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Abstract

Coronary artery calcium (CAC) scores are great
non-invasive indicators of future cardiovascular prob-
lems, yet their routine use is restricted by the need
for electrocardiogram-gated CT. We investigated whether
vessel-specific CAC scoring can be performed opportunis-
tically on the far more common non-gated chest CT scans.
Three regression architectures were utilized: a compact 2-D
convolutional neural network (CNN), the same CNN aug-
mented with a squeeze-and-excite block (SE-CNN), and a
vision transformer (ViT) that processes 32 x 32 patches as
tokens. All networks are trained on 212 non-gated CT scans
with 73 slices each (from the public COCA dataset), using
expert Agatston scores for the left coronary artery (LCA),
left anterior descending (LAD), left circumflex (LCX), and
right coronary artery (RCA) as ground truth. Five-fold
cross-validation was applied during hyperparameter tun-
ing, and the models were evaluated on a held-out test set.
Test mean-squared errors less than 0.0088 were achieved
across all models. These results demonstrate that accu-
rate, vessel-level calcium scoring is feasible without gat-
ing, paving the way for widespread, cost-free cardiovascu-
lar risk assessment from routine thoracic imaging.

1. Introduction

Coronary artery calcium (CAC) refers to the accumu-
lation of calcified plaque within the coronary arteries. Its
scoring, commonly expressed as the Agatston score, pro-
vides a measure of atherosclerotic burden. It is shown in
the literature that higher CAC scores correlate strongly with
one’s risk of future cardiovascular events, making them
valuable in guiding preventive therapies. [3 3} [10] Tradi-
tionally, CAC is measured using electrocardiogram-gated
computed tomography (CT), which synchronizes CT image
acquisition with the cardiac cycle to minimize motion arti-
facts. However, many patients already undergo non-gated
chest CT scans for other clinical indications, such as lung
cancer screening. Therefore, if CAC could be accurately

assessed from these examinations, it would offer a cost-
effective and opportunistic means of cardiovascular risk as-
sessment. Unfortunately, the lack of cardiac gating intro-
duces motion blur, variable image quality, and inconsistent
slice positioning, all of which can complicate coronary cal-
cium quantification.

The input to our algorithm is a set of non-gated tho-
racic CT volumes (three-dimensional stacks of axial slices).
We then compare three different regression-based machine
vision architectures. A standard convolutional neural net-
work (CNN), the same CNN augmented with a squeeze-
and-excite layer (SE-CNN) which learns to weight each CT
slice’s contribution, and also a vision transformer (ViT).
The models output four vessel-specific calcium scores
(LCA = left coronary artery, LAD = left anterior descend-
ing, LCX = left circumflex, and RCA = right coronary
artery). Each model is trained on a dataset of non-gated
chest CT scans paired with ground-truth LCA, LAD, LCX,
and RCA scores determined by experts. Consequently, the
models learn to regress directly from images to the numeric
measures of calcified plaque burden in each coronary seg-
ment. After carefully tuning our models, we were able to
achieve a test set (20% of the patients) mean squared error
(MSE) of 0.0084-0.0087.

2. Related Work

There is already an extensive literature on the use of dif-
ferent machine learning approaches for CAC scoring tasks
on gated CT datasets. [14,[13,[9}[15] However, as discussed
in the introduction, the nongated case is a harder problem
as it brings additional complications. On that front, Eng et
al. [4] has utilized a U-net type CNN model to determine
CAC score levels (into 5 levels, split by score thresholds)
for both gated and nongated CT scans. They opted for a
classification approach rather than a regression approach.
Their encoder is a 50-layer SE-ResNeXt 2D CNN, which
was pretrained on ImageNet. Utilizing the power of such
a large dataset like ImageNet for this task is an interesting
approach. Nevertheless, the CT scan dataset and ImageNet
are quite different from each other, and successfully trans-



Figure 1: Example slices from patients with and without
coronary artery calcification. The patient on the left has
calcification shown as bright structures at the heart while
the other is clear.

ferring feature extraction capability from one dataset to the
other is a challenge on its own. In our project, we utilized
simpler and shallower architectures. Moreover, we focused
on directly estimating the scores for different coronary ar-
teries (LCA, LAD, LCX, RCA).

3. Dataset and Features

We used the dataset COCA - Coronary Calcium and
chest CT’s [[l] hosted by Stanford AIMI Center. This
dataset contains both gated and nongated CT scans with
their corresponding CAC scores. Since our motivation was
to develop a model that would work on nongated CT, we
only focused on that portion of the dataset. There were 212
patient CT scans and matched scores in the dataset. Each
CT scan is composed of a number of slices in the form of
DICOM images (512 x 512 px), which constitute a 3D vol-
ume. The number of images for each patient slightly varies;
therefore, we clipped or padded the 3D volumes around the
center, which includes the heart (our main focus), to nor-
malize the depth of scans across patients. Thus, in their
final form, each CT scan is composed of 73, 512 x 512 im-
ages. We also normalized each scan within itself before
feeding it to the models. Two sample slices, one patient
with visible CAC and one without any, are shown in Figure
m Before feeding the data to the models, we patient-wise
split the dataset into training (80% - 169 patients) and test-
ing (20% - 43 patients) sets. During the development and
hyperparameter tuning of the models, the training set was
further split into training and validation sets under a 5-fold
cross-validation scheme.

4. Methods

Lets represent the dataset as D = {(z;, )}, with
x; € REXHXW being the CT scans and y; € R* be-
ing the scores. We have taken the depth axis (different

layers) as different channels. Each volume is resampled
to C' = 73 axial slices of size H = W = 512 and
then stacked along the channel axis. The target vector
y; = (LCA,LAD,LCX,RCA) contains Agatston-like cal-
cium scores for the four coronary arteries.

All models learn a mapping fp : R73X212X512 _ R4 by
minimising the mean—squared error (MSE) loss
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For optimization, we used the AdamW algorithm [2]:
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AdamW is a variant of the Adam optimizer that de-
couples the weight decay term, applying the regularization
directly rather than through the moment estimates. This
separation ensures more stable and effective regularization.
Which usually leads to better generalization compared to
the original Adam.

We utilized cross-validation (5-fold) during the develop-
ment and hyperparameter tuning. We experimented with
the general structures of our models until we could over-
fit a smaller subset of our data. Then we moved on to the
larger dataset and tuning to get the best outcome from the
model for the entire dataset. Batch sizes, learning rates,
and weight decays for the optimizers were all determined
by a grid search during hyperparameter tuning. Best per-
formances were achieved by a batch size of 32 for all the
models, but the other parameters varied across the models.
All models are developed and optimized using the PyTorch
environment[2].

4.1. CNN

One of the models we tried was a very conventional con-
volutional neural network (CNN) architecture. It consisted
of three Conv2d —BN2d—ReLU —MaxPool2d blocks with
{32, 64,128} filters. Filter sizes were 3x3. Then, a global
average pooling and a two-layer fully connected network
(128 — 128 — 4) was applied.

The convolutional layers learn the local structures and
patterns. As the model gets deeper, the receptive field en-
larges, allowing the network to aggregate spatial cues across
the thorax. Global average pooling collapses the feature
map to a single vector, which is linearly regressed to the
four coronary artery calcium scores. Even though the model
seems simple for the task, it also captures cross-slice con-
text since the channels correspond to the anatomical z-axis.

4.2. SE-CNN

For the second model, we attached a squeeze-and-excite
(SE) module [7] in front of the same convolutional network.
Given an input z € RE>*#*W the SE block computes

Se = U(WZ d)(Wl gc))v ge = ﬁ Zh,w Le,hyws (2

where ¢ and o are ReLU and sigmoid, W; €
RE/mC W, € RE*C/T and r = 16. The activation af-
ter the block is Z¢ . = ScZe,hw-

The SE mechanism learns slice-level importance weights
s. that emphasise relevant slices and suppress background.
The downstream CNN thus receives a re-weighted signal.
Since the chest CTs have regions above and below the heart,
which are not really important for our task. By this ap-
proach, we aimed to make the model learn a weighting
scheme to compensate for this.

4.3. ViT

Finally, we also experimented with a vision trans-
former (ViT) architecture. Each input is divided into non-
overlapping 32x32 patches. A 32x32 convolution with
stride 32 projects every patch to a vector, resulting in P =
256 tokens. We append a learnable class token in the front
and apply positional embedding. The sequence then passes
through the transformer layers with depth 3, multi-head
self-attention (4 heads), and a feed-forward dimension of
512. The output of the class token is finally fed to an MLP
head to produce the prediction.

Self-attention allows every patch to exchange informa-
tion with every other patch, capturing long-range dependen-
cies. The learnable class token acts as a global aggregator
whose final embedding summarizes the entire scan for the
regression.

5. Results & Discussion

As described under the methods section, we have cho-
sen the MSE loss as the loss metric for our regression
task. After finalizing the model structures and using cross-
validation on the larger dataset for determining the best hy-
perparameters (learning rate, weight decay, batch size, etc.)
Table [T] compares the optimal performance of the models
we were able to achieve. It presents the mean training and
validation loss across cross-validation folds, and their final
test performances. Despite having significant differences in
their structures and complexities, all the models showed a
similar performance.

It is always important to investigate the loss curves for
any signs of training pathologies such as overfitting or un-
derfitting. In Figure 2] we present the mean loss curves
and their standard deviations. When investigated, the train-
ing performances seem to be consistent across models, and
there is no clear sign of over or underfitting.

Finally, we also produced saliency maps using the CNN
model to get a better qualitative understanding of how our
model works. In Figure |3] an example saliency map is
shown. We can clearly see that there are hot spots on the
heart, the sternum, the ribs, and the spine. The focus on the
heart is expected, since we are already training the model
for the exact purpose of determining the level of coronary
artery calcification. Yet, the bony structures might seem odd
at first glance. We believe this is also an expected result as
the calcified plaque in the arteries and the bones both con-
tain calcium. Resulting in similar attenuation coefficients.
Hence, they both have similar intensities (HU units) in the
CT scans.

6. Conclusion & Future Work

All our models showed less than 0.0088 MSE on the test
set with very similar performances. The CNN model seems



Model Mean Train MSE =+ std Mean Val. MSE + std Test MSE
CNN 0.0098 + 0.0030 0.0103 +0.0122 0.0084
SE-CNN 0.0068 £ 0.0038 0.0108 +0.0125 0.0087
ViT 0.0104 += 0.0030 0.0105 +0.0124 0.0086

Table 1: Performance comparison of models. Mean train and validation MSEs are computed over cross-validation folds.

“std” stands for standard deviation.
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Figure 2: Shaded loss curves (over 5-folds) of each model.

Figure 3: Example saliency map from the CNN model.

to be the best choice due to its simplicity and performance.
Though having observed that the SE-CNN and ViT models
can also be utilized with similar performances for this task,
they make a great candidate to consider for future works
where the dataset and complexity of the task might be dif-
ferent.

One downside of our study was the lack of data augmen-
tation techniques due to limited time and compute. Partic-

ularly, adding different levels of noise, blur, and shifts to
better span possible contributors to the problems with vi-
sualization and scoring of coronary calcium. Such effects
are of clinical importance in the form of detector efficien-
cies, device and stabilization differences, patient motion,
etc. Given enough resources, we would like to expand our
dataset with such augmentations.
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