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Abstract

Robotic manipulation represents a fundamental chal-
lenge in robotics research, requiring sophisticated visual-
motor policies that can interpret complex 3D scenes and
execute precise actions. While diffusion-based policy learn-
ing has demonstrated promising capabilities in generating
coherent, multi-modal action trajectories for robotic manip-
ulation tasks, these approaches suffer from critical limita-
tions in sample efficiency and cross-domain generalization.
Current methods typically require extensive task-specific
demonstration data and struggle to transfer knowledge to
novel objects or environmental configurations, significantly
constraining their practical deployment in real-world set-
tings.

Our work explores the potential of integrating internet-
scale 3D foundation models such as Uni3D [14)] with dif-
fusion policy networks through parameter-efficient adap-
tation techniques. We investigate whether leveraging pre-
trained 3D representations, which encode rich semantic and
spatial understanding from diverse visual data, can improve
sample efficiency and enable better generalization to un-
seen manipulation scenarios while maintaining the expres-
sive power of diffusion-based action generation. Through
preliminary experiments across manipulation benchmarks,
we examine the challenges and opportunities in bridging
foundation models with behavioral policies. Our findings
provide insights into the integration of large-scale pre-
trained representations with robot learning, revealing both
the potential benefits and current limitations of this ap-
proach for scalable robotic manipulation.

1. Introduction

Visual-motor policies for robotics requires leveraging
high-level perceptual features for long-horizon planning
while maintaining the flexibility to generalize across di-
verse and novel tasks. Traditional imitation learning ap-
proaches often struggle with the complexity of real-world

scenarios, where task complexity demand robust represen-
tation learning capabilities. Recently, diffusion-based pol-
icy learning has emerged as a promising framework for
robotic control, generating coherent multi-step action se-
quences through iterative denoising processes that naturally
handle the inherent stochasticity and multi-modality present
in manipulation tasks. However, diffusion-based policies
typically require prohibitively large amounts of high-quality
demonstration data while exhibiting limited generalization
to out-of-domain tasks and novel environmental conditions.
The data hunger of these approaches becomes particularly
problematic when scaling to diverse manipulation scenar-
ios, as collecting sufficient demonstrations for each new
domain or task configuration remains both time-consuming
and resource-intensive.

Simultaneously, the emergence of 3D foundation mod-
els has revolutionized spatial understanding by providing
rich geometric representations learned from large-scale 3D
data. Uni3D [14] represents a significant advancement in
this direction, presenting a unified and scalable 3D pre-
training framework that uses a 2D initialized Vision Trans-
former (ViT) pretrained end-to-end to align 3D point cloud
features with image-text aligned features. These mod-
els demonstrate exceptional capabilities across diverse 3D
tasks, showcasing their ability to understand complex 3D
geometric structures and semantic relationships without
task-specific fine-tuning.

To address the generalization limitations of diffusion-
based policies, we propose leveraging the rich 3D geo-
metric representations from foundation models like Uni3D
to enhance policy learning through transfer learning tech-
niques. Our key hypothesis is that the pre-trained 3D
features, which already encode robust spatial and seman-
tic understanding from large-scale data, can be effec-
tively transferred to manipulation tasks through parameter-
efficient adaptation methods. By integrating these founda-
tional 3D representations with diffusion policy networks via
lightweight adaptation modules, we aim to significantly re-
duce the data requirements for policy training while improv-
ing generalization to novel objects, scenes, and manipula-



tion scenarios that were not present in the original demon-
stration dataset.

2. Related Work

Robotic manipulation requires translating rich percep-
tual inputs into precise and robust control actions. Recent
work [[11] has focused on leveraging pretrained vision mod-
els to reduce training costs and improve generalization. Our
approach builds on recent innovations in this direction, aim-
ing to improve both parameter efficiency and policy expres-
siveness through modular design. Below, we review several
key works that have shaped the motivation and methodol-
ogy of our project.

2.1. Lossless Adaptation of Pretrained Vision Mod-
els for Robotic Manipulation

The core contribution of [[11]] is a ’lossless adaptation”
framework that enables task-specific learning by inserting
lightweight adapter modules into frozen, pretrained vision
encoders. This approach avoids modifying the original en-
coder weights, requiring less than 5% additional parameters
while recovering over 95% of the performance gap between
frozen-feature baselines and fully fine-tuned models.

In this framework, RGB images are first processed by
a variety of pretrained visual backbones, including both
supervised models (e.g., ViTs [3], NFNets [1l], ResNets
[l6]) and self-supervised models (e.g., CLIP [10], BYOL[4],
Visual MAE [5]). The resulting visual features are then
passed through compact adapter modules before being fed
into a linear policy head that outputs the robotic arm’s ac-
tions. The entire system is trained using supervised imita-
tion learning, relying on expert demonstrations to map ob-
servations to actions.

While this research demonstrates the effectiveness of this
paradigm, it does not incorporate several recent advances in
action modeling and visual representation. In our work, we
seek to extend this paradigm by integrating state-of-the-art
training techniques such as Diffusion Policy [2], as well as
more expressive visual encoders like Uni3D [14].

2.2. Diffusion Policy

Diffusion Policy [2] models robot control as a condi-
tional denoising diffusion process over action sequences,
learning to iteratively refine Gaussian noise into precise
robot actions. Compared to energy-based policies, diffu-
sion policy avoids costly normalization, enables receding-
horizon control, and cleanly decouples perception from ac-
tion.

In the experiments, diffusion policy delivers a 46.9% im-
provement over prior behavior-cloning baselines on twelve
simulated and real-robot tasks (2-6 DoF, rigid and fluid
interactions), outperforming mixture-of-Gaussians and im-

plicit energy-based policies while maintaining real-time in-
ference with a modest number of denoising steps.

3D Diffusion Policy (DP3) extends this paradigm by
applying diffusion on compact 3D embeddings, produced
by an efficient MLP encoder from sparse point clouds, as
well as robot poses. This 3D modality yields remarkable
data efficiency and a 24.2% average performance gain over
the baseline, while also improving generalization to various
spatial configurations, viewpoints, and object instances and
reducing erratic actions in safety-critical settings.

While DP3 takes an important step by introducing 3D
perception into the diffusion framework, its encoder re-
mains relatively shallow and lacks the capacity for strong
zero-shot generalization. To further strengthen the percep-
tual component of this pipeline, we turn to recent advances
in scalable 3D representation learning.

2.3. Uni3d: Exploring unified 3d representation at
scale

Uni3D [14] makes a significant leap in 3D representa-
tion learning by expanding the standard Vision Transformer
architecture into 3D. Specifically, it converts point clouds
into patch tokens and scaling it up to one billion parameters.
It achieves strong zero-shot classification and transfers di-
rectly to part segmentation and real-scene recognition tasks
like ScanNet without additional real-world data.

This unified model also supports applications such as
shape retrieval and 3D “painting” without any fine-tuning,
demonstrating broad versatility across downstream 3D
tasks.

The above literature informs a natural synthesis: com-
bining the lossless adaptation framework with the power-
ful planning capabilities of diffusion models, and enhancing
both through strong 3D encoders like Uni3D. Our work ex-
plores this integration, aiming to build a vision-conditioned
policy that is modular, scalable, and efficient in both data
and parameters.

3. Methods

This section presents our approach for integrating pre-
trained 3D vision representations with diffusion-based pol-
icy learning, followed by a description of the baseline
method used for comparison.

3.1. U3DP: Uni3D-Enhanced 3D Diffusion Policy

We propose U3DP (Unified 3D Diffusion Policy), which
builds upon the 3D Diffusion Policy (DP3) framework by
replacing its simple point cloud encoder with the pre-trained
Uni3D model. The resulting architecture consists of a
Uni3D perception module and a diffusion policy module.
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Figure 1. Architecture of U3DP. The input point cloud is first processed through point tokenization, where points are grouped into local
patches and processed by a lightweight PointNet to extract patch-level features. These features are then encoded by the pre-trained Uni3D-
Small Vision Transformer (ViT) to produce semantically rich 3D representations. A learnable linear projection layer maps the 1024-
dimensional Uni3D features to 64-dimensional vectors to balance with the 64-dimensional robot state features. The concatenated visual
and proprioceptive features are integrated into the DP3 U-Net denoising network via Feature-wise Linear Modulation (FiLM) conditioning

to generate denoised action sequences through the diffusion process.

3.1.1 Perception Module

Instead of using the original DP3’s lightweight MLP en-
coder, we employ the pre-trained Uni3D-Small model,
which contains approximately 23 million parameters. The
Uni3D model is a Vision Transformer (ViT) that has been
pre-trained on approximately one million 3D shapes paired
with 10 million images and 70 million text descriptions, en-
abling it to extract semantically rich 3D representations.

Point Cloud Preprocessing. Before feeding the point
cloud into Uni3D, we apply a specific normalization strat-
egy that aligns with Uni3D’s pre-training data distribution.
Unlike DP3’s original normalization that scales coordinates
to [—1, 1], we adopt Uni3D’s normalization scheme: First,
we center the point cloud by subtracting its centroid. Then,
we scale the coordinates by dividing by the furthest distance
from the centroid, ensuring spatial coordinates lie within a
unit sphere. Color values are normalized to [0, 1] by divid-
ing by 255. This normalization strategy ensures that our
fine-tuning data distribution matches that of Uni3D’s pre-
training phase, facilitating better transfer learning.

Point Tokenization. The normalized point cloud is
processed through Uni3D’s point tokenizer, which fol-
lows the PointBERT][13] architecture. The tokenizer first
groups points into local patches using FPS to select center
points, followed by k-nearest neighbor (kNN) clustering.
Each local patch is then processed through a lightweight
PointNet[9] to extract patch-level features, resulting in a se-
quence of tokens that can be processed by the transformer
architecture.

Feature Projection. The Uni3D-Small model outputs
384-dimensional features through its transformer backbone,
which are then projected to 1024 dimensions as part of
Uni3D’s standard architecture. To integrate these features
with DP3’s diffusion policy module, we introduce an addi-
tional learnable linear projection layer that maps the 1024-
dimensional features to 64-dimensional vectors. This di-
mensional reduction is crucial for maintaining balance be-
tween the visual and proprioceptive modalities: the robot
pose features are also 64-dimensional, and both are con-
catenated before being fed into the U-Net. Without this pro-
jection, the high-dimensional visual features (1024) would
dominate the lower-dimensional pose features (64) during
the diffusion process, potentially leading to suboptimal pol-
icy learning where proprioceptive information is underuti-
lized.

3.1.2 Diffusion Policy Module

The diffusion policy module follows the same structure
as in DP3, utilizing a U-Net architecture as the denois-
ing network backbone. Given the encoded observation
from Uni3D and robot pose, we generate action sequences
through an iterative denoising process. We leverage DP3’s
existing conditioning mechanism to incorporate the visual
features into the denoising network.

Feature-wise Linear Modulation (FiLM). Following
DP3’s architecture, visual representations are integrated
into the diffusion process using Feature-wise Linear Modu-
lation (FILM)[8] conditioning. The concatenated features



(64-dimensional visual features v; from Uni3D and 64-
dimensional robot pose q;) are used to compute affine trans-
formation parameters for each layer of the U-Net denoising
network. Specifically, for each U-Net layer /, linear trans-
formations produce scale ~; and shift 5; parameters:

hy =y ([ve; qi]) © hy + Bi([ve; ai) (1)

where h; represents the intermediate features at layer [, [-; |
denotes concatenation, and ® denotes element-wise multi-
plication. This conditioning mechanism allows the visual
and proprioceptive context to modulate the denoising pro-
cess at multiple scales throughout the U-Net architecture.

Diffusion Process. The U-Net-based noise prediction
network €y performs iterative denoising. Starting from
a Gaussian noise sample, we perform multiple denoising
steps:

afil - O[k;(ﬂf - ’Ykee(afa ka Vi, qt)) + U/CN(O’ I) (2)

where k is the diffusion timestep, and ay, 7y, and oy, are
functions of k that define the noise schedule.

The training objective follows the standard diffusion
model loss:

L = MSE (G)EG(Oéka? +o—kgak,vtaqt)) (3)

where a{ is the ground truth action sequence from demon-
strations, and € ~ N(0, I) is the noise sample.

During training, only the parameters 6 of the U-Net noise
prediction network and the linear projection layer are up-
dated, while the Uni3D encoder remains frozen to preserve
its pre-trained representations.

Implementation Details. We implement U3DP using
the Uni3D-Small variant due to computational constraints,
which provides an effective balance between model capac-
ity and resource requirements. At inference time, we em-
ploy a receding horizon control strategy where we predict
a sequence of 16 actions but execute only the first 8 steps
before replanning, following DP3’s protocol.

3.2. Baseline Method

We compare our approach with the original 3D Diffu-
sion Policy (DP3) as our primary baseline. DP3 uses the
same diffusion framework and training procedure as our
method, with the key difference being the perception mod-
ule. Instead of the pre-trained Uni3D model, DP3 employs
a lightweight three-layer MLP encoder followed by max-
pooling to process point clouds. This baseline allows us to
isolate the impact of incorporating pre-trained 3D represen-
tations on policy learning performance.

4. Dataset and Features

MetaWorld [12] is a benchmark suite designed for meta-
reinforcement learning and multi-task learning research. It

(a) Block in red bin

(b) Pick block (c) Put in blue bin

Figure 2. Metaworld Bin Picking Task

provides a standardized collection of robotic manipulation
tasks with consistent observation and action spaces, en-
abling fair comparison across different algorithms and ap-
proaches. These tasks are performed by a simulated Sawyer
robotic arm within the MuJoCo physics engine. Among
the benchmark tasks, we specifically target bin-picking task
since the vanilla dp3 only achieves 50% success rate on
these, and it would be a good experiment to see if we can
achieve improvement on these task. Also, we aim to explore
the generalizability of the visual foundation model for out-
of-domain inference, and thistask can be easily modify for
this purpose. For example, we can simply change the size
or color of the cube for out-of-domain test.

MetaWorld serves as an ideal benchmark for this project
since the 3D Diffusion Policy framework already imple-
ments a MetaWorld wrapper as a tested benchmark, allow-
ing us to focus on the novel aspects of our research rather
than environment implementation details. Moreover, Meta-
World provides rich visual observations that align well with
Uni3D’s capabilities as a 3D foundation model.

5. Experiment and Analysis
5.1. Training Detail

To experiment how well the pretrain Uni3D 3d represen-
tation can be transfer to manipulation task, we try config
with different axis:

* Freeze: Whether to freeze Uni3D during training

e Load Pretrian weight: If don’t freeze Uni3D,
whether to load pretrained checkpoint

e Uni3D group size: The size that Uni3D first group
points into local patches with FPS (farthest point sam-
pling) and kNN (k nearest neighbor), the original
value is 32, we additionally experiment with 16 since
the metaworld image have relatively low resolution
(80*80)

We train U3DP with the configs in Table [I] and get the
evaluation success rate as follows:
Here are some fix settings throughout the experiments:

e Uni3D Model: We use Uni3D-small with 23 millions
parameters, because our GPU can’t handle base model



Config Model Freeze Pretrain Group Size/Number
dp3 n/a n/a n/a n/a
1 small no yes 16/128
2 small yes yes 16/128
3 small no no 16/128
4 small no yes 32/256

Table 1. Experiment configurations

Config Epochs Eval Demos SR

dp3 3000 20 0.85
1 200 20 0.90
2 200 20 0.0
3 200 20 0.30
4 200 20 0.85

Table 2. Training Results

Uni3D Model Small (23M)
Demos 100
Epochs 200
Optim AdamW

Lr le-4

Weight Decay le-6

Eval 20
DP3 Hidden Dims ~ 256/512/1024

Table 3. Training Details

* Training Demos: We generate 100 demos bin-picking
with randomnized initial block position and use all of
those during training.

e Training Epoch: Other than vanilla dp3 (3000
epochs), we train model with 200 epochs

* DP3 Hidden Dims: We half the size of the hidden
dims from 512/1024/2048 to 256/512/1024 for faster
training. We also confirm that halfing the size of the
hidden dims won’t harm vanilla dp3 performance.

From Table [2] we can observe that freezing the Uni3D
model results in poor model performance with 0% success
rate. However, fine-tuning Uni3D yields strong model per-
formance that equals or even outperforms vanilla DP3 un-
der identical training settings and demonstration data. This
demonstrates that while the pretrained Uni3D representa-
tions contain valuable 3D geometric and semantic knowl-
edge, direct transfer without fine-tune fails to capture the
nuanced visual-motor relationships required for manipula-
tion tasks.

The stark contrast between frozen and fine-tuned config-
urations suggests that the pretrained features, though rich
in spatial understanding, require task-specific refinement
to align with the action space and temporal dynamics of
robotic manipulation. The success of the fine-tuned ap-
proach indicates that Uni3D’s foundational representations
provide a beneficial initialization that can be effectively

adapted for policy learning, potentially offering improved
sample efficiency compared to training from scratch. How-
ever, the failure of the frozen model highlights the domain
gap between general 3D understanding tasks and the spe-
cific requirements of visual-motor control, suggesting that
future work should focus on developing more sophisticated
adaptation mechanisms that can better preserve and utilize
pretrained knowledge while enabling effective policy learn-
ing.

5.2. Evaluation Test

To test the general ability of the U3DPs, we modify the
original bin picking test with different settings to generate
out of domain test environment.

* Exp0: Original environment setting (red — blue, right
— left)

* Expl: Exchange two bins color (blue — red, right —
left)

e Exp2: Switch start and goal position, switch bin posi-
tion (red — blue, left — right)

e Exp3: Switch start and goal position, do not switch
bin (blue — red, left — right)

* Exp4: Move two bins further apart

* Exp5: Change green block to basketball

* Exp6: Change green block to red cylinder

* Exp7: Change green block to wooden block

¢ Exp8: Use two red bins

¢ Exp9: Use two blue bins

¢ Expl10: Add wooded block into bin (two blocks in bin)

The visualize experiment settings are shown in Figure
We can briefly divide these tests into three categories:

¢ Color Variance: (Exp 1, 7, 8, 9): Bins and blocks
have no shape or position variance, but with different
color or texture

» Spatial Variance: (Exp 2, 3, 4): The position of the
bins are changed

* Object Variance: (Exp 5, 6, 10): The object being
picked is changed

5.3. DP3 v.s. U3DP

Based on the experimental results shown in Figure[d] we
can analyze the comparative performance of U3DP (Config
1) against vanilla DP3 across different generalization sce-
narios:

Color Variance Results: U3DP demonstrates superior
robustness to color and texture variations compared to DP3.
In Expl (color exchange), U3DP achieves 85% success rate
versus DP3’s 60%, indicating better adaptation to visual
appearance changes. This advantage is particularly pro-
nounced in Exp7 (wooden block) where U3DP achieves
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Figure 3. All Bin Picking Task Experiment Setting
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Figure 4. Comparison of experiment scores between DP3 and
U3DP (config 1).

75% success while DP3 completely fails (0%), and in Exp9
(two blue bins) where U3DP maintains 95% success com-
pared to DP3’s 70%. Although vanilla DP3 can achieve
similar generalizability if not using pointcloud color, we
claim that color information could be extremely useful for
other task like vision-language-action-model that required
RGB dense feature.

Spatial Variance Results: Both models exhibit signifi-
cant difficulties with spatial reconfiguration tasks. In Exp2
and Exp3, where start/goal positions are switched, both ap-
proaches achieve 0% success rate, indicating a fundamental
limitation in spatial reasoning and adaptation. The mod-
est 20% success rate for both models in Exp4 (increased
bin separation) suggests that even minor spatial changes can
severely impact performance, highlighting the brittle nature
of current visual-motor policies to geometric variations. We
argue that the spatial semantic representation within Uni3D
is not transferred to robot manipulation task.

Object Variance Results: U3DP shows generally im-
proved performance in object generalization scenarios.
While both models struggle with basketball substitution
(Exp5: U3DP 15% vs DP3 10%) and cylinder replacement
(Exp6: both 10%), U3DP’s superior performance with the
wooden block (Exp7: 75% vs 0%) suggests that the 3D
foundation model representations provide better semantic
understanding for certain object categories.
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Figure 5. Comparison of experiment scores between U3DP
(config 1) and U3DP (config 4).

Based on the comparison between U3DP configurations
with different Uni3D group sizes, we observe that Config
1 (group size 16) generally outperforms Config 4 (group
size 32) across most experimental scenarios. This suggests
that reducing the Uni3D group size from 32 to 16 is benefi-
cial for the low-resolution MetaWorld environment (80x80
pixels). The smaller grouping appears to provide more ap-
propriate local feature granularity that better matches the
limited visual detail available in the simulation, preventing
over-segmentation of sparse point cloud information. How-
ever, both configurations still exhibit identical failures in




spatial reconfiguration tasks (Exp2-3), indicating that group
size optimization alone cannot address fundamental spatial
reasoning limitations

5.4. Ablation Study: Bottom Adapter

Refer to [[11]], we test the influence of the bottom adapter
which is a 6*6 fully connected network that process RGB
pointcloud before sending into Uni3D.

Based on Table[d] we can observe the impact of the bot-
tom adapter on model performance. Comparing Config 1
(without bottom adapter, 90% success rate) to Config ab2
(with bottom adapter, 40% success rate), both using identi-
cal settings except for the adapter, we find that the bottom
adapter significantly degrades performance. This is prob-
ably because the additional layer enable the possibility to
brake the well-normalized rgb and xyz value for Uni3D in-
put.

On the other hand, when the Uni3D model is frozen, the
bottom adapter provides some benefit (Config abl: 30% vs
Config 2: 0%), suggesting it can partially bridge the repre-
sentation gap when no fine-tuning is allowed. However, this
improvement is still substantially lower than the fine-tuned
approach without the adapter.

The bottom adapter appears to introduce unnecessary
complexity and potential information bottlenecks when
Uni3D can be fine-tuned directly. The 6x6 fully con-
nected network may constrain the rich RGB point cloud
features before they reach the foundation model, limiting
the model’s ability to leverage the full representational ca-
pacity of Uni3D.

Config Freeze Pretrain Group Size/Number SR
dp3 n/a n/a n/a 0.85

1 no yes 16/128 0.90

2 yes yes 16/128 0.0
abl yes yes 16/128 0.30
ab2 no yes 16/128 0.40

Table 4. Experiment configurations

6. Conclusion and Future Work

Our experiments indicate that U3DP and DP3 achieve
comparable overall success rates on the bin-picking bench-
mark, but U3DP exhibits noticeably greater robustness to
variations in object and bin colors. This suggests that incor-
porating pre-trained 3D features can improve visual gener-
alization; however, the limited scope of our current evalua-
tion makes it difficult to draw definitive conclusions about
how effectively Uni3D’s pretraining transfers to robotic ma-
nipulation tasks.

With additional time, personnel, or computational re-
sources, we would expand our study along three main axes.
First, we would evaluate alternative point-cloud encoders

to compare how varied pretraining objectives affect down-
stream policy performance. Second, we would explore mul-
tiple Uni3D model sizes (e.g., Small, Base, Large) to bet-
ter understand the effectiveness of pretraining. Finally, we
would experiment with diverse adapter configurations, in-
cluding deeper adapter stacks and parameter-efficient fine-
tuning methods such as LoRA [7], to identify adaptation
strategies that preserve pre-trained knowledge while maxi-
mizing manipulation performance.
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