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Abstract

We introduce BenchPRISM, a benchmark evaluating seg-
mentation models’ ability to identify physically coupled ob-
ject groups. Our dataset contains 100 images annotated
with ground-truth movable segment labels, distinguishing
rigid bodies (joint motion under force) from continuous
bodies (attachment/support). Evaluating ProMerge, Cut-
LER, and SAM using IoU-based metrics with Hungarian
matching, we find ProMerge achieves the highest Average
Precision (0.56), while all models demonstrate fundamen-
tal limitations in physical reasoning versus visual appear-
ance. The results reveal a significant gap between current
segmentation capabilities and the physical understanding
needed for robotics applications.

1. Introduction

Modern computer vision has witnessed remarkable ad-
vances in image segmentation, with models like the Seg-
ment Anything Model (SAM) [6] demonstrating unprece-
dented zero-shot generalization capabilities across diverse
visual domains. SAM and similar foundation models ex-
cel at identifying and delineating individual objects based
on visual boundaries, achieving impressive performance on
traditional segmentation benchmarks. However, these mod-
els operate primarily on visual cues—texture, color, and
spatial boundaries—without incorporating understanding of
the physical world that governs how objects interact and
move together in real environments.

And so while the current segmentation models can accu-
rately delineate individual objects within complex scenes,
they fail to capture the hierarchical nature of physical ob-
ject relationships that govern real-world dynamics. Con-
sider a robotic manipulation scenario where a gripper must
clear a laboratory workspace: a beaker containing liquid
sits within a containment tray, which rests on a mobile cart
alongside other scientific instruments. Traditional segmen-

tation approaches would segment the beaker, tray, cart, and
instruments as distinct visual entities. However, effective
robotic planning requires understanding multiple overlap-
ping movable segments: the beaker can be grasped inde-
pendently while preserving the liquid, the beaker-tray unit
must move together to prevent spillage during transport, the
entire instrument cluster moves as one assembly when re-
locating the cart, and the cart’s mobility constraints affect
the movement of all supported objects. This multi-scale
physical coupling, where objects exhibit different degrees
of kinematic constraint depending on manipulation context,
represents a critical gap between visual object detection and
the physical reasoning required for autonomous robotic sys-
tems.

To address this, we construct and release a custom
dataset of 100 real-world images, each annotated with
ground-truth movable segment labels that reflect context-
dependent physical couplings. We benchmark recent seg-
mentation models against this dataset to quantitatively as-
sess their capacity to represent dynamic, relational struc-
tures. Through this empirical evaluation, we aim to test
the core hypothesis that state-of-the-art visual segmentation
models fall short in capturing the physical relationships nec-
essary for robust scene understanding and autonomous ma-
nipulation planning. This work establishes a foundation for
the development of segmentation models that integrate both
visual and physical reasoning, with implications for embod-
ied AI and robotics.

1.1. Problem Statement

We define the problem of movable object group segmen-
tation as the task of identifying and segmenting physically
coupled groups of objects that are expected to move to-
gether under real-world manipulation. Given a single RGB
image as input, the goal is to output a set of instance-level
masks, where each mask corresponds to a distinct movable
object group. Our annotations are class-agnostic and focus
solely on physical groupings, without assigning semantic
labels. To evaluate model performance, we compute Inter-
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section over Union (IoU) between predicted and ground-
truth masks and apply the Hungarian matching algorithm to
find an optimal one-to-one correspondence between them.
Using this matching, we calculate precision and recall to
quantify segmentation accuracy and coverage. All evalua-
tions are conducted on a custom dataset of 100 real-world
images containing a diverse set of annotated movable object
groups.

2. Related Work
Understanding how objects relate physically within a

scene—how they support, attach, or move with one an-
other—has long been a goal in computer vision. Early
work such as Roberts’ seminal thesis [10] approached this
through structured line drawings, proposing that 3D object
structure could be inferred from 2D cues. While foun-
dational, its reliance on simplified geometry limited ap-
plicability to real-world scenes. Similarly, Biederman’s
recognition-by-components framework [3] emphasized that
humans understand spatial and functional relationships
(e.g., cups resting on tables), but neither work operational-
ized these insights into algorithms for identifying physically
actionable groupings.

Later data-driven approaches like the Visual Memex
framework [8] related objects through graphs of visual and
contextual similarities rather than abstract categories. How-
ever, the focus remained on visual retrieval rather than phys-
ical reasoning about how scene parts might behave as ma-
nipulable units.

Recent work has bridged this gap using counterfactual
and causal reasoning. Visual Jenga [2] studies support de-
pendencies by sequentially removing objects from scenes,
while EraseDraw [4] trains models to insert objects by first
learning to erase them. Both approaches use intervention
to understand structural dependencies, though they focus on
synthetic manipulation rather than direct segmentation from
unaltered scenes.

More formally, Lopez-Paz et al. [7] proposed techniques
for detecting causal relationships in visual data, separat-
ing correlation from causal influence. Goyal et al. [5] ap-
plied counterfactual visual explanations to identify func-
tional features, while Besserve et al. [1] showed that coun-
terfactuals can uncover modularity in generative models—a
property aligning with our goal of identifying coherent,
movable object groups.

Despite this progress, widely used segmentation models
like SAM [6] and SAM2 [9] remain surface-bound, iden-
tifying regions of similar appearance without understand-
ing physical interdependence. They cannot distinguish be-
tween a mug and its handle as a single object, or recog-
nize a laptop-tray coupling, requiring manual correction in
robotics applications.

Our work proposes a benchmark for movable object

Figure 1. Rigid bodies examples of miscellaneous objects on top
of an ipad

group segmentation: identifying scene subsets that are
physically coupled under constraints like support and joint
motion. By focusing on action-relevant segmentation, we
bridge the gap between perceptual grouping and manipula-
tion for real-world interaction.

3. Dataset
We collected a dataset of 100 images featuring a di-

verse range of occlusions, lighting conditions, and high-
dimensional objects. Each image was cropped and pro-
cessed using a custom-built software pipeline that utilizes
the SAM2 model [9] to get grouped segments that show the
physical relationship of the objects. We did this, with the
goal of capturing physical dependencies and dynamic rela-
tionships within each scene.

During annotation, we define a movable object based
on two distinct criteria, depending on whether the object
is rigid or continuous.

For rigid bodies, we define a segment by considering
whether an object moves in response to external force ap-
plied in arbitrary directions. Specifically, if applying force
to one or more objects causes them to move jointly in most
cases, they are considered part of the same segment. Other-
wise, they are treated as independent segments.

For continuous and fluid bodies—such as hu-
mans—segmentation is determined based on whether an ob-
ject is physically attached to or supported in all directions
by the continuous body. This criterion captures how such
bodies support or constrain other objects within the scene.

For reference, Figure 1 shows physical understanding in
rigid bodies and Figure 2 shows in fluid bodies.

During the annotation process, we initially employed
the original Segment Anything Model (SAM) to generate
base segments for composing our movable object anno-
tations. However, we observed a consistent failure case:
SAM frequently segmented visually distinct but physically
coupled objects as separate instances, even when clear



Figure 2. Fluid body of the person with a brush attached to its hand

Figure 3. We see an incomplete segment 0, where there are multi-
ple dotted lines/points suggesting failure to distinguish the bound-
ary of a multiple object group segment

human-provided point prompts indicated a unified group-
ing. This failure was especially prevalent when objects ex-
hibited strong contrast in color, texture, or edge definition,
despite being physically interdependent. Figure 3 illustrates
one such example, where multiple dotted point prompts in-
tended to guide the model towards a unified movable group
instead resulted in an incomplete segment, failing to capture
the entire object group as one. Similarly, Figure 4 highlights
a mask prediction failure during annotation, where the pre-
dicted mask did not align with the true physical grouping,
further evidencing the model’s inability to physically cou-
pled objects under such conditions.

To mitigate this, we transitioned to using the more re-
cent SAM2 model [9], which demonstrated improved sen-
sitivity to contextual cues. Nonetheless, the same core issue
persisted, albeit less frequently. These observations sug-
gest a fundamental limitation in current segmentation mod-
els: they rely heavily on local visual features and are not
equipped to infer when multiple visually distinct regions
should be grouped into a single segment based on phys-
ical or functional relationships. This reinforces our cen-
tral hypothesis and further motivates the need for segmen-
tation models that incorporate physical reasoning beyond
boundary-based visual cues.

4. Methods
To evaluate the performance of segmentation models

on our custom benchmark for physically movable object
groupings, we applied two recent unsupervised segmenta-
tion algorithms—CutLER and ProMerge—and compared
them to a baseline established using the Segment Anything
Model (SAM) [6]. Our approach involved zero-shot evalu-
ation using pretrained models, allowing us to analyze their

Figure 4. During annotation, our 3 mask predictions failed to cap-
ture the correct segment

generalization to physically grounded segmentation tasks
without task-specific supervision.

4.1. Dataset and Annotation Protocol

Our dataset consists of RGB images paired with binary
segmentation masks, each resized to 256 × 256 resolution.
Masks are stored in .hdf5 format, with each mask consist-
ing of white pixels (value 1) indicating the foreground seg-
ment and black pixels (value 0) representing background.
These masks were manually annotated to reflect physically
meaningful movable groupings—objects that move together
under force due to support or contact constraints. Each im-
age contains one such group as the positive label.

4.2. Model Inference and Processing

We cloned the official repositories of CutLER and
ProMerge, both of which provide pretrained weights and
inference pipelines. We modified their data loading proce-
dures to handle our fixed image resolution and mask format.
Neither model was fine-tuned; we ran inference directly us-
ing their default pretrained weights, which were trained on
large-scale web or object-centric datasets.

Likewise, for SAM, we used the public checkpoint and
evaluated it without modification by directly feeding in
our annotated images. For all models, we applied post-
processing (if required by the method) to generate predicted
binary masks for comparison against the ground truth.

4.3. Segmentation Evaluation Metrics

We evaluated segmentation performance using three
standard metrics computed over matched mask pairs: Aver-
age Precision (AP), Average Recall (AR), and Intersection
over Union (IoU). Given a set of predicted masks {M̂i}Ni=1

and ground truth masks {Mj}Mj=1, we apply the Hungar-
ian algorithm to compute an optimal one-to-one assignment
that maximizes the total IoU across matched pairs.



4.3.1 Metric Definitions

For each matched pair (M̂i,Mj), we compute the Intersec-
tion over Union (IoU) as:

IoUij =
|M̂i ∩Mj |
|M̂i ∪Mj |

.

Let T = {0.50, 0.55, . . . , 0.90} be a set of IoU thresh-
olds. For each threshold t ∈ T , we count the number of
matched pairs with IoUij ≥ t and define:

Precision(t) =
#True Positives at t
#Predicted Masks

(1)

Recall(t) =
#True Positives at t

#Ground Truth Masks
(2)

We then compute average precision and recall across all
thresholds:

AP =
1

|T |
∑
t∈T

Precision(t), AR =
1

|T |
∑
t∈T

Recall(t).

Finally, we report the mean IoU over all matched pairs:

Mean IoU =
1

K

K∑
k=1

IoUk,

where K = min(N,M) is the number of matched pairs
resulting from the Hungarian assignment.

4.3.2 Model Characteristics

CutLER operates by extracting pixel-level embeddings us-
ing a vision transformer backbone, followed by spectral
clustering and a learned merging step. It is designed to cap-
ture both local textures and global object shape, enabling
segmentation of arbitrary objects in an unsupervised fash-
ion. The merging module helps reduce oversegmentation
and align predictions with true object boundaries.

ProMerge, in contrast, focuses on hierarchical merging.
It begins with oversegmented superpixels and learns pair-
wise affinities to merge regions into coherent, semantically
meaningful objects. This strategy is particularly suited for
objects with internal structure or multiple connected com-
ponents, making it potentially valuable for our goal of iden-
tifying physical groupings.

SAM leverages a promptable vision transformer archi-
tecture capable of producing high-quality segmentation
masks from points, boxes, or masks. In our experiments, we
used SAM in its zero-shot setting without explicit prompts.
That is, we fed SAM the same images used for manual an-
notation and extracted the default mask predictions. While
SAM is not trained to identify physically grounded group-
ings, it provides a useful baseline for how a general-purpose
foundation model performs on our benchmark.

Overall, this evaluation pipeline allows us to assess
whether unsupervised or promptable segmentation models
can approximate human understanding of physically cou-
pled objects, providing insight into the gap between visual
segmentation and physically actionable scene understand-
ing.

5. Experimental Results and Anaylsis
Our evaluation of three state-of-the-art segmentation

models on the BenchPRISM dataset reveals significant lim-
itations in current approaches when tasked with identify-
ing physically coupled object groups. Table 1 summarizes
the quantitative performance of each model across our key
metrics: Average Precision (AP), Average Recall (AR), and
mean Intersection over Union (IoU).

5.1. Evaluation Table

Table 1. Performance comparison of segmentation models on
BenchPRISM. All models were evaluated in zero-shot setting
without task-specific fine-tuning.

Method Mean AP Mean AR Mean IoU
ProMerge 0.5595 0.4143 0.4680
CutLER 0.1779 0.4224 0.4729
SAM (Baseline) 0.3310 0.4152 0.4755

5.2. Model Performance Analysis

ProMerge achieved the highest Average Precision
(0.5595), demonstrating superior ability to generate ac-
curate positive predictions for physically grounded object
groupings. This performance reflects the model’s hierar-
chical region-merging strategy, which begins from overseg-
mented superpixels and merges them based on learned pair-
wise affinities. Such an approach appears well-suited for
our benchmark, as it enables the model to recover multi-
object groupings that are typically fragmented by edge- or
saliency-based segmentation methods.

SAM performed moderately well, with an AP of 0.3310,
AR of 0.4152, and mean IoU of 0.4755. While its segmen-
tation masks are visually coherent and precisely delineated,
its grouping strategy is not guided by physical relationships
such as support, attachment, or containment. Instead, SAM
tends to predict a large set of independent segments based
on visual saliency and objectness priors, resulting in partial
alignment with our physically grounded annotations. The
recall and IoU scores suggest that SAM covers a reason-
able portion of relevant regions, but its AP score indicates
difficulty in precisely identifying physically coupled units
without introducing redundant or mismatched segments.

CutLER, with an AP of 0.1779, AR of 0.4224, and IoU
of 0.4729, demonstrated the lowest precision of the three
models. Despite leveraging powerful visual transformer



Figure 5. Model segmentation predictions versus ground truth for
basketball on iPad. Models fail to recognize the basketball and
iPad as a single rigid body that would move together, instead seg-
menting based on visual boundaries between objects.

Figure 6. Model segmentation predictions versus ground truth for
oranges in bowl. Models over-segment individual oranges rather
than recognizing the contained group as a single movable unit
when the bowl is manipulated.

embeddings and clustering mechanisms, CutLER struggles
to align visual similarity with physical interdependence. Its

merging stage mitigates some oversegmentation, but the
lack of explicit cues for physical coupling results in un-
dergrouping in scenes with interacting objects. CutLER’s
relatively high recall and IoU, similar to SAM’s, show that
it captures relevant regions—but its low AP suggests poor
precision in grouping them correctly.

Across all models, the gap between high IoU/AR and
lower AP suggests that generating segmentations which
overlap with relevant regions is not the core challenge;
rather, the main limitation is accurately grouping objects
that interact physically into coherent units. ProMerge’s
learned affinity-based merging provides a partial solution,
but all models fall short of capturing the full structure of
physical relationships.

5.3. Failure Mode Analysis

The segmentation models demonstrate a fundamental in-
ability to distinguish between visual boundaries and physi-
cal coupling relationships, as evidenced by the failure cases
in Figure 5 and Figure 6. This visual bias manifests as a
consistent pattern where models rely on color, texture, and
edge discontinuities rather than understanding which com-
ponents would move together under applied force.

The most prominent failure mode is undergrouping of
physically connected objects. In Figure 5, the models fail to
recognize that the toy basketball resting on the iPad consti-
tutes a single rigid body that would move as one unit when
the iPad is lifted or tilted. Instead, all three models segment
only the ball, its reflection, and the iPad as separate enti-
ties, missing the critical support relationship between them.
Similarly, in Figure 6, the models incorrectly segment the
bowl and the three oranges as individual objects rather than
recognizing that the contained oranges form a single mov-
able group with their container. This pattern extends to ev-
eryday scenarios such as lids on pots or test tubes in racks,
where models consistently produce separate segments for
each visually distinct component despite their functional
unity.

Containment and support relationships prove particu-
larly challenging for all evaluated models. When objects
rest on trays, inside containers, or are otherwise physi-
cally dependent on supporting structures, the models seg-
ment each item individually rather than recognizing these
groupings as manipulation units. This limitation stems
from the models’ reliance on low-level visual features rather
than high-level physical reasoning about mechanical con-
nections, gravitational support, and force transmission.

The relatively low Average Precision scores across all
methods (ProMerge: 0.56, CutLER: 0.18, SAM: 0.33)
quantitatively reflect this fundamental gap between visual
segmentation capabilities and physical understanding. This
inability to reason about physical dependencies undermines
the models’ usefulness for robotics applications, where pre-



dicting object motion and manipulation outcomes depends
critically on recognizing physically coupled object groups
rather than visually distinct components.

5.4. Implications for Physical Scene Understanding

The overall results highlight a key limitation of cur-
rent segmentation architectures: their inability to segment
scenes based on physical grouping principles. Although
models like SAM and CutLER achieve reasonable IoU and
recall by identifying salient regions, their low-to-moderate
AP scores reveal challenges in grouping visually dissimilar
yet physically coupled objects.

ProMerge’s relatively higher AP suggests that incorpo-
rating learned merging based on region affinity is a promis-
ing direction for capturing physically grounded structures.
However, it too struggles in cases involving subtle physical
cues such as containment, shared motion, or inter-object de-
pendency. For example, nested objects or enclosed groups
remain a challenge even for ProMerge, reflecting the need
for more explicit modeling of physical relationships.

For robotics and embodied AI, this limitation has direct
consequences. Systems that misidentify coupled objects as
separate may fail to plan effective grasps or interactions.
For instance, attempting to pick up a tray without account-
ing for its contents may lead to failure in execution. Sim-
ilarly, separating a pot and its lid can result in unintended
outcomes during manipulation tasks.

These findings underscore the importance of develop-
ing segmentation models that integrate physical reasoning.
Incorporating cues such as support surfaces, motion cor-
relation, and task-driven grouping can help move beyond
appearance-based parsing. BenchPRISM thus serves not
only as a benchmark but as a diagnostic tool to guide the
design of segmentation models that better reflect real-world
physical scene structure.

6. Conclusion
This work introduces BenchPRISM, a novel segmen-

tation benchmark focused on identifying physically mov-
able object groupings—segments defined not purely by vi-
sual appearance but by support relationships and collec-
tive mobility under force. Our benchmark addresses a
critical gap in current segmentation research: the need to
move beyond visual coherence and toward physically ac-
tionable scene understanding. We evaluated three segmen-
tation models—ProMerge, CutLER, and the Segment Any-
thing Model (SAM)—on 100 real-world images annotated
with physically grounded segmentation masks.

ProMerge emerged as the most precise model, achiev-
ing the highest Average Precision (0.5595). Its hierarchi-
cal merging strategy, which operates by learning pairwise
affinities among initially oversegmented superpixels, en-
ables the identification of semantically and physically co-

herent object clusters. This makes ProMerge especially ef-
fective at detecting object groups that may differ in appear-
ance but function as a single movable unit, aligning well
with the physical reasoning objectives of BenchPRISM.

SAM performed competitively across all metrics, with
a Mean AP of 0.3310, AR of 0.4152, and IoU of 0.4755.
These results highlight its ability to generate high-quality
object masks and cover a substantial portion of physi-
cally relevant regions. However, SAM’s segmentation be-
havior remains primarily guided by visual saliency rather
than physical interdependence, which limits its precision in
grouping adjacent entities that should be treated as a unit
under physical manipulation.

CutLER demonstrated the lowest AP (0.1779) but com-
parable AR and IoU to SAM, reflecting its capacity to local-
ize plausible regions while struggling to group physically
related parts into coherent segments. Its reliance on spec-
tral clustering and visual embedding similarity often leads
to undergrouping in scenes with object interaction, support,
or containment.

Our analysis shows that all evaluated models rely heavily
on appearance-based cues, often failing to capture the un-
derlying physical structure of the scene. Groupings based
on containment (e.g., dishes in a drying rack) or support
(e.g., tools on a tray) are frequently missed, revealing the
limits of purely visual segmentation systems when applied
to embodied tasks.

For future work, several directions are promising. First,
fine-tuning existing models on BenchPRISM may help
bridge the appearance-to-physical gap, revealing the degree
to which physical grouping can be learned with supervi-
sion. Second, integrating physical priors—such as sup-
port detection, object interaction modeling, or contact infer-
ence—could better align segmentation with manipulation-
relevant units. Third, leveraging synthetic scenes from
physics simulators may offer a way to expose models to
long-tail interaction scenarios not readily available in nat-
ural datasets. Finally, expanding BenchPRISM to include
multimodal signals such as depth and tactile feedback could
enrich models’ understanding of physical constraints.

In summary, BenchPRISM provides a new lens on seg-
mentation evaluation grounded in physical reasoning. Our
results indicate that while state-of-the-art models such as
SAM and ProMerge are effective in localizing object-like
regions, they fall short of reliably grouping objects based on
physical coupling. Bridging this gap is essential for percep-
tion systems deployed in robotics, assistive technologies,
and embodied AI—domains where understanding how ob-
jects relate physically is as critical as recognizing what they
are.
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