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Abstract

Detecting pedestrian hazards—cracks, potholes, uneven
surfaces—on urban sidewalks at night is essential for pub-
lic safety. We combine a public pedestrian-hazard dataset
with 500 custom nighttime images captured under varied
low-light conditions (downtown, residential, post-rain). All
images are resized to 224 x 224, normalized with ImageNet
statistics, and augmented using CLAHE, random bright-
ness/contrast, flips, and geometric transforms. Validation
and test sets are normalized to evaluate low-light enhance-
ment.

We fine-tune six architectures—Custom CNN, ResNet50,
EfficientNetBO, ConvNeXt Tiny, Swin Transformer Tiny,
and Inception v3—using Adam (o = 107%) and cross-
entropy loss; the Custom CNN is trained from scratch. On
the held-out test set, EfficientNetBO and ResNet50 achieve
the highest accuracy (0.9518), with EfficientNetB0 reach-
ing 0.9600 macro-average precision and 0.9500 F1-Score.
ConvNeXt Tiny and Swin Transformer Tiny obtain 0.9286
accuracy; Inception v3 and Custom CNN score 0.9167 and
0.8800, respectively. Qualitative analyses (confusion ma-
trices, saliency maps) confirm that CLAHE and brightness
augmentation boost robustness. These results demonstrate
that pre-trained deep models with targeted low-light en-
hancement effectively detect nighttime hazards.

1. Introduction

This project explores the use of deep learning for detect-
ing hazardous sidewalk conditions: like potholes, cracks,
and surface irregularities, with an emphasis on images cap-
tured during low-light or nighttime scenarios. These types
of hazards pose a heightened danger to vulnerable groups,
including seniors individuals with visual impairments and
those using mobility aids, as reduced visibility significantly
impairs detection. With increasing urbanization, pedestrian
safety and accessibility remain essential concerns for inclu-
sive city infrastructure. By narrowing the focus to night-
time conditions, the project seeks to address a frequently
overlooked gap in computer vision applications for urban
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safety. Automated detection in these challenging lighting
environments has the potential to support municipalities in
prioritizing repairs and ensuring safe pathways for all users,
particularly those at higher risk after dark.

1.1. Literature review

Detecting surface-level hazards like potholes, cracks,
and uneven pavements has been a growing area of interest
in computer vision, especially for road safety and infras-
tructure maintenance. Most existing work focuses on day-
time imagery or vehicular applications, leaving pedestrian
pathways—particularly under nighttime conditions—Iess
explored. Our project builds on this foundation and con-
tributes a novel emphasis on low-light sidewalk hazard de-
tection.

Maeda et al. (2018) introduced a widely used dataset and
approach for road damage detection using deep convolu-
tional neural networks on smartphone-captured images [2].
Their lightweight SqueezeNet-based pipeline demonstrates
feasibility for mobile, in-situ hazard detection. Although
their focus is on vehicular road surfaces, their damage tax-
onomy and efficient architecture choices inform our label-
ing scheme and baseline model selection. Zou et al. (2019)
compared several object detection architectures—including
YOLO, SSD, and Faster R-CNN—for pothole detection us-
ing UAV imagery [6]. Their study highlights the trade-off
between inference speed and detection accuracy, motivating
our interest in benchmarking Faster R-CNN against more
efficient detectors like YOLOVS or YOLOV7 in future work.

Zhang et al. (2020) explored real-time pothole detection
with YOLOV3 in uncontrolled, daylight environments and
introduced histogram equalization as a preprocessing step
to address variable illumination [5]. This directly informs
our plan to incorporate contrast enhancement and other low-
light image processing techniques. Sinha et al. (2017) pre-
sented a semantic segmentation framework for automatic
crack detection in pavement images collected under diverse
lighting, weather, and material conditions [4]. Their en-
coder—decoder architecture with skip connections handles
fine-grained crack features, suggesting a possible avenue
for semantic-level hazard segmentation on sidewalks.



Low-light image enhancement techniques are critical
for nighttime detection. Chen et al. (2018) proposed the
“Learning to See in the Dark” (See-in-the-Dark, SID) net-
work, which performs end-to-end raw image reconstruction
to enhance extremely low-light photographs [1]. Their ap-
proach outperforms traditional Retinex methods on noise
and detail preservation, indicating that such end-to-end
enhancement could be integrated into our preprocessing
pipeline. Park and Lee (2021) introduced DarkSeg, a se-
mantic segmentation model trained on a curated night-
driving dataset that combines contrast enhancement with
multi-scale attention [3]. Although their domain is road
scenes for autonomous vehicles, their strategies for han-
dling nighttime semantic segmentation can be adapted for
pedestrian sidewalk hazard detection.

2. Dataset

We have constructed a custom dataset composed of ap-
proximately 500 nighttime images of sidewalks and pedes-
trian walkways in urban environments. This dataset is de-
signed to complement and expand upon existing pedes-
trian safety datasets by introducing a specific focus on low-
light and reduced-visibility conditions. Our collection high-
lights a variety of surface-level hazards that can compro-
mise pedestrian safety, such as pavement cracks, potholes,
irregular textures, and debris.

To ensure environmental diversity, image collection tar-
geted multiple urban settings, including brightly lit city cen-
ters, dimly lit suburban roads, and infrastructure deprived
zones with minimal artificial lighting. Some images were
taken under post-rain conditions to capture additional visual
complexity, such as glare, surface reflections, and water-
filled potholes factors that further complicate visual hazard
detection after dark.

Image data was sourced through a blend of publicly
available platforms, including Google Street View, and
field-collected photography using mobile devices. All im-
ages have been annotated with hazard-specific labels us-
ing bounding boxes or segmentation masks, depending on
the type of defect present. These annotations serve as the
ground truth for training and validating our models. The
resulting dataset is both curated and task-specific, offering
a valuable asset for building and benchmarking computer
vision systems aimed at nighttime pedestrian safety.

To enhance model robustness to low-light conditions, the
following augmentation techniques were applied:

¢ CLAHE: Enhances contrast in low-light images us-
ing adaptive histogram equalization with a clip limit
of 2.0-4.0 and an 8x8 tile grid.

* Random Brightness/Contrast: Adjusts brightness
and contrast (p=0.5-0.7) to simulate varying lighting
conditions.

* Horizontal Flip: Applied with p=0.5 to introduce ge-
ometric variation.

¢ Shift, Scale, Rotate: Simulates camera movements
with shift limits (0.05), scale limits (0.05-0.1), and ro-
tation limits (£15°).

Training augmentations included all techniques, while val-
idation and test sets used minimal transformations (resize,
normalization, and CLAHE for some models) to ensure re-
alistic evaluation.

2.1. Illustrative samples from the night-time dataset

(a) Clear walkway — ambient
street lighting.

(b) Uneven pavement slab cre-
ating a trip risk.

(d) Very uneven pavement
(c) Clear walkway — very low with holes scattered across the

contrast. path.

Figure 1: Representative night-time images used in our
study. Left column: scenes labelled non-hazard. Right col-
umn: scenes labelled hazard.

3. Methodology
3.1. Data Preprocessing and Augmentation

Let each image be 2 € R3*H>*W We resize all images
to 224 x 224 (and to 299 x 299 for Inception v3) and nor-
malize channels using ImageNet statistics:

p = [0.485, 0.456, 0.406], o = [0.229, 0.224, 0.225].

3.2. Model Architectures

Our goal is binary classification fp(z) — § € [0,1]2
We evaluate six architectures:

Custom CNN A five-layer convolutional network built
from scratch in PyTorch (kernel size 3 x 3, channel pro-
gression 3 — 32 — 64 — 128 — 256 — 512), each



conv block followed by batch normalization, ReLU,
and 2 x 2 max-pooling. An adaptive average pooling
reduces spatial dims to 1 x 1, then a dropout(0.5) and
a single fully-connected layer produce logits.

ResNet50 A 50-layer residual network loaded from
torchvision.models with ImageNet pre-trained
weights. We replace the final FC layer with a two-node
head and fine-tune all layers.

EfficientNetB0 Compound-scaled MobileNet-style blocks
with MBConv and squeeze-excitation. Pre-trained on
ImageNet, with classifier head swapped for two out-
puts.

ConvNeXt Tiny A modernized convolutional design that
mimics transformer-style stage widths and depths, pre-
trained on ImageNet; final layer adapted for binary
output.

Swin Transformer Tiny A vision transformer employing
shifted window self-attention: the input is partitioned
into non-overlapping windows for efficient local atten-
tion, with window positions shifted between layers to
enable cross-window connections. We fine-tune all pa-
rameters after replacing its classification head.

Inception v3 A deep network of mixed inception modules
and two classifiers (main and auxiliary). Both heads
are modified to output two classes and fine-tuned after
loading pre-trained weights.

All pre-trained models leverage the torchvision
codebase; our custom CNN and augmentation pipelines
were implemented on top of the provided CS231N starter
code.

3.3. Training

We minimize the standard cross-entropy loss:

N
L(0) = —% S iclogie,

=1 ce{0,1}

where y; is a one-hot label and §; = fo(z;). All mod-
els use the Adam optimizer with learning rate o = 10~*
(81 = 0.9,8, = 0.999), batch size 16-32, and up to 10
epochs (custom CNN: 10 epochs; pre-trained models: 5
epochs). We save the checkpoint with highest validation
accuracy and employ early stopping if no improvement is
seen for 3 consecutive epochs. Training is performed on
CUDA-enabled GPUs when available; data loading uses 2
worker threads.

4. Results and Evaluation
4.1. Quantitative Results

Table 1 and 2 summarizes the test set performance across
all models. EfficientNetBO and ResNet50 achieved the
highest accuracy (0.9518), followed by ConvNeXt Tiny and
Swin Transformer Tiny (0.9286). Inception v3 (0.9167) and
the custom CNN (0.8800) performed less effectively. Effi-
cientNetBO also showed the highest macro-average preci-

sion (0.9600).

Table 1: Test Set Accuracy and Precision

Model Accuracy Precision (Macro Avg)
Custom CNN 0.8800 0.8800
ResNet50 0.9518 0.9500
EfficientNetB0 0.9518 0.9600
ConvNeXt Tiny 0.9286 0.9201
Swin Transformer Tiny ~ 0.9286 0.9201
Inception v3 0.9167 0.9083

Table 2: Test Set Recall and F1-Score

Model Recall (Macro Avg) F1-Score (Macro Avg)
Custom CNN 0.8800 0.8800
ResNet50 0.9500 0.9500
EfficientNetBO 0.9500 0.9500
ConvNeXt Tiny 0.9363 0.9259
Swin Transformer Tiny 0.9363 0.9259
Inception v3 0.9267 0.9139

4.2. Qualitative Results

Figures 2 present the confusion matrix and sample pre-
dictions for EfficientNetB0, the top-performing model. The
confusion matrix shows high true positive rates (40/40 for
non-hazardous, 41/43 for hazardous), with minimal mis-
classifications. Sample predictions demonstrate robustness
to low-light conditions, with correct classifications for var-
ied sidewalk textures.

4.3. Training Curves

The graph in figure 3 illustrates the training and valida-
tion loss/accuracy curves for ResNet50, as specified in the
original code. The model converges rapidly, with valida-
tion accuracy stabilizing above 0.93 after three epochs and
minimal overfitting.

4.4. Discussion

The superior performance of EfficientNetBO and
ResNet50 (test accuracy: 0.9518) can be attributed to their
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robust feature extraction capabilities and effective handling
of low-light images through CLAHE preprocessing. Ef-
ficientNetB0’s compound scaling optimizes computational
efficiency, making it suitable for resource-constrained en-
vironments, such as edge devices for real-time hazard de-
tection. ResNet50’s residual connections mitigate vanish-
ing gradients, enabling effective learning of deep features
from sidewalk images with varied textures and lighting con-
ditions.

The custom CNN, despite its lightweight design,
achieved the lowest accuracy (0.8800), likely due to its
limited capacity to capture complex features in low-light
images. This suggests that deeper architectures with pre-
trained weights are better suited for this task, especially
when fine-tuned on a specialized dataset. ConvNeXt Tiny
and Swin Transformer Tiny (accuracy: 0.9286) showed
promising results but were slightly less accurate, possi-
bly because transformer-based architectures require larger
datasets or more extensive fine-tuning to fully leverage their
attention mechanisms. Inception v3 (accuracy: 0.9167) was
hindered by its complexity and sensitivity to the relatively

small dataset size, as its multiple inception modules may
overfit on limited data.

Data augmentation, particularly CLAHE and brightness
variation, played a critical role in improving model robust-
ness to low-light conditions. CLAHE enhanced contrast in
dark images, enabling models to detect subtle hazards like
cracks. Brightness variation and random darkening sim-
ulated nighttime variability, ensuring models generalized
well to real-world scenarios. The dataset’s class balance
(40 non-hazardous, 43 hazardous in the test set) ensured fair
evaluation, but its small size (approximately 83 test images)
limited the potential of transformer-based models, which
thrive on larger datasets.

Future work could explore the following directions:

e Larger Datasets: Incorporating additional sidewalk
images from public datasets (e.g., Cityscapes or
custom-collected nighttime images) to improve gener-
alization.

e Advanced Low-Light Enhancement: Techniques
like zero-reference deep curve estimation or Retinex-
based methods to better handle extreme low-light con-
ditions.

* Ensemble Methods: Combining predictions from Ef-
ficientNetBO and ResNet50 to boost accuracy and ro-
bustness.

¢ Real-Time Deployment: Optimizing models for edge
devices (e.g., using model pruning or quantization) to
enable real-time hazard detection for pedestrian safety
applications.

e Multi-Class Classification: Extending the task to
classify specific hazard types (e.g., cracks vs. pot-
holes) for more granular detection.

5. Conclusion and Future Work

In this work, we investigated the problem of detect-
ing pedestrian hazards on urban sidewalks under night-
time and low-light conditions. We evaluated six archi-
tectures—Custom CNN, ResNet50, EfficientNetB0, Con-
vNeXt Tiny, Swin Transformer Tiny, and Inception
v3—using a combined dataset of public hazard images and
approximately 500 custom nighttime captures. Our quan-
titative results (Section 4.1) showed that EfficientNetB0O
and ResNet50 achieved the highest accuracy (0.9518)
and macro-average precision (0.9600 for EfficientNetBO0),
significantly outperforming the lightweight Custom CNN
(0.8800) and mid-sized Inception v3 (0.9167). The strong
performance of EfficientNetBO0 can be attributed to its com-
pound scaling strategy and effective use of CLAHE prepro-
cessing, while ResNet50’s residual connections facilitated
deep feature learning without vanishing gradients.



The relative underperformance of the Custom CNN
highlights the importance of pre-trained deep features when
data is limited, and the slightly lower scores of Con-
vNeXt Tiny and Swin Transformer Tiny (0.9286 accu-
racy) suggest that transformer-based models may require
larger datasets or more extensive fine-tuning to fully lever-
age their attention mechanisms. Inception v3’s moder-
ate performance further underscores the trade-off between
architectural complexity and dataset size: its multiple
inception modules may overfit on fewer training exam-
ples, even with aggressive data augmentation. Qualita-
tive analyses (Section 4.2) confirmed that our augmentation
pipeline—particularly CLAHE, random brightness varia-
tion, and geometric transforms—was critical in enhancing
model robustness to real-world nighttime variability.

Given more time, resources, and team members, sev-
eral avenues could further improve pedestrian hazard de-
tection. First, expanding the dataset with additional low-
light images from public sources (e.g., Cityscapes Night)
or crowd-sourced collections would bolster model general-
ization. Second, integrating advanced low-light enhance-
ment techniques—such as zero-reference deep curve esti-
mation or multi-scale Retinex—could improve feature visi-
bility in extreme darkness. Third, exploring ensemble meth-
ods that combine EfficientNetB0O and ResNet50 predictions
may yield additional performance gains. Finally, optimiz-
ing models for deployment on edge devices via pruning,
quantization, or knowledge distillation would enable real-
time hazard alerts on smartphones or embedded systems.
Extending the task to multi-class classification of specific
hazard types (cracks, potholes, uneven paving) and con-
ducting user studies on alert effectiveness would further
bridge the gap between algorithmic development and real-
world pedestrian safety applications.
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