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Abstract

We propose a vision-based deep learning framework to
automate stethoscope placement for cardiac auscultation.
Accurate positioning is essential for capturing clean heart
sounds, yet traditionally requires clinical expertise. Our ap-
proach leverages convolutional neural networks to localize
the optimal placement point directly from a 2D RGB image
of a person in a frontal pose.

We construct a custom dataset of annotated torso images
and formulate the task as a dense prediction problem using
a Gaussian affordance map centered on the ground truth
location. As a baseline, we implement a standard U-Net ar-
chitecture and compare it against several variants, includ-
ing MultiResUnet and our own modified U-Net with resid-
ual connections, group normalization, and reduced depth.

Our model achieves the lowest localization error of 9.22
pixels on a fixed test set, outperforming both the baseline U-
Net and MultiResUnet, while requiring fewer parameters.
We present both quantitative and qualitative results, as well
as training loss curves to support the model’s convergence
and generalization.

1. Introduction

In this project, we aim to use a convolutional neural net-
work (CNN) to determine the correct placement of a stetho-
scope on the human body for measuring heartbeats. Accu-
rate stethoscope positioning is critical for obtaining clean
heart sound signals (auscultation), yet remains a manual
and expertise-driven process. While prior work has ex-
plored stethoscope placement using rule-based models, 3D
sensing, or even acoustic feedback, our project focuses on
learning the optimal location directly from a 2D image us-
ing a CNN. This allows us to simplify the setup while aim-
ing for accurate, fully automated placement. Some systems
have used tele-operated robots to perform auscultation tasks
[LLL 9], but these still require a human operator to guide the
process remotely. In contrast, our fully automated approach
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aims to reduce interaction time and eliminate the need for
clinician supervision. We demonstrate that this lightweight,
vision-only setup can achieve accurate localization while
remaining efficient and easy to deploy in robotic systems.

As the use of robots in clinical settings continues to grow,
automating routine tasks, such as measuring vital signs, be-
comes increasingly valuable. This project explores a vision-
based deep learning approach to bridge the gap between
robotic perception and physical medical examination. To
achieve this, we use our own modified version of the widely
adopted U-Net architecture [6], which consists of a con-
tracting path that captures contextual features and a sym-
metric expanding path that enables precise localization. For
training, we constructed our own dataset by collecting im-
ages of a diverse set of people from online sources and man-
ually annotating the correct stethoscope placement, which
serves as ground truth during training.

The input to our model is a single RGB image of a person
facing the camera. The output is an affordance map, where
each pixel is assigned a probability indicating how appro-
priate that location is for stethoscope placement. The final
predicted location is chosen as the pixel with the highest
probability value. We use a CNN based on the U-Net archi-
tecture to learn this mapping. As a baseline, we implement
the original U-Net model described in [6] without modifi-
cations. Our proposed model includes several architectural
changes that considerably improves the performance for our
specific application.

In this work we show that the models we train on the
dataset we collected are able to obtain a reasonable pre-
dicted location for placing a stethoscope regardless of the
orientation of the image. Our architecture obtained the best
performance out of the five models we experimented with.

2. Related work

In addition to the U-Net paper, a relevant work in this
space is ARSteth [3]], which assists home users in placing
a stethoscope using augmented reality and acoustic feed-
back. Their system uses an analytical method to estimate



auscultation points by detecting shoulder landmarks and
computing placement based on anatomical ratios. While
their approach involves user interaction and multimodal
guidance, our method focuses on fully automated, vision-
based stethoscope placement, making it more suitable for
autonomous robotic applications in clinical settings.

Similarly, [[10] propose a system for autonomous robotic
auscultation of heart and lung sounds. Their method in-
volves capturing a 3D point cloud of the patient, register-
ing a human body model, and estimating anatomical land-
marks to guide stethoscope placement. While their system
also uses audio feedback and Bayesian optimization to re-
fine placement, our approach focuses on a simpler and more
lightweight setup by using a single 2D RGB image as input.
This makes our method more accessible and easier to inte-
grate into vision-based robotic systems without requiring
3D scanning infrastructure.

Another relevant extension of U-Net is MultiResUNet
[4]], which introduces multi-resolution convolutional blocks
and residual connections to improve feature extraction at
different scales. Their approach enhances segmentation per-
formance in complex biomedical images where fine local-
ization is critical. Inspired by this work, we experimented
with architectural modifications to better adapt U-Net for
predicting precise stethoscope placement in RGB images of
the human body. Together, these works highlight the grow-
ing use of deep learning for medical tasks and help motivate
our lightweight, image-only approach to automated stetho-
scope placement.

3. Dataset

Our dataset consists of cropped full-body and torso-only
images of individuals standing in an upright, frontal pose.
Most images were sourced from online clothing stores,
where models typically appear in consistent front-facing
positions, which is ideal for our application. All images
were resized to 128x128 pixels for consistency and to re-
duce computational cost. We manually annotated each im-
age by marking the correct stethoscope placement location
using OpenCYV, producing pixel-level ground truth labels
for training. Currently, the size of our dataset is 2450 im-
ages. We also included some negative samples where the
correct stethoscope placement location is not present within
the image. Figure [T]shows some examples of images in the
dataset.
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Figure 1. Examples of images from the collected dataset. (a)
Closeup image of a torso. (b) Image of entire person. (c) Im-
age of a negative example.

We split the dataset into 80% for training and 20% for
validation. To increase data diversity and quantity, each
training image is augmented five times using random ro-
tations, and each validation image is augmented twice. This
results in a total of 11760 images for training and 1470 im-
ages for validation after augmentation.

The test set that we use consists of 58 images. Some
were intentionally chosen to differ significantly from the
training data, with cluttered background, more complex
poses, or cropped and rotated views. A few test samples
are randomly rotated variants of images from the training
set. Figure[2 shows some examples of these images.
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Figure 2. Examples from the test dataset. (a) Original image. (b)
Rotated variant of image (a). (c) Another example.

4. Methods

Directly training a model to predict the correct pixel
location can be challenging due to the sparsity of the re-
ward signal. To address this, we formulated the task as a
pseudo segmentation problem by generating an affordance
map. Specifically, we overlay a 2D Gaussian centered on
the labeled ground-truth location, where each pixel’s value
represents the probability of it being the correct stethoscope
placement. This transforms the task into a dense predic-
tion problem, enabling smoother learning through pixel-
wise loss.

We have currently trained 5 different models on the
dataset that we have accumulated. The details for the mod-
els will be mentioned in the following subsections.

4.1. Baseline U-net model

As a baseline, we implemented the original U-Net ar-
chitecture [6], which is widely used in biomedical image



segmentation due to its strong performance on localiza-
tion tasks. Our implementation keeps the core components
of the original design, including the symmetric encoder-
decoder structure with skip connections, 3x3 convolutions,
and ReLU activations. The only architectural change we
made was to add padding to the convolutions in both the
encoder and decoder paths to preserve spatial dimensions.
This change was necessary otherwise the dimensions of the
image would not fit the convolutions for the final encoder.

We did not include any normalization layers, residual
connections or other enhancements in this baseline model.
The output of the network is a 2D affordance map, and we
used a binary cross-entropy (BCE) loss to compare the pre-
diction with the ground truth. For training, we used the
SGD optimizer with a momentum of 0.99, a learning rate
of 0.1 and a batch size of 32. The model was trained over
101 epochs. This baseline provided a clear point of com-
parison for evaluating the benefits of our architectural mod-
ifications.

4.2. MultiResUnet

One type of model that we took ideas for this task was
the MultiResUnet [4]]. While the architecture has the same
overall structure as the U-net architecture, its main differ-
ence lies in how it replaces the convolutions in the decoder
and encoder paths of the U-net with MultiRes blocks, and
uses residual paths for the shortcut paths between the en-
coder and the decoder. The MultiRes block takes inspiration
from Inception blocks that used convolutions of different
sizes in parallel to emphasize different scales of detail in the
image [8]. The MultiResUnet model that we tested had 5
encoder and decoder paths. One modification that we made
was to use Leaky Rectified Linear Unit (LeakyReLU) acti-
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vation layers instead of ReLLU activation layers between the
convolution and upconvolution layers since that seemed to
give us slightly better validation losses. We found that set-
ting the gradient of the negative portion of the LeakyReLLU
to 0.1 yielded the best results. We used a composite loss
function for this model which is as detailed:

1. Binary Cross-Entropy Loss: Applied to all samples
for pixel wise affordance prediction.

2. Conditional Coordinate Regression Loss: This loss
term is only activated for positive samples (samples
with a ground truth pixel target). The predicted co-
ordinates are computed via soft-argmax on the output
of the model as shown in the equation below:

(w,y) = | D_o(B-8)ij- iy, Y 0(B-S)is- vy
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Where S is the output of the model, ( is a temperature
term used to control the peak sharpness and o denoting
the softmax function. Both the predicted and ground
truth coordinates are normalized by the image height
and width. The regression loss is then computed using
mean square error (MSE) loss and scaled by a factor of
0.2. A low weighting factor was chosen since higher
values were observed to slow down training or cause it
to be unstable.

The purpose of the additional term in this loss function is
to further refine the positional accuracy of the predicted lo-
cations from the model. Note that the subsequent versions
of the MultiResUnet models were trained using the same
composite loss function.
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Figure 3. Architecture diagram for our modified U-net



To train this model we used a one cycle learning rate [7]
with cosine annealing with a warm up of 30 percent and a
max learning rate of 0.001. The model was trained over 101
epochs with a batch size of 32 with the AdamW optimizer
[5] set with a weight decay of 0.01.

4.3. MultiResUnet - no ResPaths

This version of the model is very similar to the MultiRe-
sUnet model in the previous section. The main difference
with this model is that we removed the Res paths in the
shortcut. We wanted to test if removing that component of
the model would impact its performance. To keep the com-
parison fair we also used the same learning rate and training
parameters as those in section[4.2]

4.4. Small MultiResUnet

This version of the MultiResUnet model is a smaller
with 4 encoder and decoder paths instead of 5 and with-
out the Res path shortcuts. We decided to omit the Res path
since this results in a smaller model and our initial tests only
showed a minimal drop in performance. We wanted to test
out a smaller model in order to have a better idea as to how
complex the model would have to be for our specific task.
Using a smaller model would also mean that the inference
time of our model would be much faster, and that would
be useful for real time applications especially like those in
robotics. As usual, the learning rate and training parameters
used were the same as those detailed in section[4.2]

4.5. Our model

Our modified model is a smaller version of the origi-
nal U-Net model. The overall architecture for this model
is shown in Figure [3] We reduced the depth of the U-Net
by using three contracting and expanding stages instead of
four, as we found that removing the fourth contracting path
had no effect on the model’s performance. We further mod-
ified this model by adding residual paths within the encoder
and decoder layers, since they have been shown to help with
gradient flow for neural networks [2]. From our initial tests,
we observed minor improvements in having the Res paths
when testing different versions of the MultiResUnet mod-
els, therefore we decided to include those Res paths into
the shortcut connections between the encoder and decoder
layers for this model as well. LeakyReLU activation lay-
ers with a negative gradient of 0.1 were also used for this
model. In terms of normalization we found that using group
norm gave us the best results. We increased the number of
groups in GroupNorm layers in deeper decoder blocks (8,
16, and 32) to normalize finer-grained features more effec-
tively.

For training the model, we used the same learning rate
scheduler, optimizer, and parameters mentioned in section

[.2] The composite loss function that was detailed in Sec-
tion[d.2] was also utilized for this model.

5. Results

We evaluate the models using the mean Euclidean dis-
tance between the predicted pixel and the ground truth an-
notation. This distance is computed in image pixel space
and averaged across the test set. A lower mean pixel dis-
tance indicates more accurate localization of the stetho-
scope point. That is, given ground truth pixel coordinates
(z4,y;) and predicted coordinates (Z;,¢;) for image i, we
define the evaluation metric as:

N
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where [V is the number of test images.

5.1. Loss Curves

Figures [4] and [5] show the training and validation loss
for the baseline U-net and our modified model, respec-
tively. Both models exhibit stable convergence, with vali-
dation loss closely following the training loss, which sug-
gests that neither model is overfitting. However, it is diffi-
cult to directly compare the performance of the two models
by only looking at their validation losses, considering that
they are trained using different loss functions as mentioned
in section[4.J]and 4.3l Even if both models used the same
loss function, we would need a significant gap in validation
losses to draw meaningful conclusions. In this case, the loss
curves primarily serve to verify that training is proceeding
smoothly and that the models are not diverging. See ap-
pendix Figure 8] O] and[I0|for the remaining loss curves.
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Figure 4. Training and Validation Loss Curves for Baseline model



Training and Validation Loss for Modified Model
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Figure 5. Training and Validation Loss Curves for our modified
U-net model

5.2. Qualitative Results

Figures [6] and [7] show qualitative predictions on sample
test images. The modified model’s predictions are visibly
closer to the ground truth location (red dot) compared to
those of the baseline model. Some prediction errors occur
in cases where the background color or texture is visually
similar to the subject’s torso, introducing ambiguity. Errors
also appear in a few images with partial occlusion of the
torso, such as an arm crossing in front, which are not as
common in the training data.

Figure 6. Sample baseline model predictions on test data. Ground
truth location is labeled as a red dot and predicted location as a
blue dot.

5.3. Quantitative Comparison

We evaluated all models on a fixed test set of 58 images.
Table [T]reports the mean pixel distance for each model. We
can see that our modified model achieves the lowest er-
ror of 9.22 pixels, outperforming both the baseline U-net
and the original MultiResUnet models. Interestingly, the

Figure 7. Sample predictions from our model on the test dataset.
Ground truth location is labeled as a red dot and predicted location
as a blue dot

smaller version of the MultiResUnet also performs well de-
spite having fewer parameters. This may suggest that archi-
tectural efficiency and properly tuned normalization layers
could outweigh the importance of model size in this partic-
ular task.

Model Mean Pixel Distance
Baseline U-Net 15.50

Our model 9.22
MultiResUnet 9.73
MultiResUnet - no Res paths 10.80
MultiResUnet smaller 10.03

Table 1. Comparison of model performance based on mean pixel
distance between predicted and ground truth stethoscope place-
ment. Lower values indicate better localization accuracy.

5.4. Parameter Efficiency

Table [2] shows the number of parameters in each model.
Our model balances performance and parameter count, ob-
taining superior accuracy with only 9.0 M parameters,
which is less than a third of the baseline U-net. It is worth
mentioning that the smaller MultiResNet also achieves
comparable performance, despite having far fewer param-
eters than the other models.

Model Param Count
Baseline U-Net 31.0M
Our model 9.0M
MultiResUnet 139M
MultiResUnet - no Res paths 9.8 M
MultiResUnet smaller 24 M

Table 2. Model parameter count



6. Conclusion

In this project, we propose a fully automated ap-
proach for predicting optimal stethoscope placement using
a vision-based deep learning model. By training on RGB
images of human torso, we demonstrated that our version
of the U-net architecture can outperform both a baseline U-
net and a MultiResUnet model in terms of localization ac-
curacy, while using fewer parameters. Our results show that
targeted architectural modifications and proper normaliza-
tion choices can significantly improve performance in this
task.

There are several directions for future work. First, ex-
panding the training dataset to include more diverse body
types, age groups, and images sources could improve model
generalization. Incorporating segmentation of the torso re-
gion might also help focus the model’s attention on relevant
features and reduce potential distraction from background
clutter. Additionally, given the promising results from the
smaller network, further exploration of lightweight archi-
tecture could help optimize the model for real time deploy-
ment. Finally, the framework could be extended to predict
multiple standard heart auscultation points rather than a sin-
gle location, aligning more closely with real clinical prac-
tice. This could be achieved by modifying the output layer
to predict multiple heatmaps, one for each anatomical point,
with each point treated as a separate class. Additionally,
incorporating lung auscultation points would broaden the
system’s applicability to respiratory assessments and further
increase its clinical utility.

7. Appendix

Training and Validation Loss for MultiResUnet Model
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Figure 8. Loss curve for MultiResUnet
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Figure 9. Loss curve for MultiResUnet with no Res paths
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Figure 10. Loss curve for small MultiResUnet
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