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Abstract

We introduce an end-to-end system that converts
smartphone-captured chessboard images into Forsyth-
Edwards Notation (FEN) and generates move recommen-
dations tailored to player skill levels. Our system employs
YOLOv8 for robust chessboard corner detection and piece
identification through pose estimation and bounding box
detection. These bounding boxes are then processed by a
DINO Vision Transformer to extract visual embeddings,
classified by a trained Multi-Layer Perceptron (MLP) into
piece types. Classified pieces are mapped onto a standard-
ized chessboard grid, yielding reliable FEN representa-
tions. To emulate human-like strategic decisions, we fine-
tune a 270M-parameter transformer on the ChessBench
dataset, enriched with skill-specific move annotations de-
rived from 10 million chess games. Unlike traditional
search engines, our diffusion-based transformer learns la-
tent representations of playing strength, yielding move
predictions that closely match human decision-making
patterns at specific skill levels. Additionally, we propose
a novel positional encoding strategy that effectively cap-
tures and preserves spatial relationships between pieces.
Our hybrid YOLOv8-DINO approach achieves 99.83%
accuracy in chess piece classification, with YOLOv8 pose
estimation providing robust corner detection with approx-
imately 6-7 pixel error on 640×640 images. The discrete
diffusion model demonstrates exceptional learning capa-
bility, reducing per-token cross-entropy loss from 0.42 to
0.004 across 312-token sequences, indicating near-perfect
prediction of human move patterns during training. How-
ever, inference reveals position-dependent performance
with high confidence in opening positions (entropy 2.17)
but declining performance in middle and endgame scenar-
ios (entropy 4.83-6.17), suggesting the need for enhanced
model capacity and refined noise scheduling for complex
game states.

1 Introduction

1.1 Overview

Automatically converting chess board images into
Forsyth-Edwards Notation (FEN) represents a critical
challenge at the intersection of computer vision and chess
technology. This capability can enable real-time game
broadcasting, and enhance online chess education by
seamlessly bridging the physical and digital chess worlds.
Beyond basic digitization, our project extends this vision
by incorporating a novel pipeline that provides humanis-
tic move recommendations tailored to specific skill lev-
els. While traditional engines like Stockfish find optimal
moves, they fail to capture human playing patterns at dif-
ferent ELO ratings, making their suggestions impractical
for learning.

The fundamental challenge lies in achieving reliable
accuracy across diverse real-world conditions. Natural
images present multiple simultaneous obstacles: varying
lighting conditions create shadows and reflections that ob-
scure piece identification, perspective distortion from ar-
bitrary camera angles complicates board detection, and
the enormous variety of chess set designs demands robust
generalization. While existing approaches report high
per-square accuracy on synthetic datasets, their perfor-
mance degrades on real-world images, with end-to-end
FEN reconstruction accuracy often falling below practi-
cal thresholds.

Our project tackles these challenges through a pipeline
that combines computer vision for board recognition with
reinforcement learning for humanistic analysis. Once we
achieve accurate FEN reconstruction, this digital repre-
sentation serves as input to our transformer-based chess
engine trained on 10 million human games, enabling
ELO-specific move recommendations that reflect how
players at different skill levels actually approach posi-
tions.
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2 Related Work
The task of converting images of real-world chessboards
into structured digital representations such as Forsyth-
Edwards Notation (FEN) involves different aspects of
computer vision including object detection, pose estima-
tion, and symbolic reasoning. Early classical approaches
leveraged rule-based techniques to extract board geome-
try and detect pieces using shape descriptors and template
matching [2]. While effective under controlled lighting
and angle conditions, these methods struggle with the di-
versity of chessboard designs, inconsistent lighting, and
camera perspectives encountered in smartphone images.

Recent deep learning approaches have shown signifi-
cant improvements. Chesscog by Wölflein and Arand-
jelović employs a multi-stage CNN-based pipeline for
square-level classification. Their method performs well
on synthetic images, achieving 93.9 percent board-level
accuracy using few-shot learning to generalize across un-
seen piece designs. However, performance deteriorates
dramatically on real images, where the compounded ef-
fects of poor corner localization, occlusions, and lighting
variations result in over 40 misclassified squares per im-
age. These findings highlight the difficulty of supervised
classification pipelines when grid alignment is imperfect
[6].

Modern single-stage detectors like YOLOv8 [7] offer
advantages for chess recognition through unified archi-
tectures that simultaneously predict object locations and
classes. The anchor-free detection paradigm directly pre-
dicts object centers, providing natural robustness to scale
variations and partial occlusions common in chess pho-
tography. YOLOv8’s pose estimation variant extends this
capability to keypoint detection, enabling simultaneous
board detection and corner localization in a single pass.
To improve robustness under such variability, researchers
have begun exploring self-supervised visual representa-
tions. Vision Transformer-based models like DINO lever-
age multi-head self-attention to capture long-range depen-
dencies across 16×16 patch embeddings, making them ef-
fective in few-shot classification where spatial alignment
is uncertain. [3] Unlike CNNs with localized receptive
fields, DINO’s attention mechanism dynamically weights
relationships between all patches simultaneously, preserv-
ing semantic structures even when patches contain mis-
aligned chess piece features. Prior applications of DINO
in fine-grained recognition and object retrieval suggest
its potential for encoding distinctive chess piece features
without explicit supervision [1].

While most existing systems stop at visual board re-
construction, some recent work has begun exploring post-
visual reasoning aligned with human play. The Maia
engine uses supervised fine-tuning on human move data
to predict ELO-specific behavior [4], while other meth-
ods introduce ChessBench, a dataset of 10 million on-

line games annotated by the chess engine Stockfish, re-
sulting in 15 billion data points. The authors train a
series of transformer models up to 270M parameters in
size on supervised objectives including action-value pre-
diction, state-value, and behavioral cloning. [5] Collec-
tively, these findings motivate systems that can handle im-
perfect board alignment, generalize across uncontrolled
conditions, and bridge the output of perception modules
with human-centered gameplay modeling.

3 Data
3.1 Vision Dataset
For our dataset, we are utilizing the ChessReD2k Dataset,
which contains 2,078 chess board images captured by
three smartphone models to represent real-world condi-
tions. The dataset provides annotations for chess piece
positions using standard algebraic notation (like ”a8”),
piece types (12 categories covering all pieces in both col-
ors), and corner locations that help determine board ori-
entation. Images come from 20 different chess games and
are split into training (1,442 images), validation (330 im-
ages), and test sets (306 images), with care taken to dis-
tribute images from all three camera types across these
sets. These different annotations will allow us to pursue
one of our pipeline approaches of detecting the board and
the individual squares before detecting the pieces them-
selves. In addition, because the dataset also contains an-
notations and bounding boxes for the pieces as well, we
gain flexibility in exploring other ways to classify and lo-
cate pieces even without full board corner detection. We
outline the preprocessing steps in the methods.

3.2 Gameplay Dataset
To train our predictive model’s for high level play, we
leverage two data sources: ChessBench and LiChess.
The ChessBench dataset consists of chess states and their
corresponding stockfish depth assessed win percentage,
which we leverage to distill the stockfish search policy di-
rectly into network parameters. The ChessBench dataset
was developed by Google DeepMind for their own explo-
rations on Searchless Chess Engines. To mimic humanis-
tic style, we leverage publicly available LiChess Datasets,
which contain data for every game which contains the
player’s elo, the moves the player’s made, and the win-
ner. This data allows us to segment states and the corre-
sponding trajectories for certain ELO buckets which will
be used to train our diffusion policy, which aims to predict
ELO conditioned trajectories given a state.

4 Methods
Given an image, the goal of our computer vision pipeline
was to detect a chessboard and classify all the pieces
and their locations within the image.To achieve this, we
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conducted an iterative process and explored a variety of
strategies described below:
4.1 ResNet Corner Regression
Our baseline approach explored the capability of a large
pretrained model to directly regress all the corners of a
chess board in an image. Therefore, we explored ResNet
as a backbone. For our model architecture, we lever-
age a pretrained ResNet18 backbone with weights ob-
tained from the ’IMAGENET1K V1’ set. Then, inspired
by the ideas discussed in lecture, we essentially changed
the fully connected layer to have an output shape of 8
to output the coordinate for the four corners. We froze
all layers except the final classification layer due to our
small dataset size. Images were resized to 224×224 pix-
els and normalized. For the actual training process, we
used the AdamW optimizer with a learning rate of 0.001
and used Huber Loss as our loss function. We used Hu-
ber loss due to its ability to mitigate outlier sensitivity,
something which we anticipated for this process. We then
trained for 20 epochs and evaluated our model’s perfor-
mance through RMSE on the validation set.

4.2 YOLOv8 Pose Estimation for Corners
Since we planned to use corner detection as a step
towards creating a 2D flattened homography of the board,
we needed the corner detection to be extremely accurate
to yield a perfectly aligned 2D representation. After
assessing the performance of the previous technique, we
decided to also explore the use of a YOLO model for the
dual task of creating a bounding box for the chess board
within an image and detecting its corners. Since detecting
the corners of a board can be thought of as akin to pose
detection, the YOLO-pose architecture served as the clear
choice for our approach. We converted annotations to
YOLO pose format and used YOLOv8n due to compute
constraints. Training was conducted on an 80/20 split
with normalized coordinates, and training metrics were
tracked across epochs as discussed in the results section.
AdamW was used as the optimizer along with a variable
learning rate schedule built into the Ultralytics library.
We also made use of the data augmentation techniques
with YOLO models and used mosaic augmentation and
horizontal flipping. An example of a training batch can
be seen in Figure 8.

4.3 Homography and Unsupervised DINO
Clustering

Using YOLOv8-detected corners, we applied a homog-
raphy transformation to obtain a standardized top-down
board view. Homography allows us to mathematically
map points from one plane to another while preserving
the structure of the image. We can use this property to
map the corners to a 2D board and use that mapping
on all pixels to generate a 2D transformed image. Ini-

Figure 1: Example of a training batch with mosaic aug-
mentation and horizontal flipping.

tially, we planned to manually segment the 2D image into
64 squares and classify each square, however, the results
from the homography introduced some issues like slanted
representations and inconsistent line detection, which ne-
cessitated a better way to classify the pieces in the 2D
homography. As a result, we decided to explore unsuper-
vised DINO clustering, similar to what was explored in
assignment 3. We decided to use Facebooks’s DINO Vi-
sion Transformer with the pretrained ’dino vits8’ model
(smallest model for our compute constraints). This model
was used to generate feature representations of the 2D
chess board representations at each patch. We split the 2D
image into a set of 8 by 8 patches, to mimic a chessboard
as close as we could, and then densely sampled each patch
with half the stride. Then, we extracted the feature repre-
sentation of each patch from the DINO model. For piece
detection, we then implemented a simple K-means clus-
tering technique to detect any patch into one of 13 possi-
ble clusters, where one cluster is for an empty square and
the other 12 clusters are for each piece type for their re-
spective color. We hypothesized that the feature represen-
tations from DINO would create strong enough clusters
to classify each patch accurately into one of the 13 clus-
ters. We also tried different combinations of patch size
and stride to gauge the impact on performance. To as-
sess performance, we generated visual cluster mappings
for qualitative evaluation.

4.4 YOLOv8 for Piece Detection and Clas-
sification

While the homography pipeline showed promise, it
yielded inconsistent results that propagated throughout
the pipeline. Because the YOLOv8 model performed well
for board corner detection, we tested the ability of the
YOLO model to directly detect the bounding boxes for
all pieces on a chess board as well as classify them in one
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pass. We still utilized the ChessReD2K dataset, however,
we had to generate the labels in a different process for the
new task of our model. Instead of accessing the board an-
notations, we access the piece annotations within the data.
These annotations are then converted to the proper YOLO
labels for a given image. For each image, the number of
annotations was stochastic because there were a variable
number of pieces on the board. For each piece, a class ID
was assigned as a number in the range of 1 to 12 for each
type of piece and its respective color on the board. The
resultant final format for each piece was <classid>
x center y center width height where the re-
spective bounding box for each piece was also extracted
from the annotations. We then trained our YOLO model
with the AdamW optimizer and a stochastic learning rate
with mosaic and flipping augmentations. One key note
is that we used YOLOv8 ’detect’ instead of pose (which
identifies keypoints), as it makes use of anchor-free de-
tection. This allowed us to directly predict the center of
the box without needing to predefine anchors and makes
the model more flexible for odd shapes like chess pieces.
An example training batch for this model can be seen in
Figure 1.

4.5 Hybrid YOLOv8 and DINO-MLP Clas-
sifier

We explored combining YOLO’s detection capabilities
with DINO’s rich feature representations to overcome
limitations of our previous approaches. This hybrid ap-
proach addresses two key issues: first, using YOLO
to detect piece bounding boxes eliminates our reliance
on homography-dependent segmentation, overcoming the
alignment issues from our previous DINO clustering ap-
proach. Second, we hypothesized that DINO’s pre-
trained feature representations would provide more ac-
curate piece classification than YOLO’s learned features
alone. The first step in this pipeline is to detect and
segment out a piece. Our YOLO model from the previ-
ous approach already accomplishes this task, and so we
move forward to train a classifier to classify a segmented
piece image. We design a DINO based 3 layer MLP clas-
sifier, which takes in a 384 dimensional feature vector
from the CLS token of the pretrained DINO model. We
again use Facebook’s self-supervised DINO model with
’dino-vits8’. To each cropped piece, we apply the stan-
dard transformations that were discussed in class: Re-
sizing, ToTensor, and Normalize, before passing through
the DINO model. For the MLP classification head, we
define a three layer model that has hidden layer dimen-
sions of 256 and 128, before finally projecting to 12 for
piece logits. Each layer applies ReLU and a dropout of
0.1. The classification head is trained with the AdamW
optimizer with weight decay of 0.005 to mitigate overfit-
ting. For training, we used cropped piece images from the

labeled bounding boxes as individual data points rather
than full images, since YOLO handles the detection step
in our pipeline. The classification head was trained us-
ing AdamW optimizer with weight decay of 0.005 to mit-
igate overfitting, minimizing cross-entropy loss between
predicted and true piece labels for 10 epochs. The full
pipeline is described in the following algorithm:

Algorithm 1 DINO-MLP Chess Piece Detection and
Classification Pipeline
Require: image: Path to the chess board image
Require: mlp weights: Path to pre-trained MLP classi-

fier weights
Require: yolo weights: Path to pre-trained YOLO model

weights
1: Initialize predictions← []
2: Load classification model MLP
3: Load object detection model YOLO
4: Load image I
5: Get detection results: results← YOLO.predict(I)
6: Extract locations: boxes← results.boxes
7: for each bounding box B in boxes do
8: Extract coordinates (x1, y1, x2, y2)← B
9: Crop piece image piece← I[y1 : y2, x1 : x2]

10: feature← DINO(piece) {Extract 384-dimensional
feature vector}

11: output← MLP(feature) {Get class logits}
12: predicted class ← argmax(output) {Get pre-

dicted class index}
13: Append (predicted class, B) to predictions
14: end for
15: return predictions

4.6 Discrete Diffusion for ELO-
Conditioned Move Generation

To extend upon our vision pipeline, we implement a dis-
crete diffusion model that learns skill-specific move dis-
tributions from human gameplay data, enabling our end-
to-end system to generate move recommendations that au-
thentically reflect how players at different ELO ratings ap-
proach a given chess position. Modeling this as a discrete
diffusion problem allows us to directly model the categor-
ical distribution over the chess move vocabulary.

Our diffusion model leverages an 8 layer pretrained de-
coder only transformer architecture trained on the Chess-
Bench dataset described previously. The model con-
sists of 8 transformer layers with 256-dimensional em-
beddings, 8 attention heads, and 1024-dimensional feed-
forward networks. The pre-trained model provides crucial
chess domain knowledge, including piece interaction pat-
terns, tactical motifs, and positional evaluation heuristics.
Rather than training from scratch, we initialize our diffu-
sion model with these learned representations and adapt
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them through our novel ELO-conditioning framework.
We employ Low-Rank Adaptation (LoRA) to effi-

ciently adapt the pre-trained architecture for our diffu-
sion task. LoRA decomposes weight updates into low-
rank matrices, dramatically reducing the number of train-
able parameters while preserving model expressiveness
through the expression h = Wθx+∆Wx = Wθx+BAx
where B ∈ Rd×r and A ∈ Rr×k and rank(r) <<
min(d, k). We apply LoRA with rank r=128 and scal-
ing factor alpha=256 to the query, key, value, and output
projection matrices within each attention head. This con-
figuration reduces trainable parameters by approximately
90% while maintaining the model’s capacity to learn com-
plex skill-dependent pattern, targeting the attention mech-
anism where we hypothesize skill-level differences pri-
marily manifest.

Player skill conditioning represents a core innovation in
our approach. We model ELO ratings through learnable
bucket embeddings that span our target range of 1200-
1800 with 100-point granularity, resulting in 7 discrete
buckets. To enable smooth skill interpolation rather than
discrete jumps, we implement continuous ELO condition-
ing through linear interpolation between adjacent bucket
embeddings. This process is explained further in 7.1. The
continuous ELO embedding is broadcast across all se-
quence positions and added to the position embeddings,
ensuring that skill-level information influences every as-
pect of the model’s reasoning process.

4.6.1 Discrete Diffusion process
Our diffusion formulation operates directly on the discrete
move vocabulary. The forward diffusion process gradu-
ally corrupts clean move sequences by mixing them with
uniform noise according to a predefined schedule. For a
clean move sequence x0 and a timestep t, the forward pro-
cess samples from:

q(xt|x0) = αt · OneHot(x0) + (1− αt) ·
1

|V |
1|V |

where αt represents the noise schedule, OneHot(x0) is
the one-hot encoding of the true move token, and |V | =
2000 is our move vocabulary size. The term 1

|V |1|V | rep-
resents a uniform distribution over all possible moves,
where each move has probability 1

|V | .
We create a categorical mixture distribution that in-

terpolates between the true move (represented as a one-
hot vector) and uniform noise over the vocabulary. At
t = 0, we have α0 = 1, recovering the clean data dis-
tribution. As t increases, αt decreases, gradually shift-
ing probability mass from the true move to uniformly ran-
dom moves in the vocabulary. The noise schedule follows
αt =

∏t
i=1(1 − βi) with linearly increasing βi values

from 0.025 to 0.1 over T = 40 diffusion steps. During
training, we randomly sample timesteps t Uniform(0, T-
1) and apply the corresponding noise level to ground truth

move sequences. The model learns to predict the original
clean moves given the noisy observations, position con-
text, and target ELO rating.

4.6.2 Model Architecture
The input to the model is represented as follows:

x = [CLS]||state tokens||future tokens

where state tokens represent the current chess position
encoded as piece-square tokens, and future tokens rep-
resent the (potentially noised) move sequence to be de-
noised. The exact representations of these tokens is ex-
plained in Section 7.2) .

Position embeddings are applied through the inherited
positional encoding from the base model, while ELO em-
beddings are broadcast and added across all positions.
Temporal embeddings for the diffusion timestep t are
learned through a separate embedding layer initialized
to zero, allowing the model to gradually learn timestep-
specific behaviors during training. The temporal embed-
ding is critical for the denoising process, as it allows the
model to adapt its predictions based on the current noise
level. At early timesteps (high noise), the model should
focus on broad strategic patterns, while at later timesteps
(low noise), it should attend to precise tactical considera-
tions.

4.6.3 Training And Loss
Our training objective focuses specifically on positions
where noise was applied, reflecting the insight that the
model should learn to correct corrupted tokens rather than
simply copying already-clean inputs. The loss function
incorporates several masking strategies:

L =
1

B

B∑
b=1

λt

L∑
l=1

[
CE

(
fθ(x

(b)
t , s(b), elo(b))l, x

(b)
0,l

)
× mask changed b,l × mask valid b,l

]
λt =

βt

1− ᾱt
.

In this formulation, λt is given by βt/(1 − ᾱt),
which provides timestep-dependent weighting to empha-
size harder denoising steps. The term mask changed b,l

is an indicator that equals 1 if token l in example b was
corrupted by the forward noising process (and 0 other-
wise), ensuring we only compute loss on positions that
were actually altered. The term mask valid b,l equals 1 if
token l in example b is not a padding token (and 0 if it is),
which excludes padding from the loss. Finally, CE(·, ·)
denotes the cross-entropy loss over the move vocabulary.
Weighting by the timestep is a crucial stability component
to prevent the model from being dominated by easy de-
noising tasks and ensures that the model still learns from
high-noise scenarios.
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4.6.4 Diffusion Inference
During inference, we employ a reverse diffusion process,
which we call entropy conditioned denoising, that itera-
tively denoises a randomly initialized move sequence over
T = 40 timesteps. Starting from uniform random tokens,
the model progressively refines predictions by selecting
the highest-confidence tokens (the one’s with minimal
logit entropy) at each step. We implement an adaptive
masking strategy where only the least confident tokens
(determined by log-probability percentiles) are updated at
each timestep, allowing high-confidence predictions to re-
main stable. This selective updating mechanism prevents
the model from unnecessarily revising correct predictions
while focusing computational effort on uncertain regions
of the sequence. Additionally, the frozen tokens add to
the inherent conditional information the model can use as
other tokens that are still to be predicted are now con-
ditioned on the frozen tokens. One key design choice is
that we allow tokens to be ”unfrozen” so that highly confi-
dent incorrect predictions do not derail the entire diffusion
process. The process terminates early if no tokens require
updating, typically converging within 10-15 iterations for
most chess positions.

5 Experiments and Results
5.1 Baseline ResNet Classification
Our first approach, which involved training a classifica-
tion layer on a baseline ResNet model to detect corners
was assessed through validation set RMSE loss which can
be seen below:

Figure 2: Validation Set RMSE per Epoch for ResNet
Corner Classification

Although the model learns through the epochs, the val-
idation loss starts to fluctuate around 0.24. Intuitively,
this means that our predicted corner coordinates from
this method are off by 0.24 in the normalized coordinate
space, and when converted back to the 224 pixel scale,
there is approximately 54 pixels of error, which indicates
that this method struggles substantially for corner detec-
tion. This model probably struggles heavily due to the fact
that we are only fine tuning one classification layer on top
of pretrained weights. Moreover, the use of a very general

model for such a specialized task also factors into the lack
of success. This result, therefore necessitates an improved
architecture for the task of corner detection, YOLOv8-
pose.

5.2 YOLOv8 Pose Estimation
Because of the struggles of the baseline model, we
decided to test the use YOLOv8 pose to improve
our pipeline’s corner detection capabilities. we chose
YOLOv8 pose because it was specifically designed for
keypoint detection can learn to detect the board and cor-
ners simultaneously. The training and validation loss
curves for both board detection and corner detection
(pose) can be seen in Figure 4. After 60 epochs of train-
ing our final training loss for the board bounding box was
0.459 while the final training loss for the corner detection
pose for 0.25605. The corresponding validation losses
were 0.3501 and 0.0991. The reason that the validation
losses are actually lower than the training loss is due to
the way that YOLO trains on augmented images, but only
tests on the way images are in the dataset (ie. without mo-
saic or flipping). Additionally, the calculated mAP50-95
value for board detection was 0.993, indicating that 99.3
percent of the board bounding boxes closely matched the
ground truth labels across a variety of thresholds, indicat-
ing very strong ability to define a board bounding box.
Additionally, the validation kobj loss was 0.00354 which
indicates very strong corner detection capabilities. Our
final validation loss of 0.0991 translates to an approxi-
mately 6 or 7 pixel error in corner detection for a 640
by 640 pixel image, based on the way that the Yolo model
loss is calculated, which is a substantial improvement over
the previous approach.

Figure 3: Train and Val Board Detection Loss

To test the model’s abilities in a qualitative manner, we
applied 2D homography to the image based on the de-
tected corners to see if the corner classification was accu-
rate enough to yield correct 2D image representations. We
then evaluating the consistency and accuracy of the gen-
erated standardized top-down views. illustrates the trans-
formation’s effectiveness in handling diverse camera per-
spectives and angles.

Because the 2D representations were still slightly mis-
aligned, we couldn’t segment the 2D representation into
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Figure 4: Homographic transformation used to flatten the
board to a top-down view.

an exact grid. We hypothesize that the model occasion-
ally classified the corner of the chessboard sheet rather
than the actual chessboard in some cases, which yielded
slightly misaligned representations like the one above. To
accommodate for this, we decided to use Hough Line
transforms from OpenCV to see if we could sidestep the
misalignment and still segment the squares accurately.
The results from this procedure can be seen in Figure 10.
The Hough Transforms were unable to overcome this lim-
itation, sometimes generating multiple lines for one edge
and other times missing lines, thus limiting our ability to
directly classify pieces from the homography.

5.3 Unsupervised DINO Clustering

To try to classify pieces from the homography in an unsu-
pervised manner, we explored the use of clustering DINO
feature embeddings in patches to see if patches could be
clustered into their piece category. In preliminary testing,
thediscriminative power of the DINO Vision Transformer
embeddings was assessed qualitatively through embed-
ding visualization, with applying PCA to 3 dimensions
and mapping to RGB values. Figure 9 shows this result
for the full board, while Figure 6 below depicts this for a
specific patch. The process to obtain the heatmaps mimics
Assignment 3.

Figure 6 clearly shows an understanding of what the
chessboard edge is (highlighted in green), the center of
the piece (highlighted in red) and the square the piece
is on (highlighted in dark blue), which initially showed
promise for unsupervised clustering as an approach for
piece classification. By performing k-means clustering
into 13 clusters (12 piece types and empty squares), we
can cluster all patches into their effective classification.
Figure 7 shows the result of this clustering for each re-
spective image patch.

The clustering is very inconsistent any only seems to
work to cluster white pawns effectively. Although we
had hoped each cluster would all contain patches from
the same pieces, with one for empty squares, unsuper-
vised clustering was not a reliable technique to make use
of DINO features.

Figure 5: k-Means clustering of DINO features into 13
groups (12 pieces + empty).

5.4 YOLOv8 Piece Detection
Due to the lack of success in unsupervised clustering with
DINO, we explored using YOLOv8 again, but this time on
detecting all pieces on the board with a bounding box and
simultaneously classifying them. The training and valida-
tion loss curves for each task can be seen below.

Figure 6: Train and Validation Piece Classification Loss

YOLOv8 showed extensive capability in detecting the
pieces with a final validation losses of 0.05146 for detec-
tion and 0.4305 for classification. More importantly, the
model had extremely high precision and recall of 99.17%
and 98.26% respectively, indicating very high discrimi-
nation capabilities. The model very rarely misclassified
a piece and very rarely misses a given piece across the
classification categories. The model’s MAP50-95 was
91.988%, which indicates that the model performs well
even with highly localized bounding boxes. Of note is
that the model’s precision started at 53.82% and the recall
began at 66.01% emphasizing the model’s learning over
time.

5.5 Hybrid Approach
Finally, we quantified the accuracy of our classification
module for our hybrid YOLO and DINO-MLP Approach
to see if we could improve on the sole YOLO model with
dense DINO features. We measured these results, using
per-class accuracy metrics and found nearly perfect accu-
racy across all classes, with an overall accuracy of 99.83
percent as seen in Table 1 . While misclassification rates
are minimal, we noted that there was a higher misclassi-
fication rate for black pieces than white pieces. Our hy-
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pothesis is that this issue arises because the white pieces
have a tan color, preventing them from blending seam-
lessly with the white squares on the board, whereas the
black pieces blend more naturally. The overall high ac-
curacy, especially the perfect classification performance
observed for several piece types, validates our hybrid ap-
proach of combining YOLO detections with DINO em-
beddings and the subsequent MLP classifier. This analy-
sis confirms the high practical reliability of our approach
for robust piece classification in real-world chess image
scenarios.

Table 1: Per-class Accuracy for Piece Classification

Class ID Piece Type Accuracy (%)

0 White Pawn 100.00 (2106/2106)
1 White Knight 100.00 (646/646)
2 White Bishop 99.74 (384/385)
3 White Rook 100.00 (462/462)
4 White Queen 99.55 (219/220)
5 White King 100.00 (416/416)
6 Black Pawn 99.61 (2315/2324)
7 Black Knight 99.85 (659/660)
8 Black Bishop 100.00 (362/362)
9 Black Rook 100.00 (443/443)
10 Black Queen 99.07 (214/216)
11 Black King 99.74 (389/390)

Overall Accuracy 99.83%

5.6 Diffusion Results
Due to substantial compute constraints, we were only
able to train LoRA adapters on the baseline transformer
for 5 million samples extracted from the Lichess dataset.
Although we plan to test the model through tourna-
ment style self play to assess capabilities, this process
could not be completed within the constraints of the class
period. Throughout training, the model exhibited sta-
ble and consistent convergence patterns. The weighted
cross-entropy loss incorporating our timestep-dependent
weighting scheme (λt) demonstrated effective learning
across all diffusion timesteps. Unlike traditional super-
vised learning where loss simply decreases monotoni-
cally, diffusion training showed characteristic oscillations
reflecting the varying difficulty of denoising at different
noise levels. We therefore evaluate performance using
logit entropy as our primary metric. Entropy provides
insight into the model’s prediction confidence across the
1968-token vocabulary. This metric allows us to assess
both training quality and inference prediction, as these
differ substantially in diffusion models. Our final loss dur-
ing training was 1.271, decaying exponentially from a first
epoch training loss of 120. Intuitively, our loss function
sums the cross entropy loss of each token across the 312
predicted tokens. Because the vocabulary is of size 2000
(1968 actions + 31 states + 1 noise), a fully random pre-

diction would result in a loss of 312 × (ln(1/2000) ≈
7.6) = 2371.2. With this understanding, we see that af-
ter one epoch, our model had a per token loss of 0.42,
with our final epoch per token loss at 0.004. This indi-
cates that the model can denoise artificially noised inputs
extremely well, given a state. Since our noising sched-
ule that caps at 0.1, meaning that we also need to assess
the model’s ability to denoise given a completely random
sample during inference. Here we make use of the en-
tropy confidence values. We note an extremely interest-
ing trend: the model’s average entropy for a prediction
in earlier parts of the game (ie. its confidence) is sub-
stantially lower (2.17) compared to when the model ap-
proaches the middle (4.83) and end games (6.166), where
the model struggles to play reasonable moves. We can see
that the model is slightly better than random in the mid-
dle, but in the endgame, approaches almost complete ran-
domness, indicating decaying performance. We note that
this is likely due to a combination of a distribution mis-
match in training data accompanied by the exponentially
larger state space in the middle and end game compared
to the beginning. Additionally, the contrast between the
extremely low training loss and the inference results, sug-
gest that the model may need to have substantially more
parameters to capture deeper relationships within the mid-
dle and endgame. Moreover, the noise schedule may need
to also be refined to enforce substantially more difficult
noising tasks for model training. Due to time constraints
and the lack of general efficiency, we have still yet to test
the capability of the ELO conditional embeddings to alter
chess understanding with diffusion, but we plan to test this
with simulations against online bots once we have drasti-
cally augmented the diffusion model’s parameter schema
and training time.

6 Conclusion
Our experiments demonstrate the robustness and reliabil-
ity of each component within our pipeline, demonstrating
high accuracy in both homographic alignment and chess
piece classification. Moving forward, we will focus on
automating the complete integration pipeline to generate
accurate Forsyth-Edwards Notation (FEN) strings directly
from smartphone-captured chessboard images. We also
plan to evaluate the integrated system’s performance in
diverse real-world conditions, including varied lighting,
camera angles, and chess set designs. Future enhance-
ments will involve refining the diffusion-based move rec-
ommendation system by incorporating additional human
gameplay datasets, thereby improving the model’s ability
to emulate human strategic decision-making accurately.
Ultimately, these developments will enable practical and
user-friendly applications, bridging the gap between phys-
ical chess play and digital analysis platforms.
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7 Appendix

7.1 Continuous ELO Interpolation
For a target ELO rating elotarget, we compute the interpo-
lated embedding as:

bucket idx =
elotarget − elomin

bucket size
(1)

lo idx =
⌊
bucket idx

⌋
(2)

hi idx =
⌈
bucket idx

⌉
(3)

whi = bucket idx − lo idx (4)

wlo = 1.0 − whi (5)

eelo = wlo Elo + whi Ehi (6)

where Elo and Ehi represent the learnable embeddings
for the lower and upper buckets respectively. This inter-
polation scheme allows our model to generate moves for
any ELO rating within the target range, not just the dis-
crete bucket values.

7.2 Diffusion Tokenization
The state token is defined as a length 77 token vector
that is obtained by converting all characters within a FEN
string into an encoding obtained by indexing the vocabu-
lary space. As a result, each state can be represented as a
vector of length 77. The future tokens, for which we use a
horizon of 4, where an action and then its corresponding
state is 1, are then the combination of each state vector
concatenated with the next action token. As a result, the
future token is a length 312 vector made up four 78 length
action state combinations. In total, with the classification
token prepended to the start, the model sees a 390 length
vector.

7.3 Figures

Figure 7: Patch-level feature heatmap using DINO on
sample chess images.

Figure 8: Example of a training batch with mosaic aug-
mentation and horizontal flipping.

Figure 9: Comparison of DINO-based embeddings across
different piece types.

Figure 10: Detected gridlines overlaid on the chessboard
using Hough transform to aid in homography computa-
tion and square segmentation. Red lines indicate vertical
divisions and green lines indicate horizontal divisions.
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8 Contributions
Prerit and Akshay implemented and tested the entire
image analysis component including data manipulation,
training the different architectures, and generating results.
Prerit and Akshay also wrote the entire paper. Rikhil and
Ankush worked on the reinforcement learning component
of the project which included policy gradient, self play
and training on soft label embeddings to improve the ac-
tual chess engine performance to mimic the humanistic
style. As Prerit was enrolled in both classes (CS231N and
CS224R), he was the primary contributor on implement-
ing the diffusion model component to experiment with hu-
man style, which was inspired from components of both
classes.
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