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Abstract

We propose the FloodscapeDiffuser model for gener-
ating post-flood satellite images by conditioning on pre-
flood images. This will help communities predict the ef-
fects of major flood events and plan mitigation strategies.
We use as a base the generative foundation model Diffu-
sionSat trained on satellite imagery which is capable of
text-to-image generation. Its ability to produce post-flood
images conditioned on pre-flood images is extended with
further fine-tuning using a ControlNet on the xBD satel-
lite dataset, which contains satellite images before and after
floods. However, instead of using a full ControlNet that is
computationally expensive to train, we introduce LoRA and
DoRA alternatives. We show that these low-rank approxi-
mations can be trained with vastly fewer resources in much
shorter amounts of time. These results are promising as
it will allow more communities around the world to more
easily fine-tune flood prediction models on their own data.
Nonetheless, the LoRA and DoRA outputs are less detailed
and fairly blurry, suggesting that these low-rank approxi-
mations are better suited to high-level approximation tasks
than detailed simulations.

1. Introduction

Climate change is driving ever-more frequent and severe
natural disasters including floods, wildfires, hurricanes, and
more. Photorealistic visualizations of how a specific lo-
cation might appear after such catastrophic and damaging
events can help governments, NGOs, and residents commu-
nicate risk and prepare effectively. As a case study, we focus
specifically on floods, whose risks are constantly growing in
the face of rising sea levels and the proliferation of extreme
weather patterns.

DiffusionSat [8] is a generative foundation model for
satellite imagery that can generate realistic, high-resolution
satellite imagery taking as input textual prompts and meta-

data like coordinates, timestamps, ground sampling dis-
tance, and cloud cover. However, we wanted to provide
further image conditioning to this stable diffusion model to
be able to perform temporal inpainting. In this process,
we provide as input a satellite image of a location right be-
fore a flood and task the model with outputting an image of
the same location right after a flood has occurred.

A popular model for extending the functionality of a
foundation model to be able to condition on images is
ControlNet[22]. However, these models can still be quite
large and costly to train. Several alternative models have
been introduced, most notably ControlLoRA[20], which
combines ideas from ControlNet and low-rank adaptation
(LoRA) for more efficient training and inference. There
is also the possibility to use weight-decomposed LoRA
(DoRA) instead when creating an simplified version of
ControlNet.

Our proposed model FloodscapeDiffuser combines
these ideas, taking the foundational DiffusionSat model as
a base and finetuning it using the model architecture of
ControlLoRA or ControlDoRA to allow for satellite im-
agery conditioning for flood data. We show that despite the
smaller size of these low-rank alternatives, they are still able
to perform adequately with much lower training and mem-
ory costs. We compare our results with those of Diffusion-
Sat, which performed a similar task using a full ControlNet
architecture.

The inputs and outputs are the same for our Flood-
scapeDiffuser model as for the full ControlNet architecture.
We pass the model an RGB tile with a satellite image of a
landscape pre-flood, metadata such as coordinates and dis-
tance measures, and the following static prompt: “a fmow
satellite image after being affected by a flood natural disas-
ter”. The model then produces a simulated post-flood image
that preserves realism and local geometry. Our model does
this while requiring far fewer trainable parameters than the
full-rank ControlNet baseline while still producing realistic
and faithful images.

We find that ControlLoRA and ControlDoRA are indeed
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faster and more efficient to train than the baseline, with
the low-rank model taking roughly 10 minutes per epoch
to train on an A100 GPU with 40GB of RAM. However,
we also find that the outputs of the ControlLoRA model
are far fuzzier and less similar to the groundtruth. This
suggests that ControlLoRA may be better suited to tasks
requiring high-level segmentation and approximation than
detailed visual simulation.

2. Related Work
Latent-diffusion models (LDMs) are currently the

state-of-the-art in producing high-quality generated images
first proposed in 2022 [14]. Instead of processing the raw
image pixel values through a diffusion model (DM) com-
prised of a forward diffusion process and a denoising U-Net
[15], the pixel values are transformed into a latent space us-
ing a variational autoencoder (VAE). Before an input im-
age is passed to the DM, it goes through the encoder of the
VAE, and after denoising occurs in the DM the final out-
put is passed through the decoder of the VAE to then be
compared to the ground truth output. By converting images
from pixel space to latent space, it has been shown to greatly
reduce computational costs.

LDMs thus generate unconditioned images as output at
inference time. However, researchers aimed to add condi-
tioning in the form of either text or conditioning images to
guide the generation of new images. A pivotal example is
the foundation model Stable Diffusion (SD) which was cre-
ated by the inventors of LDMs [14]. They trained an LDM
using a subset of the LAION-5B database [16] containing
an 860M parameter U-Net while using a frozen CLIP ViT-
L/14 text encoder [12] with 123M parameters to condition
the output images based on textual prompts. The textual
conditioning is added in the form of cross-attention lay-
ers within the denoising U-Net of the LDM. This model
is used as a base for an abundance of tasks that can be
accomplished through fine-tuning, with new versions con-
stantly being published publicly on GitHub and Hugging-
face for easy access. However, sometimes the results of
SD can still be uncontrolled and unstable and be heavily
reliant on a well-written textual prompt, something which
models like T2I-Adapter have tried to address by adding
additional textual conditioning to the pretrained SD model
[11]. The T2I-Adapter model freezes the weights of the SD
model while learning new external weights that transform
conditional information that is concatenated to the inputs
of every downsampling layer within the denoising U-Net.
The model greatly improves textual conditioning while also
allowing for the possibility of multiple conditions to be en-
forced.

However, textual prompts are not the only form of condi-
tioning that may be required for a task. Images are another
major modality used to condition LDMs and produce out-

puts aligned in a certain way. This conditioning has been
accomplished in multiple ways. Firstly, in InstructPix2Pix
[2] an additional image conditioning channel is added to the
first convolutional layer in the denoising U-Net, where the
conditioning image embedded in the latent space is concate-
nated with the noisy latent. This method is used mostly to
edit or alter input images directly. However, for certain use
cases this may be somewhat restrictive: instead of editing a
picture we may want to more generally guide image gener-
ation using spatial control in the form of structural elements
like edge maps or depth maps.

This brings us to the second main method for image con-
ditioning: ControlNet [22]. Instead of adding additional
conditioning channels like InstructPix2Pix, ControlNet cre-
ates two copies of the weights of the downsampling portion
of the pretrained U-Net from Stable Diffusion. One set of
weights is frozen to ensure information gained during pre-
training on billions of images is not lost. The other set is
initialized using the pre-trained weights and then learned
by using a concatenation of the latent noise with the con-
ditioning image in latent space. These two copied layers
are then combined with zero convolutions, or 1 × 1 convo-
lutions initialized to zero weights and biases which again
helps protect the strong pre-trained backbone ”by eliminat-
ing random noise as gradients in the initial training steps”
[22]. ControlNets have shown great promise in guiding im-
age generation in a more generic way besides directly edit-
ing images and have shown success in a variety of condi-
tioning types like Canny Edge [3], Depth Map [13], Normal
Map [18], M-LSD lines [5], HED soft edge [21], ADE20K
segmentation [23], and Openpose [4].

However, ControlNet architectures can still contain
many layers and have high complexities. For example,
the original ControlNet model [22] had 361M parameters,
which can be impractical and resource-intensive for a ma-
jority of use cases. A popular approach to fine-tune foun-
dation models in a way that is more computationally and
memory efficient while also not compromising on perfor-
mance is low-rank adaption (LoRA). At first, the tech-
nique was exclusively applied to large language models,
but recently their effectiveness for many different modali-
ties have been discovered. LoRA involves freezing the pre-
trained weights and instead optimizing low-rank matrices
that model dense layers’ changes in the fine-tuning pro-
cess [7]. Recent work has further extended LoRA to pro-
duce techniques like DoRA, or weight-decomposed low-
rank adaptation [9]. Instead of fine-tuning a low-rank ma-
trix for an entire weight matrix, DoRA first decomposes
the weights into magnitude and direction, with LoRA being
used to estimate the more complicated direction part. The
magnitude is then estimated with a few parameters, with
DoRA overall being more stable and having a greater learn-
ing capacity than LoRA.
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The image conditioning ability of the ControlNet archi-
tecture has been combined with LoRA to form the Control-
LoRA model introduced in 2024 [20]. Control-LoRA can
take a 4.7GB ControlNet architecture and distill it to just
377MB [17]. Although there does tend to be slight de-
creases in performance related to metrics like Frechet In-
ception Distance (FID) as well as output clarity, Control-
LoRA models take much less time to train, require far less
memory, and do not require as many or as advanced GPUs.
This makes it ideal for those without access to the largest
computers or other resources but still want to harness the
power of a foundation generative model that requires image
conditioning.

3. Methods
Our proposed model, FloodscapeDiffuser, extends the

Stable Diffusion base by introducing spatial and metadata
conditioning in addition to the existing textual conditioning
to simulate post-flood satellite imagery from pre-flood ob-
servations. The core architecture includes a frozen Stable
Diffusion UNet backbone augmented with efficient Con-
trolLoRA pathways that replace larger conventional Con-
trolNet weights. We additionally incorporate a frozen CLIP
encoder for textual prompts, sinusoidal timestep embed-
dings, structured embeddings for satellite metadata, and
classifier-free guidance during inference. This design en-
ables effective flood prediction while dramatically reducing
computational requirements compared to full ControlNet
approaches. For reference, our model architecture is very
similar to the model architecture in Appendix A.1, except
the green ”DiffusionSat trainable copy” layers are replaced
with either LoRA or DoRA adapters.

3.1. CLIP Text Encoder

We use the frozen CLIP ViT-L/14 text encoder with
123M parameters to process text prompts. All training ex-
amples use the same fixed prompt: “a fmow satellite im-
age after being affected by a flood natural disaster.” The
tokenized prompt is encoded into a text embedding Et ∈
R77×768, which is injected into every level of the denoising
UNet via cross-attention layers, consistent with the standard
conditioning mechanism used in Stable Diffusion.

3.2. Timestep Embedding

Each diffusion timestep t is embedded using a sinusoidal
positional encoding γ(t), followed by a two-layer multi-
layer perceptron (MLP) to produce the final timestep em-
bedding Etime = MLP(γ(t)). These embeddings are in-
jected into each residual block of the UNet and Control-
LoRA modules through addition, enabling the model to
learn temporally-aware denoising behavior. In other words,
this allows it to condition its denoising behavior on the cur-
rent noise level.

3.3. Metadata Embedding

Each satellite image is associated with a JSON metadata
file containing structured information such as sensor ID, co-
ordinates, timestamp, and ground sampling distance. We
extract seven numerical features from these files, normal-
ize them, and process each feature independently through
sinusoidal positional encoding followed by a TimestepEm-
bedding module. The final metadata embedding is com-
puted as Em =

∑7
i=1 TimestepEmbeddingi(γ(mi)), where

mi represents the i-th normalized metadata feature and γ(·)
denotes sinusoidal positional encoding. This embedding is
added to the timestep embedding and injected into both U-
Net and ControlLoRA blocks to provide spatial and tempo-
ral context for denoising.

3.4. VAE

We use the pretrained variational autoencoder (VAE)
from Stable Diffusion to encode and decode RGB im-
ages into and out of the latent space. It has been shown
that performing the forward and reverse diffusion processes
within a latent space can drastically improve convergence
and speed up training [14]. Given a 512 × 512 × 3 pre-
flood image ypre, we compute its latent representation us-
ing the VAE Encdoer E to get z0,pre = EVAE(ypre), where
z0,pre ∈ R4×64×64. This latent vector z0,pre is then consid-
ered fully denoised and begins the forward diffusion pro-
cess. Then at the very end of our model pipeline when we
aim to reconstruct an image consisting of pixels, we utilize
the VAE Decoder D. At this final stage, our initial fully de-
noised image representing a pre-flood satellite image z0,pre
has been converted to a fully denoised image of a post-flood
scene z0,post by our forward and reverse processes. Thus,
to get our predicted post-flood image ŷpost in the form of
a 512 × 512 × 3 RGB image, we perform the calculation
ŷpost = DVAE(z0,post). This is then considered the out-
put of our overall model. The VAE weights remain frozen
throughout training.

3.5. Forward Diffusion Process

Once our pre-flood image has been embedded into the
latent space defined by our frozen VAE model to get the
latent variable z0, we perform the forward diffusion process
which consists of T small noising steps. Using the stepwise
variances βt with t ∈ {1, . . . , T}, we get

zt =
√
1− βtzt−1 +

√
βtϵ, ϵ ∼ N(0, I) (1)

But by the properties of Gaussian distributions we get
the closed form solution

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N(0, I), (2)

where αt = 1− βt and ᾱt =
∏t

i=1 αt.
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If the values of the stepwise variances βt are chosen cor-
rectly, the distribution of zT should be indistinguishable
from true Gaussian noise. No parameters are learned at this
stage, but the noised latent variables zt for t ∈ {1, . . . , T}
are used in the denoising process carried out by the denois-
ing UNet.

3.6. Stable Diffusion Denoising UNet

We use the pretrained UNet2DConditionModel from
the DiffusionSat foundation model as the main denoising
model. This UNet has an encoder-decoder structure with
860M parameters, with cross-attention layers for text con-
ditioning and residual blocks for feature processing. The
network takes as input a noisy latent zt, timestep embedding
Etime, text embedding Et, metadata embedding Em, as well
as spatial residuals from the ControlNet modules. The out-
put is then a new latent vector zt−1 representing the results
of one step of denoising. Noisy latents are iteratively passed
through the denoising UNet to produce the final cleaned la-
tent vector. After being passed to the decoder of the VAE,
this cleaned latent vector becomes the output of the model
pipeline. Note that all UNet weights remain frozen when
training our ControlLora and ControlDoRA models.

3.7. ControlNet with Frozen UNet Backbone

To enable conditioning on pre-flood imagery ypre, we
use a ControlNet-style pathway. For a pure ControlNet ar-
chitecture, a copy of all UNet downsampling block weights
are made, with one set remaining frozen and the other be-
ing trainable during fine-tuning. The conditioning image, in
our case ypre, is also transformed into the latent space using
the VAE encoder. It is then processed by the trainable copy
of the downsampling blocks, with the output being injected
into the main UNet in the form of residuals. This injec-
tion is done via zero-initialized 1 × 1 convolutions (“zero
convs”) at each resolution. This architecture preserves the
pretrained UNet’s capacity while enabling fine-tuned spatial
control.

3.8. LoRA for Efficient Adaptation

To reduce computational cost and the number of param-
eters needed, we replace full-rank ControlNet trainable ma-
trices with Low-Rank Adaptation (LoRA) layers. LoRA
modifies the ControlNet model by replacing the full train-
able copies of the UNet downsampling block weights with
rank-r matrices. Now if W ∈ Rn×m are the frozen UNet
weights, we introduce low-rank matrices A,B to model the
residuals ∆W instead of a full residual matrix in the orig-
inal ControlNet. Thus, using LoRA for ControlNet, the
UNet downsampling weights become

W ′ = W +∆W, (3)

where ∆W = AB⊤ and A ∈ Rn×r, B ∈ Rm×r.

In our implementation, we use r = 4 for linear layers
and r = 0 for convolutions, resulting in drastically fewer
parameters than full ControlNet.

3.9. DoRA Alternative

We also experiment with Weight-Decomposed Low-
Rank Adaptation (DoRA), which separates the magni-
tude and direction components of weight updates. DoRA
rescales the low-rank update by a learned magnitude ten-
sor, with the UNet downsampling weights for ControlDora
becoming:

W ′ =
m

∥W +AB⊤∥c
· (W +AB⊤) (4)

where m is a learnable magnitude vector and ∥ · ∥c denotes
column-wise normalization. This decomposition provides
finer control over the adaptation process and can improve
training stability, particularly beneficial given our small
batch size constraints. Both LoRA and DoRA adapters are
implemented using custom PyTorch modules and can be
toggled via command-line flags during training.

3.10. Classifier-Free Guidance (CFG)

During inference, we use classifier-free guidance to ad-
just alignment with the conditioning inputs. We train the
model to handle both conditional and unconditional inputs
by randomly dropping conditioning information with 10%
probability during training. At inference, we interpolate be-
tween conditional and unconditional predictions:

ϵ̂ = ϵθ(zt, ∅) + w · (ϵθ(zt, c)− ϵθ(zt, ∅)) (5)

where w is the guidance scale (we use w = 6), c repre-
sents all conditioning information (text, image, and meta-
data), and ϵθ is the predicted noise. CFG improves sam-
ple fidelity and conditioning adherence without requiring
model retraining.

3.11. Loss Function

Our main objective is minimizing the standard diffu-
sion objective using denoising score matching with mean
squared error (MSE):

LMSE = Ez0,t,ϵ

[
∥ϵθ(zt, t, c)− ϵ∥2

]
(6)

where c encompasses all conditioning information (text,
pre-flood imagery, and metadata).

3.12. Our contributions

Our implementation builds on the HuggingFace Dif-
fusers package, the DiffusionSat repository [8], and the
ControlLora repository [20]. Our key contributions in-
cluded implementing DoRA layers and integrating the Con-
trolLora layers with the DiffusionSat Unet architecture for
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(a) Before flood

(b) After flood

Figure 1: Data example

proper satellite imagery conditioning. In addition, we opti-
mized the timestep and metadata embedding layers for our
use case. New scripts were written to fit this new model as
well as perform inference with it. In this work, we com-
pare our LoRA- and DoRA-based models against the full
ControlNet baseline from DiffusionSat and analyze the ef-
fectiveness of our more efficient conditioning approach.

4. Data
We fine-tune our model and evaluate its performance on

the xBD disaster-response dataset [6]. It contains images
of 19 natural disasters worldwide, with all images having
ground-sample distances of 0.3–0.5m. This dataset was ini-
tially created to support the xView2 modeling competition
for assessing building damage caused not just by floods
but also hurricanes and earthquakes. From this dataset,
we extracted before and after images related to three dif-
ferent flood events: the Nepal Monsoon Floods in August
2017, the U.S. Midwest Floods in March 2019, and the Palu
Tsunami in September 2018. See 1 below for an example
of a satellite image before (1a) and after (1b) a flood.

Each flooding event provides geo-aligned pre-flood
and post-flood RGB tiles in 16-bit GeoTIFF format at
1024×1024 pixels. These are accompanied by JSON meta-
data (sensor readings, latitude/longitude, timestamp, etc.).

Using these raw images we performed multiple pre-

processing steps. First we clamped each pixel value
to transform it from 16-bit to 8-bit. We then
center-cropped/resized every tile to resolution 512×512
to match the input resolution of DiffusionSat. We then
grouped these pre-processed images, JSON metadata, and
our constant text prompt “a fmow satellite image after be-
ing affected by a flood natural disaster” together for each
event. Lastly, we packaged samples into the standard Web-
Dataset format. This consists of putting 100 events together
in a single TAR shard, with a shard-manifest text file ref-
erencing each TAR file. This format allows for efficient
streaming I/O during training and inference.

We split our dataset into three disjoint sets in the form of
train, validation, and test datasets. We made sure to stratify
these datasets by flood event, so each dataset has at least
one event from Nepal, the U.S., and Palu. The train dataset
contained roughly 1200 pairs of images, and the both the
validation and testing datasets contained 120 pairs. Then
before passing the images to the model for training and in-
ference, we performed an additional processing step in the
form of normalization, assuring that the RGB values within
each channel have mean zero and standard deviation one.
No data augmentation was performed.

5. Results

5.1. Experimental Setup

For training our FloodscapeDiffuser model, we trained
the layers of the ControlLora conditioner for 10 epochs with
a learning rate of 5e−4. By only training for 10 epochs we
saw less overfitting when evaluating on the validation set,
and the loss already had began to plateau at that stage. This
was fewer epochs than what DiffusionSat used for their full
ControlNet model [22], but it seemed appropriate for our
case. Our learning rate was larger than that used by Dif-
fusionSat as a higher value allowed loss values to decrease
more quickly at the beginning of training. This fact that
LoRA benefits from the highest possible learning rate that
facilitates stability has been proven rigorously previously
[1]. In addition, we used the AdamW optimizer because
of its proven superior performance for ControlNet satellite
applications [8]. Our loss plots for training are included in
Appendix A.2 and A.3

Other experimental design choices were limited by the
computational complexity and memory requirements of dif-
fusion models. We could only use batch sizes as large of 8
without our training sequence terminating due to memory
issues. To compensate for this, we used gradient accumula-
tion steps of 2 to get effective batch sizes of 16 while still
managing our memory usage. Also, for hyperparameter se-
lection we used our training and validation data splits in-
stead of multi-fold cross validation given the long training
times and computational cost of our models.

5



5.2. Qualitative Evaluation

We start by evaluating our models qualitatively. We vi-
sually inspected our model outputs which were produced
using 50 inference timesteps and a classifier-free guidance
scale of w = 6. In Figure 2 we provide a flood event that
occurred next to a body of water, and Figure 3 represents an
example fully on land. In both of these figures, on the far
left is the conditioning image in the form of the landscape
before the flood. On the far right is the target, or a satellite
image of the landscape after the flood occurred. Then in the
middle left is the output of the ControlLoRA model and the
middle right is the output of the ControlDoRA model. The
two middle images aim to mirror the image on the far right.
In addition, above the images for the true pre- and post-
flood events are metadata information passed to our model.

Overall, we see that our model outputs are somewhat
blurry and unclear. They also tend not to be very color-
ful, with most of the images being beige or brown or white.
The one exception is the ControlLora model near water in
Figure 2 which correctly makes the water blue, albeit not
the correct shade of blue from the ground truth satellite im-
ages. This blurriness and lack of color is probably due to
the fact that we are using low-rank adaptations. With fewer
parameters to estimate, our models are more likely to under-
fit. The lack of parameters make it difficult for our model to
produce small details in a satellite output, and it also makes
it hard to have rich information in the color channels, thus
defaulting to somewhat average colors like beige and white.
As a result, we suggest using our results for more higher-
level analysis and large-scale damage assessment, as details
are hard to notice in our images.

However, the structures of our produced outputs does
seem rich and accurate for flood situations. The outlines
of roads, buildings, trees, landscapes, and coastlines are
clearly visible and faithful to the groundtruth in our out-
puts. We also see clear signs of flood effects. For example,
in Figure 2 the ControlLora and ControlDoRA coastlines
have clearly receded from the conditioning pre-flood im-
age, although for ControlLora it is highly exaggerated. This
mirrors the fact that the groundtruth target has less coast-
line than the pre-flood image. Similarly, in Figure 3 the
groundtruth target has wider gaps between trees and more
flat sections, and this is clearly seen in our outputs. Look-
ing in the bottom left of these images, we see larger gray
patches than what existed pre-flood, showing clear signs of
flood damage.

Overall, our ControlLora and ControlDora outputs seem
to be of relatively similar caliber. The coloring of the Con-
trolLora model seems to be slightly richer in Figures 2 and
3, and we also note that the lines seem to be slightly more
distinct in the ControlLora images. This was unexpected
given the current popularity of DoRA over LoRA in the lit-
erature.

5.3. Quantitative Evaluation

Next, we report numeric metrics such as the popular
Peak Signal to Noise Ration (PSNR) and Structural Sim-
ularity (SSIM), which we compare to our baseline.

The first quantitative measure we use is PSNR. Given an
input image f and output image g and a maximum possible
pixel value of L, the equation for calculating PSNR between
the two images [10] is

PSNR(f, g) = 10 · log10
(

L2

MSE(f, g)

)
, (7)

where for images of height H and width W and channel
dimension C we get

MSE(f, g) =
1

HWC

H∑
i=1

W∑
j=1

C∑
k=1

(fijk − gijk)
2

PSNR is one of the most popular metrics for assess-
ing the quality of generated images. However, it has been
shown that it does not always align well with human per-
ception [10]. It mostly considers pixel differences, which
may not be the most important factor in generation and align
with human-subjective value. Also, a slight shift in pixel
values can cause a dramatic decrease in PSNR while mak-
ing no difference in how humans perceive it.

These issues have led to the development of other met-
rics such as SSIM, first developed in 2004 [19]. SSIM still
focuses on differences between images, but does so by com-
paring luminance, contrast, and structure. The luminance of
an image Y is calculated as the mean of the pixel intensity
values µy , and contrast is calculated as the standard devia-
tion of these values σy . So if we suppose that image y has C
channels for an image size H ×W , and an individual pixel
value is yijk, then

µy =
1

HWC

H∑
i=1

W∑
j=1

C∑
k=1

yijk (8)

σy =
1

HWC − 1

H∑
i=1

W∑
j=1

C∑
k=1

[yijk − µy]
2 (9)

Then SSIM utilizes a similarity function S to compare val-
ues between two images, with

S(x, y, c) =
2 · x · y + c

x2 + y2 + c
(10)

for scalar values x and y to be compared and c = (k · L)2,
where 0 < k ≪ 1 is a constant for numerical stability and
L as above is the maximal pixel value.

Now say that we have input image f and output im-
age g. We then have that the luminance comparison is

6



Figure 2: Model Output with Body of Water

Figure 3: Model Output with Land

Cℓ(f, g) = S(µf , µg, c1) and the contrast comparison is
Cc(f, g) = S(σf , σg, c2) for chosen scalars c1, c2 > 0.

Lastly, the structure comparison takes into account the
pixel standard deviations σf and σg as well as the empirical
covariance of pixel values defined as

σf,g =
1

HWC − 1

H∑
i=1

W∑
j=1

C∑
k=1

(fijk − µf )(gijk − µg). (11)

We then get that the structure comparison Cs is similar to a corre-
lation coefficient where for constant c3 > 0 we have

Cs =
σf,g + c3

σf · σg + c3
. (12)

In the end, we get that the final SSIM value is

SSIM(f, g) = [Cℓ(f, g)]
α · [Cc(f, g)]

β · [Cs(f, g)]
γ , (13)

where α > 0, β > 0, and γ > 0 are tunable parameters to adjust
the relative importance of the various comparisons.

For our purposes, we chose α = β = 0.5 and γ = 2. This is
because for satellite imagery, the luminance and contrast can vary
greatly depending on weather, cloud coverage, time of year, cam-
era quality, etc. Thus, these two comparisons should have less
effect on the overall SSIM. Instead, we want structure to have
the largest effect on our comparison, allowing us to focus on the

changing of bodies of water, structural damage that occurred, and
landscapes affected as a result of flooding. In addition, we chose
our stabilizing constants as

c1 = c2 = c3 = (0.01 ∗ L)2 = (0.01 ∗ 255)2 = 6.5025.

Larger values would have taken away from the expressiveness of
the comparisons, and smaller values led to small fractions that
were more difficult to compare.

We compare our generated PSNR and SSIM values to that of
the baseline DiffusionSat with ControlNet in Table 1 by perform-
ing inference over images in our testing dataset. However, the au-
thors of DiffusionSat did not make publicly available their choices
of α, β, γ and c1, c2, c3 for SSIM in their work [8], making it more
difficult to compare our metrics.

Model PSNR↑ SSIM↑
Baseline 18.31 0.39
ControlLoRA 12.95 0.33
ControlDoRA 13.07 0.32

Table 1: Image Quality Assessment Metrics

Inspecting Table 1 and using the fact that higher PSNR and
SSIM values indicate better image quality, we see that our Control-
LoRA and ControlDoRA methods do significantly under-perform
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the baseline with ControlNet. The PSNR for the baseline is 41.4%
and 40.1% higher than the LoRA and DoRA alternatives, respec-
tively. Then the difference is less for SSIM, where the baseline has
a value 18.2% and 21.9% higher. This difference in quality met-
rics was expected, however, given the greatly reduced size of our
model. Also, compared to ControlLora, ControlDora does better
in terms of SSIM but worse in terms of PSNR.

The smaller difference in the SSIM metric compared to the
PSNR metric was probably caused by our choice to focus on struc-
ture over luminance and contrast, and as we saw in our Qualita-
tive Evaluation subsection our model is best at producing accu-
rate structures. Another caveat is that we do not know the SSIM
weighting chosen by the baseline, which could be affecting this
comparison.

5.4. Efficiency Evaluation
Lastly, we highlight the efficiency of our approach with details

on hardware used, training times, and the number of parameters.

Model GPUs Training Hours Parameters

Baseline 4 20 378,582,160
ControlLoRA 1 4 900,864
ControlDoRA 1 4 1,004,480

Table 2: Efficiency Metrics

For our model training we only used a single A100 GPU
through GoogleColab. However, the authors of DiffusionSat used
four A100 GPUs for their ControlNet fine-tuning. See the first col-
umn of Table 2. For many researchers, meteorologists, or others
interested in flooding, it can be difficult or expensive to get access
to so many powerful GPUs. Thus, our methods provide a more
accessible and cost-effective alternative to producing strong flood
generation models.

In addition, Table 2 highlights how much faster our model
training was compared to DiffusionSat. Both the LoRA and DoRA
versions of ControlNet only took about 4 hours for each training
run consisting of 10 epochs. This is only one fifth of the time
it took to train the complete DiffusionSat ControlNet model for
a similar number of iterations, which turned out to be 20 hours.
Thus, for extremely critical scenarios where a flood prediction
model is needed in a shorter time frame, our model would be pre-
ferred. Our shorter training time also allows more models and hy-
perparameter combinations to be iterated upon, greatly speeding
up the total time needed to produce a final model.

As seen in the last column of Table 2, our models contained
about a quarter of the number of parameters as the full base-
line model based on a ControlNet architecture, going from almost
380M parameters to either 900K or 1M parameters for Control-
Lora and ControlDora, respectively. This means that only around
one quarter of the number of parameters were needed to fit our
models. Fewer parameters meant less computation and memory
usage, but also helped assure that our models did not overfit dur-
ing the fine-tuning phase for flood prediction. In fact, our mod-
els likely underfit. Our frozen base weights from DiffusionSat al-
ready contained very rich satellite image representations, so hav-

ing fewer learned parameters meant we were better able to pre-
serve that information gained during pre-training and avoid over-
fitting.

Despite the lower performance in terms of image quality, our
models have many efficiency benefits. They can be trained much
more cheaply and with fewer GPUs, making them more accessi-
ble. Training times are much lower as well, expediting the entire
process if results are needed quickly. Lastly, with fewer parame-
ters there was less computation, memory usage, and risk of over-
fitting.

6. Conclusion

In this paper, we introduced FloodScapeDiffuser, which is a
lightweight, low-rank diffusion model for generating post-flood
satellite imagery simulations. The model takes in a conditional in-
put image, as well as a text prompt asking the model to simulate
what the given location would look like flooded. Building on the
original baseline architecture of a DiffusionSat model with a full
ControlNet, we replaced the ControlNet used for image condition-
ing with LoRA and DoRA alternatives.

As hypothesized, we find that these low-rank adaptations are
significantly more efficient to train. They require less memory
and have lower training times compared to the baseline ControlNet
model. Nonetheless, the tradeoff for this computational efficiency
is the performance and detail that the model can accommodate.
Generally, the outputs produced by the low-rank adaptations are
fuzzier and less detailed, as demonstrated by the declines in SSIM
and PSNR compared to the baseline model. While the model does
preserve overall structure, such as building blocks and the relative
positioning of structures relative to each other, it does not capture
low-level detail of the structures or degree of flood damage. It
tends to generate grey and fuzzy outputs.

One possible explanation for this lower performance is that the
low-rank nature of this adaptation is not able to capture the com-
plex details between the structures in the image. Thus, the model
cannot show granular flooding damage and structural components.
Another limitation is the limited number of training images (1110
pairs), and the low-detail nature of satellite imagery. as we only
had 1100 training pairs. We may improve on this by using data
augmentation or collecting more data. Another limitation included
the limited batch size due to the memory limitations of the GPU
(A100, 40 GB RAM). This is indicated by the general lack of sta-
bility seen in the loss curves (see Appendix A.2 and A.3), with
the loss fluctuating significantly for both DoRA and LoRA. This
could be alleviated by using a lower learning rate and increasing
gradient accumulation.

Overall, we find that low-rank adaptations provide a computa-
tionally efficient alternative to the full ControlNet model. These
might be suitable in cases where compute is limited and only a
high-level approximation or segmentation is needed such as a seg-
mentation of flooding zones or structures. However, in order to
generate a detailed simulation, we likely need to leverage full-rank
layers and higher-dimensional representations in the early-middle
layers of the model, which often encode granular structural details.
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A. Appendix

Figure A.1: DiffusionSat ControlNet Architecture

Figure A.2: LoRA Training Loss over Training Steps

Figure A.3: DoRA Training Loss over Training Steps
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