4. Sampling Patterns: We tested the effect of calibration
line count by varying the number of calibration lines
per shot from 0 to 32. Additionally, we varied the ac-
celeration factor from 6× to 10× using Cartesian under-
sampling and evaluated reconstruction quality across
different sampling patterns.

5. Encoding Capacity: We investigated the impact of
nonrigid motion network capacity by varying the num-
ber of hash grid levels used in the motion encoder.

These experiments collectively highlight the importance
of joint rigid/nonrigid motion modeling, the sensitivity of
the framework to regularization and motion magnitude, and
its robustness across a range of sampling patterns and net-
work capacities.

3. Dataset and Features
High-quality, motion-free brain images were acquired

on a 3T GE Signa Premier system using a 32-channel
head coil, under IRB approval with informed consent. The
dataset consists of central slices extracted from a single
T1-weighted acquisition using Magnetic Resonance Finger-
printing (MRF), with an isotropic resolution of 1 mm and
in-plane dimensions of 220× 220.

To simulate motion, we generated 100 distinct motion
states by applying random in-plane rigid transformations
and/or smoothly varying nonrigid deformation fields. Rigid
motion was modeled by uniformly sampling rotation an-
gles (in degrees) and translations (in pixels) from the range
[0, 5]. Nonrigid motion fields were sampled from a zero-
mean Gaussian distribution with a tunable variance param-
eter and subsequently smoothed using a Gaussian filter to
ensure spatial continuity of the deformation.

Figure 2. Example of simulated motion used in the experiment
(top) and the corresponding error map with respect to the static
ground truth (bottom).

An example of the simulated motion and its correspond-
ing error map with respect to the static ground truth is
shown in Figure 2. Only simulated data were used in this
study, enabling controlled, quantitative evaluation of both
image reconstruction quality and motion estimation accu-
racy.

3.1. Hash Encoding

To efficiently represent spatiotemporal input coordi-
nates, all three neural networks in our framework—the
scene network, rigid motion network, and nonrigid motion
network—employ multi-resolution hash grid encodings, as
introduced in the neural field literature and implemented in
Tiny CUDA Neural Networks (TCNN) [15].

This encoding maps continuous input coordinates (e.g.,
(x, y, t)) to high-dimensional feature vectors through a hi-
erarchy of spatial resolutions. Each level in the hierarchy
consists of a learnable hash table indexed by discretized co-
ordinates. Linear interpolation between neighboring entries
ensures continuity, allowing the networks to represent both
coarse structural information and fine-grained spatial detail
with high memory efficiency.

• The scene network uses a 2D spatial encoding with
16 levels and 2 features per level. The base resolution
is set to 16, increasing by a factor of 1.35 per level,
with a log2 hashmap size of 16. This configura-
tion offers a compact yet expressive representation of
static anatomical structures in the image domain.

• The rigid motion network employs a lightweight 1D
temporal encoding with 8 levels, 2 features per level,
and a log2 hashmap size of 20. The resolution
increases by a factor of 1.3, enabling smooth estima-
tion of global motion trajectories over time.

• The nonrigid motion network uses the most expres-
sive encoding, applied to 3D spatiotemporal coordi-
nates (x, y, t). It consists of 16 levels, 2 features per
level, and a log2 hashmap size of 20, with a res-
olution scaling factor of 1.26 per level. This con-
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Figure 3. Predicted images and displacement fields for simu-
lated nonrigid motion with 10 mm magnitude using different
model variants: rigid+nonrigid, nonrigid-only, and rigid-only. The
rigid+nonrigid model demonstrated faster convergence, improved
accuracy, and greater robustness throughout training.

figuration supports dense, time-resolved modeling of
locally varying deformation fields.

This hash-based encoding strategy enables the networks
to learn rich, high-capacity representations directly from
raw coordinates without requiring explicit spatial grids or
positional encodings. It facilitates end-to-end training with
rapid convergence and scalability to high-resolution data.

4. Experiments/Results/Discussion

4.1. Motion Model Variants

We evaluated the motion-correction performance of the
three model variants at a fixed time point (t = 0). The
experiments were conducted using a simulated combined
10 mm of nonrigid and 5 mm/deg of rigid motion, across
nt = 100 frames with 32 calibration lines per shot and an
acceleration factor of R = 2. In the top row of Figure 3, we
display the ground-truth, motion-corrupted MR image (out-
lined in red) alongside the predicted reconstructions pro-
duced by (1) the two-path model that learns rigid motion
and adds nonrigid motion, (2) the nonrigid-only model, and
(3) the rigid-only model. Under each predicted image, the
numerical PSNR and SSIM values quantify reconstruction
fidelity. Immediately below, a 10× amplified error map
highlights residual artifacts. In the bottom row, we plot the
predicted displacement field as red arrows, illustrating how
each network explains the underlying motion.

A qualitative inspection of the 10× error maps reveals
that the rigid+nonrigid model yields the smallest residuals.
Its PSNR (45.16 dB) and SSIM (0.9877) also exceed those
of the nonrigid-only model (PSNR = 42.87 dB, SSIM =
0.9834) and the rigid-only model (PSNR = 39.10 dB, SSIM
= 0.9841). In the bottom row, the rigid+nonrigid model’s
displacement field exhibits a coherent pattern: large global
translation/rotation are overlaid with smaller, spatially vary-
ing offsets from nonrigid deformations. Because the net-
work fits the six-parameter rigid transform first, it effec-
tively removes most of the k-space mismatch, then uses the
nonrigid MLP to refine by accounting for localized warps.
This makes the rigid+nonrigid approach both stable (fewer
parameters to optimize initially) and accurate.

In contrast, the nonrigid-only model must solve for two
motion parameters at every pixel. Although it converges
at a motion field that is close to the true deformation and
produces fairly high PSNR/SSIM, its displacement vectors
appear noisier, reflecting the fact that the network lacks the
strong inductive bias of a rigid initialization. As a result,
it requires more iterations to converge and is susceptible to
local minima, leading to slightly higher residuals in the er-
ror map. Finally, the rigid-only model was able to fit only
a single global shift/rotation. Because this model cannot
express any local variance, it leaves substantial nonrigid ar-
tifacts uncorrected—hence the larger residual in both the
error map and quantitative metrics.

4.2. Motion Magnitude

We examined the performance of each model under sim-
ulated non-rigid deformation fields of increasing magni-
tude. Except for the amplitude of non-rigid motion, other
experimental parameters are the same as in Experiment 4.1.
In Figure 4, the standard deviation of the nonrigid motion
was varied across 10, 20, 30, 40, 50 mm along the hor-
izontal axis. The left plot reports the PSNR (dB) of the
reconstructed image, while the right plot shows the cor-
responding SSIM. We compared the three model variants:
rigid+nonrigid (blue), nonrigid-only (orange), and rigid-
only (green).

The rigid+nonrigid model’s performance curve is flat
across all tested nonrigid magnitudes, demonstrating that
explicitly learning a rigid transform first provides a strong
inductive bias that keeps the subsequent nonrigid refine-
ment both accurate and stable. The nonrigid-only network,
although capable of matching the rigid+nonrigid model un-
der certain conditions, exhibits severe inconsistency: its
large parameter space can lead to poor local minima. The
rigid-only model steadily deteriorates as nonrigid motion
grows, confirming that a purely rigid assumption is insuffi-
cient whenever significant local deformations are present.
These results underscore the importance of combining a
lightweight rigid model with a flexible nonrigid MLP to
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Figure 4. Performance of different models with increasing non-
rigid motion magnitude. PSNR and SSIM values are plotted
against the standard deviation of the synthetic nonrigid deforma-
tion fields. The rigid+nonrigid model maintains stable perfor-
mance, while the nonrigid-only model shows convergence insta-
bility and the rigid-only model degrades steadily.

achieve reliable, high-fidelity motion correction across a
wide range of motion amplitudes.

4.3. Regularization Parameters

We investigated the impact of regularization strength
on model performance by varying the tunable parame-
ters λrigid and λnonrigid in Eq. 8. Figure 5 illustrates the
predicted images, error maps, and displacement fields at
time point 5, comparing models trained with λnonrigid ∈
{1e−2, 5e−2, 1e−1}. All other hyperparameters were kept
at their default settings.

The experiments were conducted using a simulated com-
bined 10 mm of nonrigid and 5 mm/deg of rigid motion,
across nt = 20 frames with 9 calibration lines per shot and
an acceleration factor of R = 8. As shown in Figure 5, the
reconstructed images and estimated displacement fields are
highly sensitive to the choice of λnonrigid. The optimal value,
λnonrigid = 5e−2, yielded an SSIM of 0.9529 and a PSNR of
36.92, with the estimated displacement field closely match-
ing the designed motion.

Table 1 summarizes PSNR and SSIM results for vary-
ing λrigid ∈ {5e−3, 1e−2, 5e−2, 1e−1}. The model per-
formance less dependent on λrigid, with the optimal value
found to be λrigid = 5e−2.

λrigid 5e-3 1e-2 5e-2 1e-1
PSNR 31.10 36.55 36.92 36.15
SSIM 0.8937 0.9489 0.9529 0.9402

Table 1. PSNR and SSIM for the predicted motion-corrected re-
constructions with different rigid motion regularization parameter
λrigid.

4.4. Sampling Patterns

We evaluated the impact of sampling patterns by varying
both the number of calibration lines and the effective ac-
celeration rate. The left side of Figure 6 shows the SSIM

Figure 5. Reconstructed images from the rigid+nonrigid motion
framework are shown for varying values of the nonrigid motion
regularization parameter λnonrigid. The model is highly sensitive
to this hyperparameter, likely due to the nonrigid motion network
being the highest-capacity component of our NSTM framework.

distribution for the number of calibration lines per shot
varied among {0, 9, 16, 32}. Each training was repeated
10 times. The results indicate that increasing the number
of calibration lines does not consistently improve recon-
struction quality. This suggests that, for the given dataset,
high-frequency k-space components are in theory sufficient
for both image reconstruction and motion field estimation.
However, with noisier in vivo cases, having low-frequency
kspace information for all shots may play a more critical
role.

The right side of Figure 6 presents the SSIM distri-
bution for the effective acceleration rate varied among
{5.7, 7.3, 8.7}. The results show that reconstruction qual-
ity improves as the acceleration rate decreases. These find-
ings confirm that increasing the sampling density facilitates
more accurate and stable reconstruction of the dynamic im-
age sequence, although decent quality reconstruction with
SSIM = 0.93 was feasible with the acceleration factor of 9.

4.5. Encoding Capacity

We evaluated the effect of nonrigid motion encoding ca-
pacity by varying the number of hash grid levels used in the
nonrigid motion network. Figure 7 shows predicted images,
error maps, and displacement fields at a time point 15, com-
paring models with nlevels ∈ {1, 4, 8, 16}. The total number
of trainable encoding parameters ranged from 8K (1 level)
to 15M (16 levels).

Experiments were conducted with a simulated motion
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Figure 6. Distribution of SSIM values for reconstructed motion-
corrected images across different ky–t sampling patterns, varying
in acceleration rate and number of calibration lines. Each exper-
iment was repeated 10 times. (Left): SSIM as a function of the
number of calibration lines per shot. Results show minimal sensi-
tivity to this parameter. (Right): SSIM as a function of the effec-
tive acceleration rate. Higher acceleration led to a consistent de-
cline in reconstruction quality, although decent quality with mean
SSIM = 0.93 was achieved even with Reff = 9.

Figure 7. We evaluated the effect of encoding capacity in the
nonrigid motion model by varying the number of hash encod-
ing layers. Parameter counts ranged from 8K (1 layer) to 15M
(16 layers). Experiments were conducted with combined nonrigid
(50 mm) and rigid (5 mm/deg) motion, using nt = 20, accelera-
tion R = 10, and 32 calibration lines per time point. Models with
8 or more layers accurately fit the displacement fields and images,
achieving SSIM = 0.9.

setup combining nonrigid motion of 50 mm and rigid mo-
tion of 5 mm/deg, using nt = 20 frames, acceleration factor
R = 10, and 32 calibration lines per time point. Figure 7
highlights that models with 8 or more encoding levels ac-
curately captured both the displacement field and the image
content, achieving SSIM values of 0.9 or higher. Increasing
the encoding depth to 16 layers further improved PSNR to
34.74 and SSIM to 0.9278. In contrast, the model with only
1 layer produced visible residual motion artifacts and lower
structural fidelity (SSIM = 0.8124).

5. Conclusion and Future Work

We proposed a self-supervised framework for motion-
resolved MRI that explicitly estimates nonrigid motion us-
ing neural space-time modeling. In simulated experiments,
we demonstrated that jointly training motion and scene net-
works on a per-case basis enables accurate image recon-
struction across a wide range of motion amplitudes, with-
out the need for pretraining or external motion measure-
ments. Incorporating a lightweight rigid motion network
further improved training stability and convergence by iso-
lating global motion components early in the optimization.

Model performance was strongly influenced by the ca-
pacity of the nonrigid motion encoder—particularly the
number of hash grid levels—with at least 8 levels required
to achieve high-quality reconstructions (SSIM > 0.90).
The framework showed high sensitivity to regularization
strength applied to the nonrigid motion network, reflecting
its role as the most expressive and flexible component. In
terms of sampling strategy, we observed moderate sensitiv-
ity: the number of calibration lines per shot had minimal
effect, while higher acceleration rates degraded reconstruc-
tion performance. These results demonstrate the potential
of the proposed method as a flexible and data-efficient solu-
tion for robust, motion-resolved MRI reconstruction.

For future work, we plan to extend our framework to
support 3D motion fields and volumetric image reconstruc-
tion. We also aim to evaluate and fine-tune the method on
in vivo data as a step toward integration into clinical MRI
workflows. Additionally, we will explore its application to
multi-shot and multi-contrast imaging, where contrast dy-
namics introduce further temporal signal variation. Finally,
benchmarking against state-of-the-art methods, including
XD-GRASP [5] and recent INR-based motion modeling ap-
proaches [13], will be crucial for assessing reconstruction
quality and generalizability.

6. Contributions & Acknowledgements

Our team collaboratively divided the workload to ad-
dress the various components of this project effectively. Yi-
meng integrated the MRI forward model into the Neural
Space-Time framework and set up the evaluation metrics.
She also conducted experiments investigating different mo-
tion model variants and the impact of motion magnitude.
Jaehyeok developed the simulated nonrigid dataset and con-
ducted experiments analyzing the effects of regularization
parameters, sampling strategies, and explored multi-shot
acquisition cases (not presented). Aizada designed the over-
all architecture of the Neural Space-Time Model for joint
motion estimation and motion-corrected reconstruction, ac-
quired brain MRF images, simulated rigid motion data and
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evaluating the model’s encoding capacity.
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