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Abstract

Artificial intelligence and deep learning is founded on
data. The ability to generate synthetic data is a transfor-
mative technique for enabling the creation of large-scale,
diverse datasets without the constraints of manual aggrega-
tion and labeling. This project explores the application of
synthetic data generation through the application for food
amount estimation, pulling existing research/applications
of the digital twin” concept. It includes a comprehen-
sive synthetic data generation pipeline with physics-based
simulations through the Genesis Engine, utilizing methods
like domain randomization to bridge the reality gap. The
YOLOvS model was used with a custom regression head for
weight estimation, trained with synthetic, real and hybrid
data. After various experimentation this project demon-
strates the viability of synthetic data for food portion es-
timation and compares different training approaches for
achieving better performance. One surprising discovery
was an ablation study revealing that our simplest loss func-
tion outperforms researched weighting strategies for uncer-
tainty, prompting questions relating to multi-task learning.
This project’s findings provide significant implications for
synthetic data applications and insights on model design.

1. Introduction

With the immovable importance of data in computer
learning, data needs and aggregation challenges are a con-
stant bottleneck and barrier in developing models, espe-
cially those with computer vision components. The process
of collecting, labeling and validating large-scale datasets is
often time consuming, expensive and widely impractical in
both common and specialized areas. Synthetic data gener-
ation offers a promising alternative, enabling the creation
of virtually infinite training examples with annotations at a
fraction of the resources, given the effective development of
a generation pipeline.

“Digital twin” is often used to refer to the replication of
physical objects or processes and has gained significant at-
tention in its practical uses today. From training robotic sys-
tems [5] to simulating protein folding and materials science,
to creating realistic traffic models for autonomous vehicles
[6], synthetic data has demonstrated remarkable utility in
bridging the gap between simulation and reality.

Food portion estimation is used in this project as an ef-
fective task for synthetic data applications. Simulating food
images provides an opportunity to create a controlled en-
vironment with great iterative potential and utilize compar-
isons between generated and real data. Although tools al-
ready exist for this task, it also doubles as an exciting ap-
plication since it relates to areas important to most healthy
people such as nutrition tracking, dietary management, and
food waste reduction. Typically the downside in this task
is collecting diverse, accurately labeled food data that pro-
vides enough variability in appearance, portions, angles,
lighting, etc.

The primary challenge synthetic data faces is ’bridging
the gap” and ensuring models can generalize to the real
world effectively. One way to support this bridging is by
utilizing physics-based simulations with automated domain
randomization to capture the before-mentioned variability.

In this report our key contributions include:

* A scalable synthetic data generation pipeline using the
Genesis physics engine, capable of producing thou-
sands of diverse food images with precise weight an-
notations

o Effective domain randomization strategies for food
simulation, including variations in lighting, camera pa-
rameters, food distribution, and plate characteristics

* Novel application of YOLOvS8 for weight estimation
along with it’s trained ability for food recognition

 Findings on synthetic-to-real transfer, demonstrating
the viability of synthetic data for real world tasks



» Unexpected insights on loss function design for weight
regression, providing insights on common expecta-
tions about uncertainty weighting in multi-task learn-
ing

This work mainly demonstrates that synthetic data can
effectively supplement and one day replace real data for
specialized computer vision tasks.

2. Related Work

2.1. Synthetic Data Generation for Computer Vi-
sion

The use of synthetic data in computer vision has evolved
significantly in recent years, driven by advances in render-
ing technology and physics-based simulations. The digital
twin concept has found very interesting and useful applica-
tions across various domains.

In this new use of synthetic data, randomization has
emerged as a great technique for bridging the reality gap.
Tobin et al. [5] demonstrated that by randomizing non-
essential aspects of a simulated environment (lighting, tex-
tures, camera positions), models could learn to focus on the
essential features of a task, enabling effective transfer with-
out requiring photorealistic rendering. Tremblay et al. [6]
extended this approach to object detection tasks, showing
that models trained on synthetic data with domain random-
ization could achieve 95% of the performance of models
trained on real data.

Physics-based simulation approaches have been particu-
larly successful in robotics and autonomous driving, though
accurate modeling of physical interactions is crucial. These
approaches have enabled training of models for tasks that
would be impractical or dangerous to learn in the real world,
such as autonomous vehicles learning to drive on public
roads without causing accidents.

Success stories with synthetic data cover a wide range of
domains, including robotic training, autonomous vehicles,
and medical imaging. For example, synthetic data has been
used to train models for detecting rare medical conditions
where real training data is scarce.

2.2. Food Recognition and Portion Estimation

Food portion estimation presents unique challenges for
computer vision systems. Traditional approaches relied on
geometric approximations and reference objects for scale,
while deep learning approaches have enabled more direct
estimation from images.

Min et al. [3] provided a comprehensive study of food
computing, and highlights the challenges in data collection
and annotation for food recognition tasks. The inherent di-
versity of food appearance, portion sizes, lighting and cam-
era angles makes creating large-scale, diverse datasets diffi-
cult.

Deep learning approaches have shown promising results
for food recognition, but portion estimation is still challeng-
ing due to most approaches relying heavily on extremely
large sets of real-world data with precise weight labelling.

2.3. Loss Function Design and Multi-Task Learning

Loss function design plays a crucial role in training deep
learning models, particularly when a model is trained for
multiple tasks. Kendall et al. [2] discusses an approach
to multi-task learning using uncertainty to weigh different
loss components. The method interprets task-specific un-
certainty as a measure of the relative importance of each
task, allowing the model to learn better weights in training.

Intuition and research with task uncertainty often points
to it outperforming fixed weighting by adapting the rela-
tive difficulty of different but adjacent tasks. Experiments
conducted in this project with different weighing strategies
have shown mixed results however.

Multi-task learning in computer vision typically involves
shared feature representations across related tasks. The de-
sign of task-specific heads and the sharing of features be-
tween them can significantly impact performance, often for
the better. Understanding the balance between task-specific
and shared representations is an active area of research to-
day.

3. Data

3.1. Synthetic Dataset Generation

The synthetic data generation pipeline leverages the
Genesis physics engine [4] to create realistic simulations
of food portions on plates. The pipeline consists of several
key components:

Synthetic Data Real Data
Figure 1. Comparison between synthetic data (left) and real data

(right) used for training the food portion estimation model.

3.1.1 Physics-Based Modeling

Peas are modeled as a granular food type using the MP-
MEntity with Sand particle materials in Genesis, which
seemingly captures the physical behavior of small, round



food items with some effect. A lot of time was spent cal-
ibrating physics parameters to match the density and be-
havior of real peas, ensuring that the relationship between
visual appearance and weight was preserved in the genera-
tion.

For each weight category (50g, 150g, 300g, 450g, 600g),
we calculated the appropriate number of pea particles based
on the average weight of individual peas, promoting physi-
cal accuracy. This required developing custom code to cal-
culate accurate pea counts for different weights and apply-
ing it with the scene generation options available in Genesis,
which was challenging.

3.1.2 Implementation Challenges

Implementing the synthetic data generation pipeline pre-
sented numerous challenges. The Genesis engine, while
powerful, has a steep learning curve and required signif-
icant effort to configure properly for even simple simula-
tions. Generating accurate representations of peas required
writing a good deal of custom code and manually tuning
physics parameters.

Setting up a working domain randomization framework
also required careful design to ensure that the randomiza-
tion parameters were meaningful and covered the needed
range of variation without generating useless data. This
process involved a lot of iterative work involving visual in-
spection of the generated images and comparison with real-
world examples.

3.1.3 Dataset Statistics

The final synthetic dataset consisted of 9,750 images with
the following characteristics:

* Weight Categories: 50g, 150g, 300g, 450g, 600g
(evenly distributed)

e Lighting Conditions: cool daylight, warm, studio
lighting, overcast_blue, and 6 others (evenly dis-
tributed)

¢ Food Configurations: centered, off-center, scattered,
narrowed, spread (evenly distributed)

e Camera Angles: front, back, left, right, top (evenly
distributed)

¢ Camera Heights: high, mid, low (evenly distributed)

* Resolution: 640x640 pixels

Each image was automatically annotated in a paired .txt
file with bounding box data and the corresponding weight
value, eliminating the need for manual annotation.

3.2. Real-World Dataset

To complement the synthetic data and provide a basis
for evaluation, we collected a real-world dataset of 100 pea
images:

¢ Weight Categories: 50g, 150g, 300g, 600g

¢ Configurations: centered, spread, off-center, two
piles, scattered

e Camera Angles: front, left, back, right, top

* Resolution: 640x640 pixels (resized from 3024x3024)

The real data collection process was significantly more
time-consuming than synthetic data generation (not includ-
ing development), requiring careful measurement of food
weights, consistent camera positioning, and manual anno-
tation of images. This highlights one of the key advantages
of synthetic data mentioned: the ability to generate large
amounts of perfectly annotated data with minimal effort.

3.3. Combined Hybrid Dataset

For our hybrid training approach, we combined the syn-
thetic and real datasets:

¢ Training Split: 70% (real) + 70% (synthetic)
* Validation Split: 15% (real) + 15% (synthetic)

o Test Split: 15% (real) + 15% (synthetic)

All images were annotated for use with YOLOvS8 with an
additional weight value, allowing for simultaneous training
of detection and regression tasks for added experimentation
with multi-task learning and uncertainty. The complemen-
tary nature of real and synthetic data provided a rich training
set that combined the diversity and scale of synthetic data
with some transferred authenticity from real-world exam-
ples.

4. Methods
4.1. Synthetic Data Generation Methodology

Our synthetic data generation methodology focused on
creating physically accurate simulations of pea portions that
would transfer effectively. The key aspects of the methods
used are:

Physics-Based Simulation: By using the Genesis
physics engine to simulate the behavior of peas on plates,
the physical properties (mass, density, friction) matched
real-world values and provided accurate physical behavior.

Accurate Weight-to-Appearance Mapping: For each
weight category, the appropriate number of pea particles
was calculated based on the average weight of individual



peas and behavior of MPMEntities in genesis, ensuring
that the generated particles representing food accurately re-
flected specific amounts.

Domain Randomization Implementation: As men-
tioned a comprehensive domain randomization framework
was built to automatically vary lighting conditions, camera
parameters, food distribution patterns, and plate character-
istics.

Automated Generation Pipeline: The entire pipeline
was automated through a series of scripts that generated
thousands of diverse images with labelling. This pipeline
could be easily scaled to generate additional data as needed,
with added variability and photorealism as a fraction of the
available functionality in genesis was learned and utilized
due to resource constraints.

4.2. Model Architecture

Model architecture was built ontop of YOLOvVS [1]], a
state-of-the-art object detection framework for image recog-
nition:

YOLOVS: YOLOv8m provided a good balance between
performance and computational efficiency. The backbone
consists of a series of convolutional layers with blocks for
feature extraction.

Weight Regression Head: We added a custom regres-
sion head that utilizes features from the existing model and
predicts the weight of the detected food item. This head
consists of several convolutional layers followed by a pool-
ing layer and a fully connected layer that outputs a weight
value.

Feature Sharing: The pre-existing detection head and
the custom regression head share the same features, allow-
ing for efficient multi-task learning and sharing of common
visual features thought to be relevant to both tasks.

4.3. Loss Function Design

Our loss function combined the available detection and
regression predicting:

Detection Loss: The pre-existing YOLOVS detection
loss, which includes components for classification and lo-
calization.

Regression Loss: Mean Squared Error (MSE) loss be-
tween the predicted and labeled amounts.

Combined Loss: The detection and regression losses
were combined using one of three uncertainty weighting
strategies:

* Learned Uncertainty Weighting: Based on Kendall
et al. [2f], this approach has task-specific uncertainty
that automatically adjusts for the detection and regres-
sion losses during training.

* Fixed Uncertainty Weighting: Equal weights (1.0)
for both detection and regression tasks.

* No Uncertainty Weighting: No explicit weighting be-
tween tasks, simply added losses together.

4.4. Training Strategy

We employed a three-stage progressive training ap-
proach:

Stage 1: Train only the detection head, freezing the re-
gression head.

Stage 2: Train only the regression head, freezing the de-
tection head.

Stage 3: Joint training of both heads.

This progressive approach allowed each task to estab-
lished independent learning before joint training, the worry
being that one task (namely the pre-existing detection)
could dominate the other during training.

As an experiment three models were trained:

* Synthetic — Real: Trained on synthetic data, evalu-
ated on real data

¢ Real — Real: Trained on real data, evaluated on real
data

e Hybrid — Real: Trained on combined synthetic and
real data, evaluated on real data

For each model, we used Adam optimization with a
learning rate of 0.001 and a batch size of 4.

5. Experiments
5.1. Synthetic Data Viability Analysis

The performance of models trained on synthetic, real,
and hybrid datasets when evaluated on real-world test data
for comparison:

Synthetic — Real Transfer: The model trained only
on synthetic data achieved a Mean Absolute Error (MAE)
of 980.23g and 0.00% of estimates within 20% of the true
weight. While performance could likely be improved vastly
with better simulations, it demonstrated the difficulty in
learning meaningful features from synthetic data.

Reality Gap Assessment: The gap between synthetic
and real data training (980.23g vs. 253.44g MAE) in-
dicated that there are still significant differences between
our synthetic and real data distributions. However, the
hybrid model’s improved performance suggested that syn-
thetic data could effectively complement real data.

5.2. Baseline Experiments

Our baseline experiments established the performance of
different training approaches:



Table 1. Baseline Experiment Results

Experiment MAE (g0 RMSE (g) Within 20% (%)
Synthetic — Real ~ 980.23 1024.25 0.00
Real — Real 253.44 320.50 0.00
Hybrid — Real 681.22 931.16 24.49

Synthetic — Real: Training on synthetic data only re-
sulted in high error rates did not effectively demonstrate
an ability to capture the overall relationship between visual
features and weight.

Real — Real: Training on real data only achieved better
MAE (253.44¢g) but surprisingly poor performance, likely
because the model was overfitting to the small real dataset.

Hybrid — Real: Training on combined synthetic and
real data achieved the best overall performance, with
24.49% of estimates within 20% of the true weight indi-
cating solid understanding of the amount-appearance rela-
tionship. Increased epochs in later experiments focused on
improving hybrid data use were able to achieve 40.00% of
estimates within 20% of the true weight.

5.3. Ablation Study: Uncertainty Weighting

We conducted an ablation study to evaluate the impact of
different uncertainty weighting techniques on performance:

Table 2. Uncertainty Weighting Ablation Results

Strateey MAE (g) RMSE (g) Within 20% (%)
Learned  355.74  391.17 0.00
Fixed 125.87 189.27 20.00
None 116.41 160.42 33.33

Learned Uncertainty Weighting: Surprisingly, the re-
searched approach performed worst, with an MAE of
355.74g and 0.00% of estimates within 20% of the true
weight.

Fixed Uncertainty Weighting: Equal weighting of
tasks performed better, with an MAE of 125.87g and
20.00% of estimates within 20%.

No Uncertainty Weighting: The simplest approach per-
formed best, with an MAE of 116.41g and 33.33% of esti-
mates within 20%.

These results contradicted the theoretical expectation
that learned uncertainty would adaptively find the optimal
weight between task components. Instead, they suggested
that for this specific experiment, the detection and regres-
sion heads naturally balanced each other without dynamic
weighting.

5.4. Performance Analysis

5.4.1 Detailed Error Analysis

Analysis of the predictions from the best model (No Uncer-
tainty Weighting) revealed interesting patterns:
Performance by Weight Category:

* 50g Category: 50% of samples within 20% of true
weight

* 150g Category: 25% of samples within 20% of true
weight

* 300g Category: 50% of samples within 20% of true
weight

¢ 600g Category: 0% of samples within 20% of true
weight

Performance by Food Configuration:

¢ Centered: Generally moderate performance (40-58%
error)

e Off-center: Highly mixed performance (11-84% er-
ror)

¢ Scattered: Highly mixed performance (3-77% error)
* Two piles: Moderate performance (16-53% error)

» Spread: Generally poor performance (53-212% error)
Performance by Camera Angle:

* Front: Moderate performance (3-53% error)

» Top: Highly mixed performance (16-84% error)

* Side views: Extremely mixed performance (18-212%
error)

Weight Estimation Bias: The model tended to under-
estimate larger amounts (600g) and overestimate smaller
amounts (50g), possibly due to a regression towards the
mean or just inaccuracy in synthetic data.

5.4.2 Qualitative Results

Visual inspection of the model’s predictions revealed sev-
eral insights:

Best Case Performance: The model achieved as low
as 3.06% error in ideal conditions (300g, scattered, front
view).

Worst Case Performance: Spread configurations led to
errors exceeding 200%.



5.5. Computational Considerations

Synthetic vs. Real Data Collection: Synthetic data gen-
eration was significantly more efficient than real data col-
lection once the pipeline was established. While the initial
setup required substantial effort, subsequent data generation
could be fully automated and scaled to produce thousands
of diverse images with perfect annotations.

Training Approaches: Hybrid training required more
computational resources than either synthetic-only or real-
only training likely due to the combined data size, but also
provided the best overall performance. The three-stage pro-
gressive training approach also added computation time but
is thought to have improved performance.

Practical Implementation: Based on our experiments,
we recommend a hybrid training approach with no uncer-
tainty weighting for optimal performance. This approach
balances the benefits of synthetic and real data while using
a simple, effective loss function design.

6. Conclusion
6.1. Key Findings

Our research has demonstrated the viability of synthetic
data for food portion estimation, with several key findings:

Synthetic Data Viability: While synthetic data alone
was not sufficient for effective performance at current lev-
els of simulation ability, it provided valuable complemen-
tary information when combined with real data. The hybrid
approach achieved significantly better performance than
synthetic-only training. It achieved higher performance
than real-only as well though not much can be drawn due
to the size of the data set.

Effectiveness of Hybrid Training: The combination of
synthetic and real data is thought to have created a model
that captured both the diversity of synthetic data and the au-
thenticity of real examples, resulting in 40.00% of estimates
within 20% of the true amount with additional epochs.

Surprising Loss Function Results: The simplest loss
function design (no uncertainty weighting) outperformed
more complex approaches, achieving an 82.9% reduction
in MAE compared to the original hybrid model.

6.2. Implications for Synthetic Data Applications

Our work has several implications for synthetic data ap-
plications:

Digital Twin Potential: The success of our approach
demonstrates the potential of digital twins for computer vi-
sion tasks, particularly in domains where real data collec-
tion is challenging or expensive.

Scalability Advantages: Once established, synthetic
data generation pipelines offer significant scalability ad-
vantages over real data collection, enabling the creation of
large, diverse datasets with accurate annotations.

Domain Randomization Effectiveness: Our results
promote the effectiveness of domain randomization for
bridging the reality gap, even without intense photorealis-
tic rendering.

6.3. Implications for Model Design

Our findings also have implications for model design
principles:

Simpler Can Be Better: The improved performance of
the simplest loss function design challenges the assumption
that more complex approaches are inherently better.

Task-Specific Considerations: The optimal approach
may depend on the specific characteristics of the tasks be-
ing combined, suggesting that general principles should be
applied with caution.

6.4. Limitations and Future Work

Following this project several opportunities for future
work are presented:

Advanced Synthetic Data Generation: Future work
could explore more sophisticated synthetic data generation
techniques, including:

» Higher photorealism settings in Genesis

* More sophisticated lighting models (multidirectional,
reflections)

 Greater variation in food properties (color, shape, tex-
ture)

» Expanded environmental diversity (backgrounds, sur-
faces, containers)

Model Architecture Exploration: Further exploration
of regression head designs and feature sharing strategies
could potentially improve performance.

Extended Training: Increasing the number of epochs
with the optimal configuration would likely yield even bet-
ter results.

Compute Time and Resources: With the steep learning
curve and resource requirements for generation with Gen-
esis, the typical limitation of time and resources for this
project was compounded.

In conclusion, our work demonstrates the potential of
synthetic data for food portion estimation while providing
a few minor insights into model design. The combination
of physics-based simulation, domain randomization, and
experiment validated model design offers a promising ap-
proach for addressing data needs and challenges in com-
puter vision applications.
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