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Abstract

The building sector accounts for nearly 40% of global
carbon emissions, highlighting the urgent need for decar-
bonization and the importance of urban building energy
modeling (UBEM). However, conventional UBEM frame-
works often neglect surrounding urban systems, lacking
scalable methods to quantify and integrate them. To
address this, CLIP-based (Contrastive Language–Image
Pretraining) segmentation is evaluated for extracting ur-
ban features (green spaces, roads, built areas, build-
ings) from high-resolution imagery with sparse annotations.
Zero-shot CLIPSeg is compared to few-shot fine-tuning,
which—with augmentation and optimized loss—improves
mean Intersection-over-Union (mIoU) from 0.236 (zero-
shot) to 0.443 (few-shot), an increase of 87.7%. Notably, the
building class mIoU rises from 0.248 to 0.694 (179.8% in-
crease). Qualitative results show sharper representation of
urban structures after fine-tuning, though some classes (e.g,
road and built area) remain difficult. These results suggest
that prompt-driven CLIPSeg provides a viable baseline for
urban feature extraction, and that minimal fine-tuning can
substantially improve performance in limited-label scenar-
ios relevant to urban features relevant to building energy.

1. Introduction
The building sector is a significant contributor to global

carbon emissions, accounting for nearly 40% of the total
[13]. In response to this urgent need for decarbonization,
urban building energy modeling (UBEM) has emerged as a
pivotal methodology for evaluating and enhancing the en-
ergy performance of existing building stocks at the urban
scale [12]. However, traditional UBEM frameworks of-
ten exhibit limitations by neglecting the crucial influence
of surrounding urban systems on building energy dynam-
ics. These systems, encompassing diverse elements such as
green spaces, asphalt roads, and varying land cover types,
exert a substantial impact on local microclimates, thereby
influencing heating and cooling demands within buildings.

Consequently, the accurate quantification of these urban
systems and their subsequent integration as variables within
building energy models represent a significant challenge. A
key obstacle hindering this integration lies in the scarcity of
scalable measurement methods capable of comprehensively
characterizing the urban context.

Recent advancements in computer vision technologies
offer promising avenues for addressing this methodological
gap. Specifically, the capacity of computer vision to auto-
mate the extraction of urban features from remotely sensed
imagery presents a compelling solution. However, the ef-
fective deployment of these technologies is contingent upon
the availability of robust machine learning models capable
of accurate feature identification. A persistent challenge in
this domain is the substantial data requirement for train-
ing such models; labeled data, particularly at the scale re-
quired for urban analysis, are often scarce or entirely absent
in many urban environments. This limited availability of
labeled data severely restricts the applicability of conven-
tional supervised learning approaches.

This study aims to address this challenge by investigat-
ing the performance of vision models under limited-label
scenarios, specifically comparing zero-shot and few-shot
segmentation strategies employing Contrastive Language-
Image Pre-Training (CLIP)-based models, exemplified by
CLIPSeg. As visually represented in Figure1, zero-shot
segmentation, leveraging the pre-trained model’s inherent
knowledge, serves as a readily deployable baseline. Fur-
thermore, this study explores the potential for substan-
tial performance gains through fine-tuning this pre-trained
model on a carefully curated, yet limited, dataset of fewer
than 20 images. The efficacy of the proposed methodolo-
gies is evaluated based on their ability to accurately iden-
tify key urban features – including green spaces, roads and
buildings – from high-resolution satellite imagery. The
study focuses specifically on the applicability of these tech-
niques to enable scalable and accurate urban context extrac-
tion for integration within UBEM applications, ultimately
contributing to a more comprehensive and realistic under-
standing of building energy performance at the urban scale.
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Figure 1. Architecture and Training Pipeline of the CLIPSeg-based Segmentation Model

2. Related Work

Recent advances in computer vision have been instru-
mental in extracting energy-relevant features from urban
imagery. Early approaches heavily relied on convolutional
neural networks (CNNs), which, while strong in classifica-
tion and segmentation, often require extensive manual an-
notation and struggle to capture long-range contextual rela-
tionships in complex urban scenes.

Several CNN-based approaches have been proposed to
capture energy-relevant urban features. For example, Mayer
et al. [10] predicted building energy efficiency by extract-
ing visual cues from street-view and aerial imagery, us-
ing a pretrained Inception-v3 encoder to focus on façades
and rooftops and integrating auxiliary data via a multilayer
perceptron. While their method achieved high classifica-
tion accuracy, it also exposed challenges related to limited-
label learning and cross-regional generalization. In a simi-
lar vein, Boccalatte and Chanussot [3] performed semantic
segmentation of rooftop obstructions to enhance solar po-
tential estimates; they trained a U-Net with a ResNet-152
backbone on weakly supervised vector labels and attained
moderate IoU scores despite annotation scarcity. The 3D-
PV Locator project [11] further demonstrated the scalability
of CNN classifiers under sparse labeling by projecting roof
surfaces into multiple views and classifying rooftop solar
panels using a ResNet-based network. Collectively, these
studies illustrate that fine-tuning pre-trained CNNs can suc-

cessfully identify objects of interest; however, they tend
to concentrate on specific targets (e.g., solar panels) and
require relatively large datasets (on the order of approx-
imately 30,000 to 100,000 samples), which, while neces-
sary for achieving robust performance, may nonetheless be
appropriate for scalable measurement of various urban fea-
tures.

CNNs have also been employed for building segmenta-
tion and detection in urban environments. Zhang et al. [18]
proposed a hybrid CNN-transformer framework for extract-
ing building footprints from remote sensing imagery. Their
method filters irrelevant tiles, enhances image resolution,
and applies instance segmentation to improve boundary pre-
cision and detection accuracy. Behera et al. [2] proposed
a two-stage CNN framework that incorporates superpixel-
based preprocessing for segmenting urban features such
as roads, vegetation, and buildings from UAV (Unmanned
Aerial Vehicle) imagery, achieving high segmentation ac-
curacy. Huang et al. [5] evaluated instance segmentation
of individual building rooftops with fine-grained roof-type
labels using Mask R-CNN, Cascade Mask R-CNN, and
SOLOv2. Their analysis revealed that cascade architectures
performed best for distinguishing roof types but struggled
with small or densely clustered structures. While these stud-
ies propose methodologies that effectively identify build-
ings, they often suffer from limitations in scalability, such
as reliance on aerial imagery or the utilization of large-scale
datasets for training. Furthermore, some are limited by fo-
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cusing solely on a single building class, thereby restricting
their applicability.

Although CNN-based techniques perform well on spe-
cific tasks, they often struggle to capture the complex in-
teractions among urban components—such as trees, roads,
built-up areas, and buildings—that influence building en-
ergy performance, particularly in regions where annotated
imagery is scarce. Material variations and spatial context
necessitate models that recognize both local appearance
and long-range dependencies, limitations that fixed-kernel
CNNs cannot fully address.

The transition to Transformer-based models addresses
the critical need for capturing long-range dependencies and
contextual relationships prevalent in urban scenes and be-
yond. CNNs, while efficient at extracting local features, are
constrained by limited receptive fields, hindering the mod-
eling of complex spatial arrangements and interdependen-
cies. In contrast, Transformer architectures leverage self-
attention mechanisms, enabling each element to attend to all
others regardless of distance, thereby facilitating the learn-
ing of global contextual information. Key advantages over
CNNs include superior modeling of long-range dependen-
cies, enhanced flexibility with variable-length inputs, and
the capacity to learn intricate feature representations with-
out explicit feature engineering, making them particularly
apt for semantic segmentation and object detection in com-
plex urban environments.

Transformer-based architectures offer distinct advan-
tages in modeling complex spatial dependencies. Liu and
Abbasabadi [7] classified façade materials from street-view
images using a Vision Transformer, achieving high accu-
racy and contributing to improved UBEM simulations. Li
et al. [6] proposed a hybrid few-shot segmentation frame-
work for high-resolution land-cover mapping, combining
multiple base learners with a Projection onto Orthogonal
Prototypes (POP) network in a two-stage process. Their
model effectively recognizes both base classes (e.g., tree,
building) and novel classes (e.g., bridge, river, vehicle) us-
ing only a few labeled examples, with a final fusion step
to enhance prediction accuracy. Yi et al. [17] introduced
UAVFormer, a composite transformer network tailored for
urban scene segmentation in UAV imagery. It incorpo-
rates adaptive feature fusion, aggregation window multi-
head self-attention, and a position attention module, and
was evaluated on eight urban classes, including building,
road, tree, static car, and clutter. Wang et al. [15] presented
UNetFormer, a lightweight architecture for segmenting ur-
ban scenes in remote sensing images. The model combines
a CNN encoder with a transformer-based decoder, achiev-
ing high performance on classes such as buildings, roads,
trees, vegetation, and cars, while maintaining real-time effi-
ciency.

While transformer-based methods have shown strong

performance in urban feature segmentation, they largely fall
outside the few-shot learning paradigm, typically relying
on large datasets and full supervision. Despite their effec-
tiveness, many still require substantial manual annotation
or complex architectural tuning, limiting their scalability in
data-scarce urban settings.

Building on these developments, recent studies illustrate
a clear trajectory from conventional CNN-centric models
toward hybrid and transformer-based frameworks capable
of modeling complex interdependencies across urban sur-
faces. This evolution underscores the growing demand for
scalable, low-label methods that can jointly segment mul-
tiple feature types critical to urban energy modeling and
climate-responsive planning.

3. Dataset
A satellite image dataset focusing on the central area of

Manhattan, New York City, was constructed for this study.
The imagery was obtained using the Esri (Environmental
Systems Research Institute) World Imagery basemap [4].
Esri provides a widely used collection of global satellite im-
agery frequently utilized in geographic information systems
(GIS). The satellite tiles are served in the Web Mercator
projection.

To encompass the urban core of Manhattan Island, char-
acterized by its dense mixture of buildings, roads, parks,
and waterfront areas, the study utilized three 7168 × 7168
pixel satellite images. This image dataset corresponds to an
approximate ground area of 25.5km×8.5km at zoom level
18, with a resolution of approximately 0.6 meters per pixel.
For subsequent segmentation and analysis, the images were
tiled into 600 individual patches of 512× 512 pixels.

For the development of fine-tuning and test datasets, 23
images were manually annotated using Labelme [14]. Of
these, 18 images were designated for fine-tuning and 5 for
testing. The annotation included pixel-level masks for the
following classes: green space, road, built area, and build-
ing. The ground truth masks are binary, indicating the pres-
ence (1) or absence (0) of each class at each pixel.

To enhance model robustness under limited data, each of
the 18 original training images was augmented into 10 vari-
ants, resulting in a total of 180 training samples. The aug-
mentation pipeline applied a mix of geometric and photo-
metric transformations. Geometric augmentations included
horizontal and vertical flips (each with a 50% probability),
random cropping to 448 × 448 pixels, and moderate shift,
scale, and rotation adjustments. Photometric augmentations
involved random changes in brightness and contrast, hue-
saturation-value shifts, RGB channel perturbations, as well
as the addition of Gaussian noise and blur. All transfor-
mations were applied with moderate intensity and proba-
bility, and the same operations were consistently applied to
the corresponding binary masks to preserve label accuracy.
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The augmented dataset was used to fine-tune the CLIPSeg
model, while the original 5 manually labeled images were
reserved for testing.

4. Methodology
4.1. CLIPSeg Model

CLIPSeg [9] is a transformer-based vision–language
model built on CLIP’s pretrained image and text encoders.
CLIP itself is trained on large-scale image–text pairs to
learn joint embeddings, and CLIPSeg extends this by
adding a lightweight segmentation head for dense, pixel-
wise mask prediction. Given a natural language prompt
and an input image, CLIPSeg encodes both using CLIP’s
ViT-based image encoder and its text encoder, computes a
similarity map between visual tokens and the prompt em-
bedding, and upsamples the resulting map to produce a seg-
mentation score for each pixel. This enables zero-shot seg-
mentation—i.e., mask generation without additional task-
specific training. In this project, each 512 × 512 aerial tile
Iorig ∈ R3×512×512 is first resized to

I = Resize(Iorig), I ∈ R3×352×352,

to match the pretrained model’s expected resolution. A tex-
tual prompt

c ∈ {“green space”, “road”, “built area”, “building”}

is tokenized by the text encoder to produce

τ(c) = TextEncoder(c), τ(c) ∈ RD,

where D is the embedding dimension (512 in our case),
while the visual encoder extracts feature maps

ϕ(I) = VisualEncoder(I), ϕ(I) ∈ RD×H×W ,

where H and W are the height and width of the visual fea-
ture map. A small multi-layer perceptron (MLP) head f
then fuses ϕ(I)i,j and τ(c) at each spatial location (i, j) to
compute logits:

zi,j = f
(
ϕ(I)i,j , τ(c)

)
,

(i, j) ∈ {1, . . . ,H} × {1, . . . ,W}.

Applying a sigmoid activation σ yields pixel probabili-
ties:

pi,j = σ
(
zi,j

)
,

and the binary prediction mask M̂ c ∈ {0, 1}352×352 is ob-
tained by thresholding:

M̂ c(i, j) =
[
pi,j > 0.5

]
.

Finally, M̂ c may be upsampled as needed to match down-
stream resolutions.

Implementation is performed with Hugging Face
Transformers[16] and the output is a logit map {zi,j}. Dur-
ing inference, each resized 352× 352 tile is processed with
a given prompt to produce M̂ c, which is then compared
against ground-truth annotations (e.g., via IoU and accu-
racy).

4.2. Fine-tuning CLIPSeg

To tailor the pre-trained CLIPSeg model to the task of
segmenting key urban elements in Manhattan satellite im-
agery, a fine-tuning process was implemented. A critical
component of this process was optimizing the fine-tuning
procedure itself via a hyperparameter search, conducted us-
ing Optuna [1] and its Tree-structured Parzen Estimator
(TPE). The hyperparameters explored were:

• Learning rate (lr): sampled from a log-uniform distri-
bution between 10−6 and 10−4.

• Weight decay (weight decay): sampled from a log-
uniform distribution between 10−3 and 10−1.

• Dice loss weight (dice weight): sampled from a uni-
form distribution between 0.1 and 1.0. This parameter
controls the contribution of the Dice loss to the overall
loss function, in addition to the binary cross-entropy
(BCE) loss.

The objective function was defined as the average vali-
dation loss over a fixed number of epochs (10 in this case).
The validation loss was computed as a weighted sum of
the BCE loss and the Dice loss, according to the following
equation:

Loss = BCE + dice weight · DiceLoss (1)

The dataset was split into training and validation sets,
with 20% of the images reserved for validation. All im-
ages were resized to 352×352 pixels, and text prompts cor-
responding to each semantic class (green space, road, built
area, building) were used as input to the CLIPSeg model. To
mitigate overfitting, several regularization strategies were
employed. The AdamW optimizer [8] was used, incor-
porating the sampled learning rate and weight decay. A
learning-rate scheduler reduced the learning rate by a factor
of 0.5 when the validation loss plateaued for two consecu-
tive epochs. Early stopping was also applied with a patience
of three epochs: if the validation loss did not improve for
three consecutive epochs, training was terminated.

The objective function was defined as the mean valida-
tion loss over 10 epochs, where each trial was trained for a
maximum of 10 epochs. The validation loss was computed

4



Figure 2. Learning Curve for CLIPSeg Fine-tuning

as a weighted sum of the binary cross-entropy (BCE) loss
and the Dice loss, according to the following equation:

Loss = BCE + dice weight · DiceLoss (2)

The hyperparameter search was conducted over 30 trials
with a total timeout of 3 hours. To conserve computational
resources, pruning was enabled to terminate unpromising
trials early. The optimal hyperparameters—a learning rate
of 1.575e-05, weight decay of 0.002, and Dice loss weight
of 0.240—were selected based on the lowest average val-
idation loss of 0.451, computed across 10 epochs during
the tuning process. These best-performing hyperparame-
ters were then used to fine-tune the CLIPSeg model on the
augmented training dataset, aiming to improve segmenta-
tion performance. Fine-tuning yielded a best validation loss
of 0.403, and early stopping was triggered at epoch 52. The
learning curve for this fine-tuning process is shown in Fig-
ure 2.

5. Results

5.1. Quantitative Results

Table 1 presents a detailed comparison of the Inter-
section over Union (IoU) scores between the pre-trained
CLIPSeg model and our fine-tuned CLIPSeg model. The
IoU metric, defined as the ratio of the area of overlap be-
tween the predicted segmentation and the ground truth to
the area of their union, was used to quantitatively evaluate
the segmentation performance of both models across vari-
ous classes and test images. The IoU is calculated as fol-
lows:

IoU =
Area of Overlap
Area of Union

=
|A ∩B|
|A ∪B|

(3)

where A represents the predicted segmentation mask and
B represents the ground truth mask.

Table 1. Per-image and overall IoU (%) comparison between the
pre-trained and fine-tuned CLIPSeg models. The higher value in
each row is bolded.

Image Class Pre-trained Fine-tuned
Test Image 01 green space 0.453 0.714

road 0.401 0.491
built area 0.000 0.012
building 0.118 0.828
Mean 0.243 0.511

Test Image 02 green space 0.672 0.692
road 0.100 0.272
built area 0.000 0.306
building 0.660 0.794
Mean 0.358 0.516

Test Image 03 green space 0.405 0.548
road 0.022 0.099
built area 0.000 0.127
building 0.065 0.652
Mean 0.122 0.356

Test Image 04 green space 0.568 0.746
road 0.000 0.179
built area 0.000 0.029
building 0.050 0.692
Mean 0.154 0.412

Test Image 05 green space 0.612 0.557
road 0.251 0.564
built area 0.000 0.055
building 0.347 0.504
Mean 0.309 0.420

Overall Mean green space 0.542 0.651
road 0.155 0.321
built area 0.000 0.106
building 0.248 0.694
Mean 0.236 0.443

As shown in Table 1, the fine-tuned CLIPSeg model
demonstrates a significant improvement in segmentation ac-
curacy compared to the pre-trained model. Specifically, the
overall mean IoU across all classes increased from 0.236
to 0.443, representing an 87.7% improvement after fine-
tuning. This indicates a substantial enhancement in the
model’s ability to accurately segment different objects in
the images.

The fine-tuned model shows particularly notable im-
provements in the segmentation performance of the building
and road classes. This is especially significant, as accurate
building segmentation is essential for the downstream ap-
plication of this study—Urban Building Energy Modeling
(UBEM)—and asphalt roads are known to be major con-
tributors to the urban heat island effect. For instance, the
mean IoU for the building class increased markedly from
0.248 to 0.694 after fine-tuning, representing a 179.8% im-
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provement. These results demonstrate that effective few-
shot learning, even on a relatively small dataset, can sub-
stantially enhance performance for critical urban applica-
tions.

Similarly, the ’road’ class saw an improvement from
0.155 to 0.321 (a 107.1% increase). The ’built area’ class
also improved, though from 0.000 to 0.106, suggesting that
the pre-trained model struggled with this more ambiguous
category and, despite fine-tuning, performance remained
limited. These results indicate that the fine-tuning process
effectively adapted the model to better recognize and delin-
eate the ’building’ and ’road’ categories, while highlighting
the continued challenges in accurately segmenting the more
ambiguous ’built area’ class.

While the fine-tuned model generally surpasses the
pre-trained model’s performance, the pre-trained model
achieves a marginally higher IoU for the ’green space’ class
in Test Image 05 (0.616 vs. 0.561). This may be attributed
to ’green space’ being the most readily identifiable class
among the four, as evidenced by its highest mean IoU in
the pre-trained model. This suggests that, in specific in-
stances, the pre-trained model retains some advantages, and
that few-shot fine-tuning is most effective for classes or
prompts that pre-trained models struggle to accurately cap-
ture.

In summary, the quantitative results presented in Table 1
demonstrate the effectiveness of few-shot fine-tuning of the
CLIPSeg model in improving image segmentation accuracy.
The substantial increase in the overall mean IoU, along
with significant improvements in key urban features such as
buildings and roads, underscores the advantages of adapting
a pre-trained model to a domain-specific, few-shot dataset.

5.2. Qualitative Results

Figure 3 presents CLIPSeg overlay visualizations for the
five test images alongside their corresponding annotated
ground truth, providing a qualitative assessment of segmen-
tation performance.

The segmentation results for the building class vary con-
siderably across test images. In particular, Test Images 01,
03, and 04 show clear failures in building detection by the
pre-trained model, whereas Test Images 02 and 05 exhibit
relatively accurate segmentation. This inconsistency is a
key factor contributing to the performance gap between the
pre-trained and fine-tuned models, indicating that few-shot
fine-tuning improves robustness and consistency in urban
feature segmentation.

While the quantitative results indicate improved perfor-
mance in road segmentation with the fine-tuned model,
qualitative analysis reveals more nuanced challenges. For
example, in Test Image 01 (Figure 3), the fine-tuned model
fails to segment a clearly visible road (upper left side, lined
with trees) that the pre-trained model correctly identified.

However, the pre-trained model struggled with accurately
segmenting adjacent tree regions. This trade-off illustrates
the ongoing difficulty in balancing the segmentation of vi-
sually similar or adjacent classes.

The pre-trained model also exhibits coarse and imprecise
boundaries, particularly in distinguishing built area (e.g.,
park paths) from green space (e.g., parks), and in misclassi-
fying regions between buildings as either road or built area.
As seen in Test Images 01, 03, and 04, the model struggles
to extract buildings from complex 2D imagery. In Test Im-
age 03, for instance, buildings partially occluded by trees
are missed, and a prominent structure with a dark gray roof
is misclassified as road. This misclassification may be due
to roof-mounted white structures that visually resemble cars
on asphalt, highlighting a fundamental limitation of the pre-
trained model in cluttered urban contexts. These findings
underscore the importance of few-shot adaptation for urban
scene segmentation.

Shadows cast by buildings frequently pose classification
challenges, particularly near object boundaries. These shad-
owed regions are often misclassified as built area, which
typically includes sidewalks. Additionally, in Test Im-
age 03, an urban stream running diagonally from the cen-
ter toward the lower-left corner is missegmented as road,
likely due to its long and narrow shape and its location be-
tween building blocks. This highlights the importance of
incorporating a broader set of semantic classes to enhance
segmentation fidelity, as features such as streams and roads
have distinct visual characteristics and differing impacts on
the urban microclimate.

In summary, the qualitative evaluation highlights the
limitations of the pre-trained CLIPSeg model in handling
complex urban imagery, including challenges with occlu-
sions, shadows, and semantically ambiguous regions. Few-
shot fine-tuning substantially improves segmentation con-
sistency and accuracy across key classes such as buildings
and roads. While the results demonstrate clear gains, some
challenging cases remain, suggesting that there is still room
for refinement. These findings underscore both the value
and the ongoing need for domain adaptation in urban scene
understanding, particularly under limited supervision and
diverse visual conditions.

6. Conclusion
This study investigated the potential of applying few-

shot learning to urban systems segmentation using the
CLIPSeg model, by comparing its performance to that of
zero-shot inference using the pretrained model. The experi-
mental results demonstrated a substantial performance gain
through fine-tuning. Specifically, few-shot fine-tuning led
to an increase in overall mean IoU from 0.236 to 0.443,
representing an 87.7% improvement.
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Figure 3. CLIPSeg overlay visualization: Pre-trained and fine-tuned segmentation compared to ground truth.
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The most significant gain was observed in the seg-
mentation of buildings—critical features for the down-
stream application of Urban Building Energy Modeling
(UBEM)—with mean IoU rising from 0.248 to 0.694, a
179.8% improvement. These findings underscore the ef-
fectiveness and necessity of few-shot learning in enhancing
segmentation accuracy for urban-scale applications.

Accurately segmenting urban systems remains inher-
ently challenging, due not only to the limitations of 2D im-
agery but also to ambiguities in class definitions and poten-
tial errors in manually annotated ground truth masks. For
instance, the built area class—intended to encompass var-
ious artificial surface coverings—proved difficult to delin-
eate precisely, leading to segmentation ambiguity and in-
consistency in human labeling.

The reliance on static 2D images further complicates the
task. Differentiating between building rooftops and cement-
covered open spaces, for example, can be difficult even for
human annotators, particularly in unfamiliar urban contexts.
Similarly, distinguishing parking lots from roads, or deter-
mining whether trees are located along streets, in parks, or
on rooftops, is often non-trivial without additional spatial
cues.

To address these limitations, future work could re-
fine class definitions in alignment with downstream ob-
jectives—for example, distinguishing between surface ma-
terials such as asphalt, water, grass, and sand—to better
support UBEM. Additionally, incorporating street-view im-
agery alongside satellite data could provide 3D contextual
cues that improve the accuracy of urban feature quantifica-
tion for energy performance analysis.

7. Contributions
The author conceived the study, curated the dataset, im-

plemented the model, conducted all training and evaluation
experiments, and performed the analysis. No other students
or collaborators were involved in this project. This work
was conducted independently and is not part of any other
research project or class assignment.
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jagopal, and M. Fischer. Estimating building energy effi-
ciency from street view imagery, aerial imagery, and land
surface temperature data. Applied Energy, 333:120542,
2023.

[11] K. Mayer, B. Rausch, M.-L. Arlt, G. Gust, Z. Wang, D. Neu-
mann, and R. Rajagopal. 3d-pv-locator: Large-scale detec-
tion of rooftop-mounted photovoltaic systems in 3d. Applied
Energy, 310:118469, 2022.

[12] C. F. Reinhart and C. Cerezo Davila. Urban building energy
modeling – a review of a nascent field. Building and Envi-
ronment, 97:196–202, 2016.

[13] United Nations Environment Programme. 2021
global status report for buildings and construc-
tion: Towards a zero-emission, efficient and re-
silient buildings and construction sector. https:
//globalabc.org/resources/publications/
2021-global-status-report-buildings-and-construction,
2021. Accessed: 2025-04-09.

[14] K. Wada. Labelme: Image polygonal annotation with
python, 2022.

[15] L. Wang, R. Li, C. Zhang, S. Fang, C. Duan, X. Meng, and
P. M. Atkinson. Unetformer: A unet-like transformer for ef-
ficient semantic segmentation of remote sensing urban scene
imagery. ISPRS Journal of Photogrammetry and Remote
Sensing, 190:196–214, Aug. 2022.

[16] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davi-
son, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu,
C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020.

8

https://www.arcgis.com/home/group.html?id=702026e41f6641fb85da88efe79dc166
https://www.arcgis.com/home/group.html?id=702026e41f6641fb85da88efe79dc166
https://www.arcgis.com/home/group.html?id=702026e41f6641fb85da88efe79dc166
https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction
https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction
https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction


[17] S. Yi, X. Liu, J. Li, and L. Chen. Uavformer: A compos-
ite transformer network for urban scene segmentation of uav
images. Pattern Recognition, 133:109019, 2023.

[18] H. Zhang, H. Dou, Z. Miao, N. Zheng, M. Hao, and W. Shi.
Extracting building footprint from remote sensing images by
an enhanced vision transformer network. IEEE Transactions
on Geoscience and Remote Sensing, 62:1–14, 2024.

9


