Blurred Lines: Automated Video Obfuscation With Computer Vision

James Varah
Stanford University

jvarah@stanford.edu

Abstract

In this paper, we leverage modern computer vision mod-
els to create a novel machine learning pipeline that auto-
matically detects and obfuscates all instances of sensitive
information in an inputted video stream. More specifically,
we focus on blurring faces and text - the two most common
types of inadvertently leaked private information in videos
- using a combination of fine-tuned models and an external
code framework. On the model front, we experimented with
a variety of options but ultimately used Grounding DINO
for facial recognition and EasyOCR for text detection. Al-
though the individual performances of these models were
not exceptional, when combined with each other they pro-
duced a strong pipeline capable of accurately blurring sen-
sitive information across all frames of a video in a reason-
able amount of time. This system, while rudimentary, is very
functional and represents a strong step towards the sort of
privacy-enhancing tools much needed in the modern age.

1. Introduction

For nearly one hundred years following the 1888 inven-
tion of the motion capture camera by Louis LePrince, video
production was an incredibly costly, burdensome task that
required access to expensive equipment and specialized op-
erators. However, towards the end of the 20th century, in-
creased circulation of cheap electrical components led to a
surge in personal computing that made video-producing de-
vices like camcorders available widely. At the same time,
the internet found its footing and provided a novel mech-
anism by which users across the world could share infor-
mation, including their newly abundant self-made videos.
Today, this trend has truly reached its maturity. Those
early, clunky camcorders have been replaced by smart-
phones with high-definition cameras, and clumsy attempts
at internet-based video sharing has transformed into billion-
dollar behmonths like YouTube and Instagram that have
millions of new videos uploaded daily. While many benefits
have been reaped from this current system, serious issues
are present as well. In particular, the prevalence of video

Tobias Moser
Stanford University

tobiascm@stanford.edu

Video

y' s DN

Private Info
Bounded Censored |
Video /

N),

Figure 1: Our proposed pipeline to blur text and human
faces from videos.

sharing has introduced profound privacy concerns. Indi-
viduals are now frequently recorded, both with and without
their knowledge or consent, in many of the public and pri-
vate spaces in which they live their lives. Furthermore, these
recordings can be subsequently disseminated to billions of
people worldwide within just minutes of their creation. In
such an environment, it should be no surprise that sensitive
data ranging from faces to license plates to private informa-
tion on papers or computer screens is constantly being inad-
vertently leaked to the internet via posted videos, opening

the door to threats like identity theft or doxxing. Unfortu-
nately, the sheer scale of this leakage is such that manual
review is at best inefficient and at worst simply impossible.
As such, there is a clear and immediate need for automated
tools capable of detecting and redacting such sensitive in-
formation. To that end, our paper proposes a novel deep-
learning pipeline built on state-of-the-art computer vision
models that will process live video streams and automat-
ically redact any potentially hazardous information while
still maintaining the integrity of the larger video source.

2. Related Work

On the topic of maintaining privacy on images and
videos containing sensitive information, Li et al. 2017 com-
pared computer vision methods of obfuscating private in-
formation [9]. They found that blocking out a section of
an image with gray or the average pixel value was the most
effective in maintaining privacy compared to blurring, but
users had the most negative reaction to it. Li and their col-
leagues influenced our work by using blurring techniques
rather than blocking out pixels to reduce the negative user
perception of our method of protecting sensitive informa-
tion in videos.

Most recently, Tseng et al. proposed BIV-Priv-Seg,
a dataset tailored for privacy-preserving computer vision
tasks [[16]. It introduces 16 classes of sensitive content
specifically captured from the perspective of individuals
with blindness or impaired vision. Unlike general-purpose
datasets, BIV-Priv-Seg enables us to fine-tune object detec-
tors on privacy-relevant classes. However, as it only con-
tains static images, it does not address the challenges of
video-based detection, limiting its utility to single-frame
evaluation.

Focusing first on object detection in images, Ren et al.
2015 improved on previous methods in object detection
with Faster R-CNN [13]] which employs a Region Proposal
Network (RPN) convolutional network that predicts both
object bounds and scores across the spatial dimension be-
fore processing through a classifier on proposed bounding
boxes. Redmon et al. 2016 introduced YOLO, a single net-
work that predicts bounding boxes and class probabilities
without the use of a separate RPN, which performed much
better and faster than previous results [12]]. Mask R-CNN,
proposed in He et al. 2018, extends the task of object detec-
tion to also produce segmentation masks for instances in an
image [5]. YOLO and R-CNN become the basis for many
models we explored before constructing our final pipeline,
and are used in methods for fast-inference face detection in
[22]] and high-performance face detection [21] and text de-
tection, which we discuss below.

Kang et al. presented T-CNN, a method that enhances
object detection in videos by leveraging temporal consis-
tency through the use of tubelets, which include proposals

of objects linked across frames [8]. This method uses opti-
cal flow to improve per-frame object detections by rescoring
predictions across time, thus providing greater accuracy and
temporal stability. We incorporate such temporal modeling
techniques to improve upon spatial-only detection systems
like YOLO.

Text detection and recognition has been a popular area
of research, with initial results from Shi et al. 2015 that
develop an end-to-end trainable neural network that models
text features, sequences, and transcription to extract charac-
ters [[15]. Later methods produce better results, such as the
one proposed in Deng et al. 2019 which uses a two-stage
model to detect text in any orientation without the use of
human-picked text features [3]]. Ye et al. 2020 introduce an-
other method TextFuseNet that uses image feature represen-
tations to retrieve individual characters in arbitrary shapes
in text found in scenes [20]. EasyOCR [7], the method we
use for text detection, employs the method from Shi et al
[15] for robust results with fast performance.

Hendrycks and Dietterich found that neural networks
such as AlexNet and ResNet classifiers perform much worse
when input images are corrupted by common perturbations
such as applying noise to the image and reducing contrast
[6].

Recent advances in state-of-the-art object detection and
instance segmentation include zero-shot methods such as
Grounding DINO [10] and Grounded SAM [14]. These
models have the advantage over previous CNN-based meth-
ods by removing the need for fine-tuning on novel datasets,
and we use the scaled down Grounding DINO tiny model
for zero-shot face detection in our pipeline.

3. Data
3.1. Dataset Motivations

Due to the unique design of this paper’s pipeline, our
dataset selection, processing, and usage were all somewhat
atypical. There were two main drivers of this situation, a)
our use of two separate models for the facial recognition and
text detections tasks and b) the fact that we largely leveraged
existing, pre-trained models when building our system. As
a result of the former, we ultimately chose to have two fully
separate datasets, one for each of the respective tasks, while
the latter meant that we used only small segments of larger
datasets, as we only needed enough annotated data to con-
duct minimal fine-tuning and to evaluate the final efficacy
of our models.

Beyond these constraints imposed by the high-level
structure of our project, we also had several more gen-
eral guiding principles in mind when researching poten-
tial datasets. First and foremost was our desire to have
our image examples be as messy and realistic as possible.
Although this choice undeniably created a more challeng-

ing task for both our models and thus contributed signifi-
cantly to their middling performances (more on this in Sec-
tion 4 and Section 5), it was crucial to us that our eventual
pipeline was able to work on largely unconstrained images
and videos, since these are the exact sort of “ugly” inputs
one would expect as part of our system’s use cases, which
include things like user-provided social media posts or live
video streams. In addition to our focus on using real-world
data, we also adhered to more standard goals like trying to
find datasets with accessible formatting, clean documenta-
tion, and reputable sources (i.e. respected researchers, aca-
demic or professional institutions, etc).

3.2. Facial Recognition Dataset

When locating our facial recognition dataset, we investi-
gated a wide range of potential candidates including Face-
Scrub, VGGFace, and CelebA before eventually narrowing
down our list to WIDER FACE [19] and Labeled Faces
In The Wild (LFW) by evaluating the datasets against the
metrics described above. We initially were predisposed to-
wards LFW due to its apparent emphasis on realistic images
(hence “in the wild”), but after some additional research and
manual review, we found that far too many of the LFW ex-
amples were overly “clean” and consisted of front-facing
facial portraits in good lighting. As a result, we ultimately
chose to use WIDER FACE for the fine-tuning and eval-
uation of our facial recognition model. This dataset is it-
self a face-specific subset of the Shenzhen Institute of Ad-
vanced Technology’s earlier Web Image Dataset For Event
Recognition (WIDER), and is comprised of 32,203 images
of varying size in JPEG format with 393,703 bounding-box
labeled faces. Since, as previously mentioned, our project
did not require a large volume of inputs, we took a further
subset of 6,000 images from WIDER FACE and used 5,000
of them for hyperparameter tuning and reserved the remain-
ing 1,000 as our test set. The only dataset preprocessing we
conducted was to convert the dataset from its native anno-
tation structure to the COCO format to simplify the model
evaluation and metric generation process.

3.3. Text Detection Dataset

To settle on our text detection dataset, we followed a near
identical process as above. In particular, we considered
a large variety of in-the-wild text segmentation datasets,
from Sythtext to various ICDAR Robust Reading sets to
UC San Diego’s Street View Text before eventually settling
on COCO-text [17] as our final dataset due to its diversity
of orientation, lighting, font size, and text languages. This
dataset, much like WIDER FACE, is a text-focused subset
of the previously created MSCOCO dataset and was first
released by Cornell University in 2016 (link). In its orig-
inal form, COCO-test contains 63,686 JPEG images with
239,506 annotated text instances (bounding boxes + tran-

Figure 2: Before/after of our blurring technique shown on
one video frame. Left: before, Right: after

scription). As before, we preprocessed this dataset to fit our
project scope by taking a further subset of 17,000 images
randomly selected from the original dataset, using 14,000
for fine-tuning and keeping the remaining 3,000 to be used
as the test set. All corresponding annotations were already
in a COCO formatted JSON file and thus further modifica-
tions were not needed.

3.4. Video Sourcing

For simplicity’s sake and due to time constraints, we
decided to use image-based models in our pipeline rather
than video-specific constructions like SlowFast Networks
or C3D, and thus our code interprets an inputted video not
as a video but rather as a sequence of individual images in
the form of frames. Because of this unique set up, we had
no need to use a third dataset of just videos to evaluate the
cumulative pipeline, but instead could simply test the facial
recognition and text detection models on their own respec-
tive datasets separately. However, to qualitatively evaluate
our final product, we did source several short videos from
pexels.com to ensure the functionality was as desired.

3.5. Our Pipeline

We propose a video processing pipeline that blurs text
objects and faces in a diverse set of scenes. First, we di-
vide the input video into frames to process for blurring. We
use the Python implementation of OpenCV [2] to read indi-
vidual frames and output JPG image files. Despite sacrific-
ing temporal information for the inputs to later parts of the
pipeline, using images rather than video segments allows a
wider variety of possible methods to be used for object de-
tection. Additionally, sampling of images makes it possible
for future work on our pipeline by sampling video frames
and interpolating face and text detections between frames
for faster inference.

After processing an input video into component video
frames, we pass the image into a sequence of two modules.
The first module creates bounding boxes around detected
text in the image, and the second module creates bounding
boxes around detected faces in the image. Then we com-
pose all of the bounding boxes detected for that image, and
obfuscate regions by applying a Gaussian blur with standard
deviation 10, and the following expression for the kernel

width and height (w = width, h = height):

{w+1, if w mod 2 =10
<_

w, otherwise

h+1, ifhmod2=0
h + .

h, otherwise
w — max(13, w)
h < max(13, h)

We use this expression for kernel width and height to
maintain both an odd number, while maintaining a mini-
mum width and height of 13 pixels to blur regions to be dif-
ficult for humans to recognize. After processing all image
frames, we use OpenCV VideoWriter to take input blurred
JPG files and write out to an H264 compressed .MP4 video
file. Our code contribution is the surrounding pre- and post-
processing for videos, as well as how we obfuscate frames
based on bounding boxes, and we use existing code for in-
ference for object detection after we fine-tuned the models
and parameters for our use case.

3.6. Text Detection Module

For text detection, we employ the EasyOCR framework
[7], which has very fast inference and good performance
on diverse text in scene detection. Using the English ver-
sion of the EasyOCR reader, we obtain bounding boxes
around text and its component characters along with con-
fidence scores. The EasyOCR framework provides flexibil-
ity for what models are used in the two main components
of text recognition. We used the following combination of
models for the components of EasyOCR: Detection for ar-
eas of text. We choose the Character Region Awareness
for Text Detection (CRAFT) method, introduced by Baek
et al in 2019 [1]], a neural network that detects potential text
areas. This method generalizes well to text regions with
arbitrary shape by using both text level and character level
annotations on synthetic and real world images and model-
ing affinity between characters. Detection of specific text
instances and character recognition. This component uses
the model described in Shi et al [15]] which extracts features
from the text regions with a ResNet, models sequences with
an LSTM, and then transcribes characters with an RNN [4]

Since we do not need recognition results to obfuscate
text in videos, we disregard the text recognition results and
only use the identified text bounding boxes.

3.7. Face Detection Module

For face detection, we use Grounding DINO tiny [10]
using the text prompt “face.” which is installed via the Hug-
gingFace transformers Python package [18]]. Since Ground-
ing DINO has state-of-the-art zero-shot performance on
datasets such as 52.5 Average Precision (AP) on COCO

zero-shot, we expect it to generalize well to a variety
of scenes and to further object classes if we expand our
pipeline to obfuscate more categories without the need for
re-training models on different sets of classes. However,
we also want to balance this quality of annotations and
generalizability with speed, so we chose the smaller “tiny”
model with 172M parameters rather than the base model
with 233M parameters. Other methods for face generation
and datasets often focus only on subjects directly facing the
camera and do not generalize to in-the-wild scenes.

3.8. Testing for Model Resiliency to Image Pertur-
bations

Due to research by Michaelis et al 2019 [11], we also
explore resiliency of our model to image perturbations that
do not impede human recognition of subjects. If we deploy
our pipeline to blur sensitive information from live video
streams, for example, it is possible for a malicious actor to
perturb the input footage and avoid text and face detection
from EasyOCR and Grounding DINO used in the pipeline.
We explore object detection accuracy after applying gaus-
sian noise to images using the code provided in Michaelis

[LL1].

4. Experiments

For our hyperparameters on EasyOCR, we chose the
ResNet/LSTM/RNN model combination for the faster in-
ference time compared to a transformer based feature ex-
tractor and sequence encoder, with still meaningful accu-
racy results. We also chose to use bounding boxes without
a score threshold which resulted in the best results on our
COCO-Text validation dataset.

The hyperparameters for Grounding DINO were a box
threshold of 0.2 and a text threshold of 0.2, which we found
empirically after gathering accuracy metrics on our 5,000
image validation set combined with qualitative confirmation
of avoiding duplicate bounding boxes for the same object
instance while still detecting instances with small area in
the image. We used a text prompt of “face.” as input for
the text grounding information, which we used rather than
“person” or “head” to avoid blurring all heads and persons,
which are not strictly required in protecting the identity of
a person in a video stream.

Our primary metrics are Average Precision (AP) and
Average Recall (AR). We define these using Intersection
over Union (IoU) of ground truth data with our face dataset
for Grounding DINO, and with ground truth data with our
text dataset for EasyOCR. True Positives (TP) are defined
as predicting bounding boxes measured at a specific loU
threshold compared to a ground truth bounding box. False
Positives (FP) are predicted bounding boxes that do not
meet the IoU threshold or match an already assigned ground
truth box. Finally, False Negatives (FN) are recorded when

Default Thresholds

/

Figure 3:
tuning thresholds. Left:

Visual comparison of results from fine-
default (box_threshold=0.4,
text_threshold=0.3); right: fine-tuned (box_threshold=0.2,
text_threshold=0.2). Ground truth in green, predictions in
red.

a ground truth bounding box is not matched to any predic-
tion above the IoU threshold. We calculate AR and AP over
a maximum of 100 detections per image.

With TP, FP, and FN being measured across the whole
dataset, AP is defined as TPTFP and AR is defined as TPTEFN.

We record the mean of AP and AR across IoU thresholds
between 0.50 and 0.95 in steps of 0.05 for our final metrics,
and define this as AR,;;. Additionally, we use more fine-
grained measures of small, medium, and large, defined by
limiting the metrics to measuring bounding boxes based on
area according to the following relationship defined based
on square pixel area of the box:

Small if area < 322
Medium if 322 < area < 962
if area > 962

Object Size Category =
Large

4.1. Face Detection Results

We tried many different box and text thresholds for
Grounding DINO detection on WIDER FACE (see figure
). The best results were at box threshold = 0.2 and text
threshold = 0.2, which showed a significant improvement
in all our AP and AR metrics compared to the default box
threshold = 0.4 and text threshold = 0.3. One potential con-
cern with lowering the threshold is the increase of false pos-

Fine-tuned Thresholds (Ours)Table 1:
|

Comparison of AP and AR metrics
(@IoU=0.50:0.95, maxDets=100) between clean and
Gaussian noise perturbed predictions.

Metric Clean Perturbed (Gaussian noise)
AP All 0.241 0.160
AP Small 0.121 0.068
AP Medium 0.550 0.409
AP Large 0.581 0.458
AR All 0.275 0.197
AR Small 0.149 0.087
AR Medium 0.604 0.474
AR Large 0.668 0.584

Table 2: AP and AR (@IoU=0.50:0.95, maxDets=100) for

il text detection on the COCO-text validation set.

Size AP AR

All 0.073 0.129
Small 0.062 0.096
Medium 0.109 0.204
Large 0.185 0.354

itives, but our improved AP metric after this reduction in
both thresholds addresses this concern. The default thresh-
olds avoid duplicate detections on the larger faces, but miss
the smaller faces present in the image. However, our thresh-
olds, while there is some duplication in bounding boxes
on faces, leads to many more correct detections, especially
in the small faces present in the image. Despite the im-
provement, both sets of hyperparameters fail to detect faces
whose ground truth bounding boxes have small area and are
present in already low resolution images.

Figure [T] shows the results from running Grounding
DINO for face detection on a perturbed input image, com-
pared to the baseline. Both AP and AR metrics are dras-
tically worse when images are corrupted using gaussian
noise, which is consistent with earlier findings in Hendrycks
et al., [6] extending weaknesses in detection models to
Grounding DINO.

Figure[5]shows a qualitative comparison of the low accu-
racy of Grounding DINO on the same image with gaussian
noise.

4.2. Text Detection Results

In contrast to Grounding DINO’s facial recognition per-
formance, EasyOCR produced much less impressive results
[2) when evaluated using the criteria described above. How-
ever, despite these initially poor findings, additional eval-
uation revealed a degree of nuance in our model’s perfor-
mance. First, we found, upon further investigation, that the
ground truth labels in the COCO-text dataset were consis-
tently imperfect; for instance, we identified a number of im-

AP/AR [.5:.95] (maxDets=100) on WIDERFace Validation Set (Grounding DINO)

Score

Metric

box/text thresholds

box=0.4, text=0.3
box=0.3, text=0.2
box=0.2, text=0.3
box=0.2, text=0.2
box=0.2 text=0.1

Figure 4: Fine tuning of thresholds for face detection

Figure 5: Left: Face detections with fine-tuned threshold.
Right: Image with Gaussian noise. Ground truth in green,
detections in red.

ages throughout our subset of the data in which the annota-
tion bounding boxes completely missed seemingly obvious
segments of text. On many of these examples, our Easy-
OCR model actually produced accurate bounds on the unla-
beled text instances, bounds that were empirically evidence
of the model performing well but that were subsequently
seen as mistakes when compared to the flawed annotations.
In a similar vein, we also observed several images for which
EasyOCR produced a single bounding box that successfully
covered the text instance, but for which the corresponding
ground truth annotation consisted of multiple more granu-
lar bounding boxes. Once again, for the purposes of our
pipeline, these EasyOCR outputs wuld be considered suc-
cesses but would nonetheless damage the model’s perfor-

AT,
[IAMES MEEK]
Figure 6: An example of the mismatch between EasyOCR
outputs (red) and COCO-text’s ground truth annotations
(green). Note the lack of COCO-text bounding boxes on

some text regions that EasyOCR successfully bounds, as
well as EasyOCR’s struggles with rotated text.

mance as determined by metrics like IoU. This, of course,
is not to say the model was perfect. It repeatedly struggled
to bound text instances that were skewed or tilted, and also
found small, non-English texts.

Figure [7] provides a perfect example of all these proper-
ties. Finally, it’s important to understand that while Easy-
OCR has much lower AP and AR metrics on text com-

Figure 7: EasyOCR accurately detects text even with per-
turbation. Predictions in red, ground truth not shown.

pared to Grounding DINO on faces, it still outperformed
Grounding DINO when prompted to find “text.”. Due to the
complexity and generalizability of the network, it performs
worse than purpose-built text detectors like Easy OCR.

4.3. Final Pipeline Output

Overall, the individual model performance of Ground-
ing DINO and EasyOCR on their respective tasks was, de-
spite less than perfect metrics, more than sufficient for the
purposes of our project. When tested on a wide selection
of input images from both the WIDER FACE and COCO-
text datasets, our models and obfuscation code successfully
blurred nearly all face and text instances we could observe.
Following this, we ran the entire pipeline, including the
frame splitting and stitching code, on several videos with
relevant content (i.e faces and text) that we pulled from
the previously mentioned pexels.com. On every video, the
pipeline performed admirably, and we were not able to ob-
serve any textual or facial details from the resulting obfus-
cated videos see Figure[2]

5. Conclusion

In this paper, we successfully created a novel pipeline
capable of automatically detecting and obfuscating all in-
stances of sensitive information in an inputted video stream.
By using a combination of Grounding DINO for facial
recognition and EasyOCR for text detection, along with
some manual fine-tuning on robust, diverse datasets, we
were ultimately able to achieve a relatively high degree of
functionality on our use case. Although there were certainly
some issues with individual model performances (some of
which can be attributed to dataset-specific issues, as men-
tioned previously), our code nonetheless remains a power-
ful if rudimentary tool that could, with only minor modifica-
tions, be used in a real-world setting to enhance the privacy
of modern internet users.

While this system provides a solid foundation, there are
several clear avenues for improvement and future research.
The first and most significant amongst these is to work
on increasing the pipeline’s overall speed. This could be
achieved with improvements on several fronts, such as re-
placing Grounding DINO with a light-weight model de-
signed specifically for facial recognition or combining the
facial recognition and text detection models into a single
model capable of identifying both classes. One particularly
promising modification would be to only produce bounding
boxes on every Nth video frame across the entire video, then
use an additional model (likely some variety of an RNN)
that takes in these bounded frames and predicts bounding
boxes on all the unprocessed intermediate frames between
them. Another possible avenue for future work would be to
enhance the existing functionality of the model, perhaps by
training a more advanced text detection system that blurred
only text containing potentially sensitive information like
addresses and phone numbers while leaving more benign
instances unmodified.

Overall, the proposed system, while simple, provides
a solid foundation for privacy-preserving technologies in
video processing and can hopefully serve as a springboard
for future advances and research designed to help make the
modern internet a safer place for all its users.

References

[1] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee. Character
region awareness for text detection. 2019.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[3] L. Deng, Y. Gong, Y. Lin, J. Shuai, X. Tu, Y. Zhang, Z. Ma,
and M. Xie. Detecting multi-oriented text with corner-based
region proposals. Neurocomputing, 334:134-142, 2019.

[4] A. Graves, S. Ferndndez, F. Gomez, and J. Schmidhu-
ber. Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks, 2006.

(5]

(6]

(7]
(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(7]

(18]

(19]

[20]

K. He, G. Gkioxari, P. Dolldr, and R. Girshick. Mask r-cnn.
2018.

D. Hendrycks and T. Dietterich. Benchmarking neural net-
work robustness to common corruptions and perturbations,
2019.

JaidedAl. Easyocr, 2024. Accessed: 2025-06-04.

K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang,
Z. Wang, R. Wang, W. Ouyang, X. Liu, and X. Wang. T-
cnn: Tubelets with convolutional neural networks for object
detection from videos. IEEE Transactions on Circuits and
Systems for Video Technology, 28(10):2896-2907, 2018.

Y. Li, N. Vishwamitra, B. P. Knijnenburg, H. Hu, and
K. Caine. Blur vs. block: Investigating the effectiveness of
privacy-enhancing obfuscation for images. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1343-1351, 2017.

S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li,
J. Yang, H. Su, J. Zhu, and L. Zhang. Grounding dino: Mar-
rying dino with grounded pre-training for open-set object de-
tection. 2023.

C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bring-
mann, A. S. Ecker, M. Bethge, and W. Brendel. Bench-
marking robustness in object detection: Autonomous driving
when winter is coming. arXiv preprint arXiv:1907.07484,
2019.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In 2016
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 779-788, 2016.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. 2016.

T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen,
X. Huang, Y. Chen, F. Yan, Z. Zeng, H. Zhang, F. Li, J. Yang,
H. Li, Q. Jiang, and L. Zhang. Grounded sam: Assembling
open-world models for diverse visual tasks. 2024.

B. Shi, X. Bai, and C. Yao. An end-to-end trainable neural
network for image-based sequence recognition and its appli-
cation to scene text recognition, 2015.

Y.-H. H. Tseng, L. Wang, H. Wu, V. Ramanathan, and
L. Fei-Fei. BIV-Priv-Seg: Locating Private Content in Im-
ages Taken by People With Visual Impairments. In 2025
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 430-440, 2025.

A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie.
Coco-text: Dataset and benchmark for text detection and
recognition in natural images. 2016.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davi-
son, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu,
C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020.

S. Yang, P. Luo, C. C. Loy, and X. Tang. Wider face: A face
detection benchmark. 2015.

J. Ye, Z. Chen, J. Liu, and B. Du. Textfusenet: Scene text
detection with richer fused features. In C. Bessiere, editor,

(21]

(22]

Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI-20, pages 516-522. In-
ternational Joint Conferences on Artificial Intelligence Orga-
nization, 7 2020. Main track.

S. Zhang, C. Chi, Z. Lei, and S. Z. Li. Refineface: Refine-
ment neural network for high performance face detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 43(11):4008-4020, 2021.

S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li.
Faceboxes: A cpu real-time face detector with high accuracy.
In 2017 IEEE International Joint Conference on Biometrics
(1JCB), pages 1-9, 2017.

