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Abstract
We present ByeBye, a modular zero-shot pipeline for re-

moving humans from videos and replacing them with styl-
ized characters. Our method integrates YOLOv8 for detec-
tion, SAM for segmentation, LaMa for high-fidelity inpaint-
ing, and Stable Diffusion with ControlNet for pose-aware
character generation. This frame-by-frame pipeline enables
rapid experimentation using powerful off-the-shelf models.
Through detailed ablation studies, we find that the combi-
nation of YOLOv8s, SAM-ViT-B, and LaMa Dilated pro-
vides the best balance between perceptual quality and com-
putational efficiency. To mitigate temporal inconsistencies
inherent in frame-by-frame generation, we conduct a tar-
geted hyperparameter sweep. We determine that a CFG
guidance scale of 9 and a strength value of 0.7 result in the
lowest mean and variance of LPIPS, indicating the highest
perceptual coherence across frames. Additionally, we in-
corporate LoRA models fine-tuned for specific characters,
which further enhance temporal consistency—particularly
in preserving clothing and background elements—despite
introducing minor degradations in facial fidelity. Our re-
sults demonstrate that a thoughtfully configured modular
pipeline can achieve high-quality human removal and styl-
ized character replacement in video without requiring cus-
tom training. This work lays a foundation for future exten-
sions, including multi-human tracking, pose-aware condi-
tioning, and temporally coherent video diffusion models.

1. Introduction
With the increasing use of video surveillance in both

public and private environments, concerns over privacy are
growing rapidly. One promising solution is video inpaint-
ing: the process of removing selected regions (such as peo-
ple) from video frames and filling in the background so that
the video remains visually coherent. While originally devel-
oped for restoration and anonymization, this technique also
opens the door to creative inpainting, where masked regions
can be filled with stylized patterns, textures, or entirely new
characters.

In this project, we develop a modular pipeline for
human-aware video inpainting, where our pipeline detects,
segments, and removes humans frame by frame in a video
sequence and fills the masked region with the background.
Our background inpainted output appears clean and tempo-
rally consistent enabling creative addons. In particular, we
go beyond just removal and explore cartoon/anime charac-
ter replacement. Here we generate a new character which
mimics the pose of the removed human which produces
a fun, visually-appealing video. This task combines both
generative models, pose estimation as well as background
inpainting. Our pipeline is a one-shot approach leverag-
ing powerful off-the-shelf models into a novel configuration
that enables for quick swapping and experimentation.

The input into our system is a video containing a single
human which is then decomposed into RGB frames. Each
frame is first passed into a YOLOv8 [7] model which gen-
erates bounding boxes around the human. These boxes are
then passed into the Segment Anything Model (SAM) [8]
to generate segmentation masks on top of the human. For
the task of background inpainting we utilize the state-of-
the-art LaMa model [14]. Additionally, as a baseline for
background inpainting we experimented with the available
OpenCV based blur inpainting which demonstrated less
coherent inpainting. The output here is a folder of frames
containing the inpainted background. For the stylized char-
acter replacement, we extract the 2D pose of the human for
each frame using OpenPose [2]. Given the pose we use
a Stable Diffusion [13] augmented with ControlNet [18]
to generate anime characters that replicate the original hu-
man’s pose and orientation. We also add a LoRA [6] and
experiment with initialization techniques to achieve greater
temporal inconsistencies in the generated video. The out-
put here is a set of frames of the newly drawn character. We
then overlay these frames using the SAM masks onto the in-
painted background to see the new character on the original
background.

This modular pipeline enables us to experiment with var-
ious combinations of different YOLO models for detection,
different mask generators (different lightweight and heavy
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versions of SAM), and inpainting models (various versions
of LaMa along with OpenCV blur). We perform an ablation
study to evaluate how switching out different components
affects the final output in terms of both perceptual quality
and computational cost. Interestingly, we are able to find
out that lightweight YOLO and SAM models along with the
base LaMa model is able to achieve strong results compa-
rable to that of the stronger models while still taking signif-
icantly less performance costs and time. Additionally, we
can see how stylization is able to improve in both quality
and temporal consistency when a LoRA is applied on top of
the stable diffusion.

2. Related Work
The fields of video inpainting and style transfer have

many established subfields in computer vision such as ob-
ject detection, segmentation, image inpainting, pose estima-
tion, and text based image generation. Each of these areas
have existing systems in isolation but few systems tackle the
full pipeline end to end. Our work focuses on merging these
models into a modular, zero-shot pipeline enabling back-
ground inpainting and character insertion.

Object detection remains a cornerstone of vision sys-
tems, with detectors such as YOLOv3 [11] and YOLOv8
[7] offering speed and accuracy suitable for live object de-
tection. In our pipeline, YOLOv8 serves as the first step
in locating humans. The task of segmentation has evolved
from earlier models such as DeepLab [3] which utilizes di-
lated convolutions and a CNN network to assign class labels
to every pixel and Mask R-CNN [5] which is an extension
to the Faster R-CNN [12] that adds a prediction branch for
pixel level segmentation. These approaches built the foun-
dation for Meta’s Segment Anything Model (SAM) [8] ca-
pable of producing high quality segmentation masks.

There have been a variety of image inpainting tech-
niques. Including the Telea’s algorithm [15] which is act-
ing as our baseline in the OpenCV default inpaint. We are
using LaMa [14] as our state of the art approach for inpaint-
ing which works based off of frequency-aware convolutions
and large receptive fields to generate globally coherent im-
age completions.

For pose-guided generation, OpenPose [2] is a widely
used tool for extracting 2D key points from humans in mo-
tion, and it serves as the extraction in our character replace-
ment pipeline. Other existing methods include Mediapipe
[9] created for pose extraction. To generate the new char-
acters we are using Stable Diffusion [13] for prompt based
image generation. We build upon this by using ControlNet
[18] which forces Stable Diffusion to generate images using
pose as input.

Recent papers like AnimateDiff [4] attempt to generate
entire videos using end-to-end video diffusion models. An-
imateDiff works great at producing temporally consistent

videos; however, it lacks support for video generation based
on pose-guidance. While very few extensions exist, they
have non-trivial setup that are more computationally heavy
as well as less modular.

In contrast, our work presents a fully modular, frame-by-
frame pipeline that supports both human removal and styl-
ized character insertion without the need for any training
or fine-tuning. Each component of detection, segmentation,
inpainting, pose estimation, and stylized generation can be
independently swapped or ablated. This flexibility allows us
to evaluate a broad range of combinations and draw insights
into how design choices impact perceptual quality, temporal
consistency, and computational cost. Our approach demon-
strates that a thoughtfully composed zero-shot system using
off-the-shelf tools can produce interesting results, while be-
ing easier to use, adapt, and extend.

3. Dataset and Features
We evaluate our pipeline on videos from the DAVIS 2017

dataset [10], a standard benchmark in video object segmen-
tation. We select a subset of videos that feature a single
prominent human subject, allowing for clean pose extrac-
tion, segmentation, and stylization. This dataset provides
diverse scenes with consistent camera motion, making it
well-suited for evaluating inpainting and frame-wise video
generation tasks.

While we use DAVIS because of its easy availability, our
pipeline can work on any video with a single human. Cur-
rently our pipeline is optimized for inpainting and replacing
a single human, but it can be easily adapted to multiple hu-
man scenes by using TrackAnything [17] to track single or
multiple people to replace. Frames are extracted from each
video and passed through the pipeline independently.

After passing in our image frames into SAM we save
all the binary segmentation masks and use them as input
to LaMa for inpainting. Additionally, when calculating the
pose with OpenPose and before passing into the charac-
ter generator pipeline (Stable DIffusion, ControlNet, and
LoRA) we resize all the frames to by 512 by 512 pixels
as these models expect. We then reshape them back into
their original shape when pasting them back into the origi-
nal video.

4. Methods
In this section, we describe the architecture of our mod-

ular pipeline for one-shot video inpainting and character
replacement pipelines (see Figure 1). Our system works
on a frame by frame basis while also allowing us to swap
out different models at each stage without requiring time-
intensive retraining. We experiment with various different
YOLO models, SAM models, LaMa models, as well as the
default OpenCV inpaint. We evaluated each component in



Figure 1. Modular pipeline for human-aware video inpainting and stylized character replacement. Each component: detection, segmenta-
tion, inpainting, and generation can be independently ablated or swapped.

an ablation study according to various different quantita-
tive inpainting metrics. Additionally, we also explored the
compute time for various combinations of larger parameter
versus simpler models in order to determine what pipeline
is able to provide the best results for fast, low-compute, re-
sults.

For the character replacement task we first extracted pose
using OpenPose and experimented with stable diffusion
plus controlnet add on to generate characters in the same
pose as the original video. We can then overlay these gen-
erated videos with the earlier SAM masks to make the final
video. Optional add-ons to this pipeline for better charac-
ter generation and temporal consistency is using a LoRA
model for a specific character and changing the initializa-
tion strength of the diffusion model.

4.1. Inpainting Task

Here our goal is to remove the human from each frame
and inpaint the masked region with a high-quality represen-
tation of the background. This is achieved with three steps,
first Human Detection, second Segmentation, and third in-
painting.

4.1.1 Human Detection (YOLOv8)

We utilize the state-of-the-art object detection model
YOLOv8 (You Only Look Once) to extract bounding boxes
around humans in each video frame. YOLO is a single-
stage object detector that performs classification and local-
ization in a single forward pass of a convolutional neu-
ral network, making it highly efficient for real-time use.
Lighter variants, such as YOLOv8s, are particularly effec-
tive in scenarios like ours, where each video frame must be
processed independently and quickly.

YOLOv8 processes an input RGB image of shape
RH×W×3 and outputs a tensor containing bounding box

predictions, each represented as:

(x, y, w, h, c, p1, . . . , pn)

where (x, y) are the center coordinates of the box, (w, h)
are its dimensions, c is the objectness confidence, and pi
are class probabilities. YOLO’s architecture predicts these
values over a grid applied to the input feature map, and is
trained using a multi-part loss that includes bounding box
regression, object confidence, and classification terms.

In our modular pipeline, each video is decomposed into
frames, which are passed into YOLOv8 to detect human
bounding boxes. These boxes are critical for generating
pixel-accurate masks with SAM in the next stage of the
pipeline. We conduct an ablation study using multiple
YOLOv8 variants—YOLOv8s, YOLOv8m, YOLOv8l, and
YOLOv8x—to evaluate how model size affects both accu-
racy and runtime.

As shown in Table 1, while YOLOv8x yields the most
accurate detections, it is also the slowest. We found that
YOLOv8s offers a strong trade-off, producing high-quality
bounding boxes for our single-human scenes at significantly
lower computational cost, making it the best fit for our one-
shot inpainting pipeline.

Model Size (Millions of Parameters) Speed (FPS)
YOLOv8s 11.2 144
YOLOv8m 25.9 96
YOLOv8l 43.7 70
YOLOv8x 68.2 53

Table 1. Comparison of YOLOv8 variants. YOLOv8s is the light-
est and fastest, suitable for real-time usage. YOLOv8m offers
a trade-off between speed and accuracy, while YOLOv8l and
YOLOv8x are more accurate but increasingly compute-intensive.
Speed and parameter size are from Ultralytics benchmarks [7].



Figure 2. On the far left we have the input image, second we have the segmentation mask generated by SAM-H, third we have the
background inpainting provided by OpenCV, and on the far right we have the inpainted background generated by LaMa MultiPass.

4.1.2 Segmentation and Mask Creation

To extract high-quality human masks from YOLOv8’s pre-
dicted bounding boxes, we use the Segment Anything
Model (SAM), a general-purpose segmentation framework
developed by Meta AI. SAM is capable of producing ac-
curate masks given prompts, including bounding boxes,
points, or previous masks.

SAM has a transformer-based encoder-decoder architec-
ture using a series of Vision Transformers. Given an input
image I ∈ RH×W×3 and a prompt P (in our case, a bound-
ing box), the model generates a binary segmentation mask
M ∈ {0, 1}H×W , where 1 indicates pixels corresponding
to the object of interest (or in our case human).

In our pipeline, we apply SAM to each frame using hu-
man bounding boxes predicted by YOLOv8. The output
masks are used for two key purposes: first, to remove the
human subject via background inpainting, and second, to
composite the stylized character back into the original back-
ground.

We perform another ablation study using three
SAM variants—SAM-ViT-B, SAM-ViT-L, and
SAM-ViT-H—which differ in parameter size, input
resolution, and runtime efficiency. As shown in Table 4.1.2,
SAM-ViT-H yields the highest quality masks, wrapped
close to the human figure.. However, SAM-ViT-B offers
faster inference while producing masks that are sufficiently
accurate for single-human scenes depending on the com-
plexity of the video. This flexibility allows us to balance
segmentation quality with computational cost, depending
on a certain task’s requirements.

Model Backbone Params (B) Resolution
SAM-ViT-B ViT-B 0.91 256×256
SAM-ViT-L ViT-L 1.0 512×512
SAM-ViT-H ViT-H 2.4 1024×1024

Table 2. Comparison of SAM variants used for human seg-
mentation. SAM-ViT-B is a lightweight baseline; SAM-ViT-L
balances accuracy and speed; SAM-ViT-H produces the highest-
quality masks but is resource-intensive. Input resolutions corre-
spond to the patch sizes expected by each ViT backbone. Values
adapted from Kirillov et al. [8].

4.1.3 OpenCV Telea Inpainting

As a baseline for background inpainting, we first tried
OpenCV’s built-in implementation of Telea’s algorithm.
This method is fast and parameter-free, making it suitable
for quick comparisons. However, it often struggles with
complex backgrounds, motion edges, or semantic consis-
tency.

Telea’s algorithm fills in missing regions with surround-
ing pixel information. It is a fast marching method that
propagates known pixel information from the boundary in-
ward. At each step, the algorithm chooses the pixel with
the smallest distance from the mask edge and estimates its
value based on a weighted average of its known neighbors,
with weights favoring directionality, smoothness, and prox-
imity. Given a binary mask M(x, y) and an input image
I(x, y), the algorithm fills M = 1 by solving:

I(x, y) =

∑
(i,j)∈N (x,y) wi,j · I(i, j)∑

wi,j

where N (x, y) is the neighborhood of known pixels and
wi,j is a weighting function that incorporates distance and
image gradients.

This method is limited to local texture propagation and
lacks any global scene understanding of the image. As
shown in Figure 2, the inpainting result can appear smeared
or blocky, clearly revealing the outline of the human, espe-
cially when large human masks cover complex background
regions. Hence, more advanced models like LaMa must be
used for higher quality inpainting.

4.1.4 LaMa Inpainting

We use LaMa (Large Mask Inpainting) as our core back-
ground restoration model. Unlike traditional pixel-based
methods, LaMa is a learning-based approach that uses a
Fast Fourier Convolution network built on top of a ResNet
model to better capture global context. This enables the
model to inpaint large missing regions with more coherent
structure and texture.

LaMa encodes the masked image and learns to halluci-
nate realistic content in missing areas by leveraging both lo-
cal and global receptive fields. It is trained using a combina-



tion of perceptual and adversarial losses to generate natural-
looking results.

We experiment with three different LaMa variants to
evaluate how architectural changes affect inpainting quality.
First LaMa Dilated utilizes dilated convolutions which en-
ables for faster inference but not as accurate as other LaMa
models. LaMa Aggressive is more creative with its inpaint-
ing and more aggressively hallucinates the missing regions
with more bold textures. LaMa Multi-Pass performs the
inpainting model multiple times iteratively producing the
best results at the greatest computational cost

Among the variants, LaMa Multi-Pass consistently de-
livered the best qualitative performance across diverse video
scenes. However, even the lighter LaMa models outper-
formed the OpenCV Telea baseline by a wide margin. See
Figure 2 for Multi-Pass LaMa background inpainting.

4.2. Stylized Character Replacement

4.2.1 Pose Extraction

To extract human poses from each frame of the input video,
we use the OpenPose-based pose conditioning model from
this ControlNet implementation [19] which is built on top
of the original OpenPose framework. This model produces
rendered pose images with colored joints and limb connec-
tions, which serve as the control input for the stable diffu-
sion model.

This ControlNet-compatible version of OpenPose gen-
erates full-body skeleton visualizations directly as RGB
images. We extract these poses from the original video
frames before human removal and resize them to 512 by
512 (matching the diffusion model) to have a video of all the
correct poses. These pose images are then used as the input
for the ControlNet and Stable Diffusion pipeline for consis-
tent, pose-matched characters. The image below shows a
cropped version of the input/output of OpenPose.

4.2.2 Generative Model Pipeline

Our character generation module builds upon Stable Dif-
fusion, a latent diffusion model (LDM) that synthesizes
high-quality images from textual prompts. We use the
anime tuned weights stablediffusionapi/anything-v5 from
[1], where we input both a positive prompt containing infor-
mation like the character name, full-body, high quality and
a negative prompt to suppress undesired features such as
blurry, low-res, extra limbs, bad face (all aspects that stable
diffusion struggle with). The model operates in the latent
space Z , where a noisy latent zT ∼ N (0, I) is iteratively
denoised over T steps to yield z0, the final latent representa-
tion. This process is governed by a trained denoising model
ϵθ such that:

zt−1 =
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, t, c)

)
+ σtn,

where αt are predefined noise scheduling parameters, ᾱt

their cumulative product, n ∼ N (0, I), and c represents the
conditional embeddings from the text prompt.

To guide the generation toward the structure of the re-
moved human, we incorporate ControlNet conditioned on
OpenPose skeletons. ControlNet anchors the generation by
injecting structural guidance (like poses) directly into the
diffusion layers, aligning outputs with spatial constraints.

4.2.3 Configurations and Tuning

To enhance stylistic control and improve temporal con-
sistency in our generative pipeline, we incorporate three
key components: Low-Rank Adaptation (LoRA), the
strength parameter, and classifier-free guidance (CFG)
scale. These allow us to fine-tune the balance between
prompt adherence, pose conditioning, and creative flexibil-
ity.

LoRA: Low-Rank Adaptation. LoRA enables us to in-
ject new concepts such as better performance on specific
anime characters into a pretrained diffusion model by learn-
ing small, task-specific weight updates. Rather than retrain-
ing the entire model, LoRA freezes the original weights
W0 ∈ Rd×k and learns two smaller matrices A ∈ Rd×r

and B ∈ Rr×k such that:

W = W0 + α ·AB,

where r ≪ min(d, k) and α is a scaling factor. These up-
dates are applied to the attention layers of the U-Net back-
bone in Stable Diffusion, allowing for fast and memory-
efficient injection of style-specific features. We are taking
anime LoRA models sampled from here [16].



Strength. The strength parameter governs how
closely the generation follows the conditioning input (i.e.,
the pose from ControlNet). Conceptually, it determines the
blend between noise and the initial latent derived from the
input image or condition:

z0 = (1− strength) · zinput + strength · znoise.

Higher values push the model to conform more strictly to
the pose, while lower values allow for greater generative
freedom.

CFG Scale. Classifier-Free Guidance (CFG) controls
how strongly the model follows the text prompt. During
each denoising step, the noise prediction is modified using
both conditioned and unconditioned predictions:

ϵ = ϵuncond + s · (ϵcond − ϵuncond),

where s is the guidance scale. A higher CFG scale enforces
stronger alignment with the prompt, which in our case in-
cludes the anime character’s name and visual description.

These hyperparameters together provide flexible control
over the generative process, allowing us to balance temporal
stability with prompt fidelity and stylistic realism.

4.3. Evaluation Metrics

To evaluate the performance of our modular pipeline
across both the inpainting and character replacement tasks,
we adopt a combination of perceptual and structural met-
rics. These include Structural Similarity Index (SSIM),
Learned Perceptual Image Patch Similarity (LPIPS),
and a temporal consistency measure over adjacent frames.

Structural Similarity Index (SSIM). SSIM evaluates
structural and perceptual similarity by comparing lumi-
nance, contrast, and structure between images:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

where µx, µy are the mean intensities, σ2
x, σ

2
y the vari-

ances, and σxy the covariance of the reference and gener-
ated images. C1 and C2 are constants to stabilize the divi-
sion.

Learned Perceptual Image Patch Similarity (LPIPS).
LPIPS is a deep-learning-based metric that evaluates per-
ceptual similarity using feature maps from pretrained net-
works:

LPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (fx
l − fy

l )∥
2
2

where fx
l and fy

l are the features from layer l for images
x and y, and wl are learned weights. The final LPIPS score
is the average over all feature layers.

Temporal Consistency. For evaluating temporal smooth-
ness in videos, particularly across character replacement
frames, we compute frame-to-frame LPIPS:

LPIPStemporal =
1

T − 1

T−1∑
t=1

LPIPS(ft, ft+1)

where T is the number of frames and ft denotes frame
t. Lower LPIPS indicates more visually consistent outputs
over time.

5. Experiments/Results/Discussion

5.1. Quantitative Inpainting Results

To understand the impact of mask generation on basic in-
painting, we present two ablation tables for the tennis video:
Table 3 for OpenCV Telea each with SSIM, LPIPS, and
time per frame.

Mask Config + Telea SSIM ↑ LPIPS ↓ Time (ms/frame)

YOLOv8s + SAM-ViT-B 0.964 0.057 46.2
YOLOv8m + SAM-ViT-B 0.964 0.057 45.7
YOLOv8l + SAM-ViT-L 0.963 0.059 45.6
YOLOv8x + SAM-ViT-H 0.963 0.058 45.7

Table 3. OpenCV Telea inpainting ablation for the tennis video
with various mask configurations.

5.2. LaMa Technique Ablation

Table 4 presents SSIM, LPIPS, and per-frame inpaint-
ing time for the tennis video across different YOLO+SAM
mask configurations and LaMa variants.

Mask Config + Variant SSIM ↑ LPIPS ↓ Time (ms/frame)

YOLOv8s+SAM-ViT-B + Dilated 0.954 0.079 182
YOLOv8m+SAM-ViT-B + Dilated 0.954 0.079 183
YOLOv8l+SAM-ViT-L + Dilated 0.954 0.078 206
YOLOv8x+SAM-ViT-H + Dilated 0.954 0.078 216

YOLOv8s+SAM-ViT-B + Multi–Pass 0.950 0.080 550
YOLOv8m+SAM-ViT-B + Multi–Pass 0.950 0.080 522
YOLOv8l+SAM-ViT-L + Multi–Pass 0.950 0.080 520
YOLOv8x+SAM-ViT-H + Multi–Pass 0.950 0.080 537

YOLOv8s+SAM-ViT-B + Aggressive 0.943 0.084 886
YOLOv8m+SAM-ViT-B + Aggressive 0.943 0.084 922
YOLOv8l+SAM-ViT-L + Aggressive 0.943 0.084 859
YOLOv8x+SAM-ViT-H + Aggressive 0.943 0.083 999

Table 4. LaMa inpainting ablation for tennis: YOLO+SAM mask
configurations and model variants with SSIM/LPIPS and compute
time.



Figure 3. Original vs. OpenCV Telea vs. LaMa Multi–Pass for frame #0 of roller blading.

5.2.1 Average Across All Videos

Table 5 summarizes mean metrics over all sequences,
where we also observe that the small mask configuration
(YOLOv8s+SAM-ViT-B) consistently yields the best trade-
off across both OpenCV and LaMa variants.

Method SSIM ↑ LPIPS ↓ Time (ms/frame)

OpenCV Telea (YOLOv8s+SAM-ViT-B) 0.964 0.057 46.2
OpenCV NS (YOLOv8s+SAM-ViT-B) 0.965 0.052 54.4
LaMa Dilated (YOLOv8s+SAM-ViT-B) 0.954 0.079 182.1
LaMa Multi–Pass(YOLOv8s+SAM-ViT-B) 0.950 0.080 549.7
LaMa Aggressive (YOLOv8s+SAM-ViT-B) 0.943 0.084 886.5

Table 5. Average inpainting metrics and compute times across all
25 sequences.

5.3. Qualitative Comparison of a Representative
Frame

Figure 3 shows frame #0 of the roller blading video:
original, OpenCV Telea (YOLOv8s+SAM-ViT-B mask),
and LaMa Multi–Pass (best variant). Note the superior
preservation of the background building and graffiti by
LaMa.

5.4. Discussion

Our systematic ablations reveal clear trade-offs across
configurations. OpenCV Telea with YOLOv8s+SAM-ViT-
B masks consistently achieves higher SSIM and lower
LPIPS scores compared to LaMa Dilated, while also of-
fering faster performance (46 vs. 182 ms/frame). This is
because Telea’s diffusion-based algorithm focuses on local
pixel averaging, yielding smoother textures that quantita-
tive metrics tend to reward. In contrast, LaMa’s learning-
based inpainting produces semantically informed details
and structural coherence, which visual inspection shows are
more realistic but can introduce perceptual differences that
SSIM and LPIPS may penalize.

In LaMa experiments, Dilated produced the best LPIPS
(0.079) at 182 ms/frame, and Multi–Pass achieved com-
parable perceptual quality (LPIPS 0.080) at higher com-
putational cost. Aggressive was the least efficient, with a
slightly higher LPIPS (0.084) despite five times the runtime

of Dilated. Across all mask configurations, SSIM varia-
tions remained within 0.01, confirming the sufficiency of
the YOLOv8s+SAM-ViT-B mask.

Averaged across videos, OpenCV Telea delivers the best
quantitative scores and fastest runtimes, making it a strong
baseline when speed and metric performance are priorities.
However, qualitative comparisons demonstrate that LaMa
(especially Multi–Pass) offers superior texture and struc-
tural coherence in challenging background regions. This
highlights a discrepancy between traditional metrics and hu-
man perception: simpler interpolation methods can outper-
form learning-based models on SSIM and LPIPS, while still
lacking the globally coherent inpainting that visually stands
out in LaMa outputs. Future work should consider combin-
ing both approaches or developing perceptual metrics that
better align with human judgment.

5.5. Character Insertion Evaluation

Here, we perform the actual prompt-based character in-
sertion to replace the original human in the video. Since we
operate on a frame-by-frame basis using a Stable Diffusion
model, our primary objective is to minimize temporal in-
consistencies across consecutive frames. Figure 4 illustrates
an example output from our initial setup. While the gener-
ated character correctly mimics the human pose, the cloth-
ing and stylistic details fluctuate over time, indicating poor
temporal coherence. To address this, we systematically tune
the CFG guidance and strength values to reduce perceptual
drift and improve consistency. Additionally, we incorpo-
rate a character-specific LoRA model to reinforce stylistic
fidelity throughout the sequence. The generated character is
composited onto a high-quality inpainted background pro-
duced by the YOLOv8 + SAM-ViT + LaMa pipeline.

5.5.1 Hyperparameter tuning on CFG Guidance and
Strength

To determine the optimal configuration for maximizing
temporal consistency, we conducted a hyperparameter
search over the CFG guidance scale and the strength pa-
rameter. For each setting, we computed the LPIPS score
across all video frames and reported both the mean and



Figure 4. Here we are replacing the tennis player with the anime character Asuka Soryu Langley from the renowned anime Neon Genesis
Evangelion. The drawn character appears to have the correct pose however the clothing and facial expressions appear to slightly change.

variance in the tables below. Lower LPIPS scores indicate
higher perceptual similarity between adjacent frames, and
thus better temporal coherence. Additionally, we plotted
the LPIPS score across time for different CFG and strength
values. These frame-by-frame graphs visualize how tempo-
ral consistency evolves throughout the video. Larger spikes
correspond to greater perceptual drift between consecutive
frames.

CFG Guidance Scale Mean LPIPS ↓ Variance ↓

5 0.115566 0.000523
7 0.114034 0.000567
9 0.111701 0.000670
11 0.112750 0.000633
13 0.113883 0.000706
15 0.133575 0.000583

Table 6. LPIPS mean and variance for different CFG guidance val-
ues.

Here we can see the best CFG Guidance value which
gives the lowest LPIPS result is equal to 9.

Strength Mean LPIPS ↓ Variance ↓

0.3 0.114631 0.000551
0.5 0.115415 0.000545
0.7 0.113021 0.000639
0.9 0.113372 0.000616

Table 7. LPIPS mean and variance for different strength values.

Here we can see the best Strength value which gives the
lowest LPIPS result is equal to 0.7.

5.5.2 Addition of LoRA model

Qualitative Evaluation of LoRA: To further improve tem-
poral consistency, we integrate a fine-tuned LoRA model
into our pipeline and evaluate its effects both qualitatively
and quantitatively. As shown in Figure 5, although the
LoRA-generated characters exhibit increased visual noise
and some degradation in facial structure, they demonstrate
more stable clothing patterns and background consistency
across frames. Despite the marginal drop in per-frame vi-
sual fidelity, LoRA appears to generate outputs with en-
hanced temporal coherence. These artifacts could poten-



Figure 5. Here we see the character inpainted frames with and without the additon of the LoRA method.

tially be mitigated by using a higher-quality base Stable
Diffusion model or switching to a more robust LoRA check-
point.

Quantitative Evaluation of LoRA: To assess the effect
of LoRA on perceptual temporal similarity, we compute
LPIPS scores frame-by-frame for videos generated with and
without LoRA. As with our previous hyperparameter anal-
ysis, we report the mean and variance of the LPIPS scores
across the entire video sequence. The video generated with-
out LoRA yielded a higher mean LPIPS of 0.1237 and vari-
ance of 0.000633, while the video generated with LoRA
showed a lower mean LPIPS of 0.1158 and slightly lower
variance of 0.000661. These results suggest that LoRA con-
tributes to more perceptually consistent outputs over time.
As shown in the accompanying plot, the LPIPS curve for
the baseline (blue) exhibits greater variability compared to
the smoother profile of the LoRA-enhanced video (red).

6. Conclusion / Future Work

In this project, we demonstrate that a carefully orches-
trated zero-shot pipeline, composed entirely of off-the-shelf
models, can achieve high-quality human removal and styl-
ized character replacement in real-world videos. Our mod-
ular design enables rapid experimentation and swapping of

detection, segmentation, inpainting, and generative com-
ponents, allowing us to identify combinations that balance
computational efficiency with perceptual realism. Through
our ablation studies, we found that the combination of
YOLOv8s, SAM-ViT-B, and LaMa Multi-Pass inpainting
yielded the most visually consistent and efficient back-
ground restoration.

For the stylized character insertion task, we leveraged
pose-guided ControlNet generation and LoRA fine-tuning
to improve visual coherence. Our results show that careful
tuning of CFG guidance scale and strength can significantly
impact perceptual stability across frames. Incorporating a
character-specific LoRA model further enhanced temporal
consistency, even when overall frame quality slightly de-
creased.

Looking ahead, we aim to extend this work in several di-
rections. First, we plan to incorporate multi-person tracking
to support videos with multiple human subjects. Second,
we intend to explore video diffusion models that better cap-
ture temporal dynamics across frames. In conjunction with
this, we hope to integrate pose tracking over time as an ad-
ditional conditioning signal to preserve motion consistency
and character coherence. Finally, we envision building an
interactive tool that allows users to upload their own videos
and perform fully automated human removal and stylized
replacement with customizable characters.
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