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Abstract

We propose a novel diffusion-based framework for artis-
tic multi-style transfer that uniquely combines composi-
tional denoising and classifier-free guidance (CFG) to en-
able fine-grained control over both content preservation
and stylistic blending. Building on a pretrained Stable
Diffusion model, our method introduces a principled way
to modulate the influence of multiple text-based artistic
prompts during the denoising process, allowing users to ad-
just the relative strength of each style in a controllable and
interpretable manner.

We evaluate our approach through both quantitative per-
ceptual similarity metrics (LPIPS) and qualitative evalu-
ations from human- and LLM-based evaluations. We find
that a noise strength of 0.47 and a CFG scale of 2.4 offer
an effective balance between stylization and content fidelity.
Compared to a baseline diffusion method (InstructPix2Pix),
our system demonstrates superior style alignment, flexibil-
ity, and responsiveness to user-specified guidance, high-
lighting the expressive potential of compositional diffusion
models as interactive tools for human-centered artistic cre-
ation.

1. Introduction
Artistic style transfer, the task of rendering an image in

the stylistic appearance of another, has seen rapid progress
with the advent of deep generative models. While tradi-
tional methods focused on transferring a single style, re-
cent research has introduced more expressive frameworks
that allow for compositional generation, blending multi-
ple styles and controlling their influence during the image
synthesis process. However, effectively controlling style
strength, content preservation, and multi-style composition
remains a nuanced problem as artistic style is inherently
qualitative, subject, and human in interpretation.

In this project, we aim to investigate and extend compo-
sitional visual generation using diffusion models, inspired
by the framework proposed in Compositional Visual Gener-

ation with Composable Diffusion Models [11]. Our motiva-
tion stems from the observation that most real-world artistic
expression is not monolithic; artists often combine multiple
influences, and any practical style transfer system should al-
low users to do the same with fine-grained control.

The input to our algorithm is a content image and a list
of text prompts, each representing a desired artistic style
(e.g., ”in the style of Monet”, ”in the style of Picasso”). We
use a pre-trained text-to-image Stable Diffusion model [2],
augmented with a compositional denoising procedure [11],
to produce an output image that fuses the visual styles de-
scribed in the prompts while preserving the content of the
original image.

Our system also supports varying the content strength,
relative style weights and classifier-free guidance scale to
control the extent of content preservation, stylization and
prompt adherence. We explore both qualitative and quanti-
tative evaluations of the generated images, using perceptual
metrics like LPIPS (Learned Perceptual Image Patch Simi-
larity) for content similarity and human survey data coupled
with GPT-4o evaluation for style and weight alignment.
Using this evaluation schema, we aim to better understand
how different compositional and control parameters affect
output quality and to identify the tradeoffs between styliza-
tion and content fidelity.

This project explores the intersection between progress-
ing, generative technology and the innately human domain
of artistic expression. By enabling nuanced control over
how visual styles are combined, weighted, and rendered,
our system aims to demonstrate new ways of thinking about
creativity, where machine learning models do not replace
the artist, but instead become a tool for exploration and rein-
terpretation. Through compositional diffusion and guided
experimentation, we demonstrate how technology can par-
ticipate in, amplify, and evolve the creative process.
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2. Related Work

2.1. CNN-Based Neural Style Transfer

The baseline of modern content and style-separated neu-
ral style transfer was introduced by the work of Gatys et
al.[4]: a CNN-based neural style transfer that explicitly
separated the two variables using deep features. In their
method, a pretrained convolutional network (VGG) serves
as a feature extractor: the content of an image is captured
by high-level feature maps, while the style is represented
by correlations (Gram matrices) of features in multiple lay-
ers. It iteratively optimizes a white-noise image to match
the content features of the input photo with the Gram-matrix
statistics of a painting to recombine content and style in a
novel way, producing impressive high-quality painterly out-
puts. However, a major weakness is its computational cost:
the slow optimization (hundreds of iterations) is required
for each new image, making it impractical for real-time ap-
plications; the method used also often produced style or
color distortions. The latter issue was tackled by subsequent
papers that used methods like a Markov Random Field to
better preserve local color and texture patterns [8].

2.2. Feed-Forward Perceptual Loss Networks

Faster feed-forward networks to directly output stylized
images were developed as a response to the inefficiency of
initial optimization-based stylization. An especially inno-
vative approach was taken by Johnson et al.[7] where such
a network was trained with perceptual loss to approximate
optimization in one forward pass. This loss metric was the
same VGG-based content and style loss deployed by Gatys
et al.[4], but Johnson et al.[7] uses a transform net that is
guided by fixed pre-trained VGG features during training
and learned to map any input photo to a specific style out-
put without the need for pixel-level supervision. Johnson’s
model was able to produce stylized results three orders of
magnitude faster than the iterative method used in Gatys et
al.[4]. The same method was adopted to texture in Ulyanov
et al.[15]. Strengths of feed-forward perceptual loss net-
works is most obviously speed, while the use of perceptual
loss was able to deploy deep feature knowledge without the
need for ground-truth stylized images for training. How-
ever, these models lack flexibility, requiring training a new
network from scratch for additional styles. While we ini-
tially tried to expand our project off the model by Johnson
et al.[7], the initial overhead of training a feed-forward net-
work from scratch on each new style was unproductive, thus
pushing us to defer to the stable diffusion network approach
we will later cover. These drawbacks were addressed in
later papers, which implemented instance norm in place of
batch norm that successfully pushed the model to refocus
on the style statistics and become more agnostic to content
statistics[16].

2.3. Multi-style Interpolation

The idea of multi-style transfer has been explored by Du-
moulin et al. [3], who transform style embeddings into a
vector space using conditional instance normalization. This
enables a single deep network to capture a diverse range
of artistic styles. By blending the normalization parame-
ters of two styles, the network can generate a novel mixed
style, offering users a continuum of artistic effects. Integral
to multi-style, this model demonstrated a practical way to
achieve many styles in one model and introduced the notion
of a style embedding space.

Adaptive multi-style transfer was central to our input de-
sign, building on the work of Huang et al. [6], which en-
ables style transfer without training on specific styles by ap-
plying new style statistics at runtime. This flexibility allows
for continuous style interpolation by computing and blend-
ing AdaIN outputs from two different style images. Li et
al. [9] propose another approach to arbitrary style transfer
by aligning content and style feature distributions. Their
method removes correlations from content features and re-
colors them using the style’s covariance, eliminating the
need for style-specific training through an autoencoder with
embedded WCT. Both Huang et al. [6] and Li et al.[9] rep-
resent state-of-the-art approaches to style transfer for their
broad applicability, speed, and flexibility although lacking
in specificity for each individual style.

2.4. Diffusion-Based Style Transfer

Most recently, diffusion models have emerged as a pow-
erful image generation paradigm for applications to style
transfer. One application is image-to-image diffusion, as
demonstrated by Meng et al. [12], who re-render input
images in a new style (e.g., “in the style of Van Gogh”)
by adding noise and then denoising under a different tex-
tual condition, an approach that was instrumental to our
later development. Greater precision in content and style
is achieved by Hu et al.[5], a training-free style transfer
pipeline that combines visual and textual conditioning to in-
ject content and style separately, enabling more controllable
stylization.

Most relevant to our method is the work on Composable
Diffusion Models by Liu et al. [11], which interprets diffu-
sion models as energy-based models. They demonstrate that
multiple diffusion processes can be composed by multiply-
ing their probability densities, allowing style aspects to be
layered rather than simply averaged. Diffusion based mod-
els are fast, high quality, and flexible, and combined with
compositional guidance and proper hyperparameter tuning,
representing the frontier of artistic style transfer.
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3. Methods
Our project leverages the architecture and denoising ca-

pabilities of pretrained diffusion models to perform com-
positional multi-style transfer on images. Our method in-
volves (1) encoding a source image into the latent space, (2)
adding noise with a specified strength, (3) guiding the de-
noising process using text prompts and classifier-free guid-
ance (CFG), and (4) decoding the latent output to produce
a stylized image. We build on the publicly available Stable
Diffusion 2.1 model [2] and extend it with compositional
guidance as introduced by Liu et al. [11]. All model weights
are frozen during generation; our contributions focus on al-
gorithmic composition and experimental evaluation.

3.1. Image Encoding and Latent Noise Injection

We first encode the source image x ∈512x512x3 into a la-
tent representation z0 using the VAE encoder provided by
the Stable Diffusion pipeline. To simulate a forward dif-
fusion step, we perturb z0 with Gaussian noise scale by a
user-inputted strength parameter s ∈ [0, 1], which corre-
sponds to a timestep index t. The resulting noisy latent zt
is:

zt =
√
ᾱtz0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I).

3.2. Conditional Denoising with Text Prompts

The core of our method relies on a pretrained condi-
tional diffusion model, specifically Stable Diffusion 2.1[2],
which performs image generation and editing by iteratively
denoising a latent representation. At each timestep t, the
model receives a noisy latent zt and a conditioning embed-
ding τ ∈d, produced by a frozen CLIP text encoder from
the input prompt p. During training, the model aims to min-
imize the denoising score matching loss between the pre-
dicted noise and true noise ϵ N (0, I) given by:

Ldenoise = Ez0,ϵ,t,p

[
∥ϵ− ϵθ(zt, t, τ)∥2

]
.

For the purposes of our project, we pass in the noisy latent
of our source image to this model to preserve content rather
than pure image generation along with a prompt relating to
artistic style. During inference, the denoising model pre-
dicts the noise that was originally added to the clean latent,
given by ϵ̂θ = ϵθ(zt, t, τ).

3.3. Compositional Denoising with Prompt Guid-
ance

Given zt, we perform reverse diffusion using the pre-
trained conditional diffusion model. Following the compo-
sition method described by Liu et al. [11], we guide the
denoising process by aggregating the predicted noise across
multiple prompts. At each timestep t, the network predicts
the noise ϵθ(zt, t, τi) for each style prompt and are compos-
ited using either:

• Uniform averaging when no weights are provided:

ϵ̂t =
1

N

N∑
i=1

ϵθ(zt, t, τi)

• Weighted composition when prompt weights wi are
provided:

ϵ̂t =
1∑
i wi

N∑
i=1

wi · ϵθ(zt, t, τi)

In addition, we implemented classifier-free guidance (CFG)
which is a widely used technique in conditional diffusion
models that improve the alignment of generated samples
with conditional signal. CFG leverages the same model
to generate both conditional and unconditional predictions,
interpolating between them during inference. Given a user-
inputted guidance scale γ, we produce a guided prediction
using:

ϵ̂guided = ϵ̂uncond + γ · (ϵ̂cond − ϵ̂uncond)

This process is repeated for all timesteps, producing the fi-
nal latent zstylized.

3.4. Image Decoding

The final denoised latent image zstylized is decoded back
into image space using the pretrained VAE decoder to pro-
duce x̂, our final stylized image composed by the content
of our source image and the influence of multiple style
prompts, noise strength, weights, and guidance values.

4. Dataset
4.1. Pre-training Corpus for Backbone Diffusion

Model

Our method inherits all pre-training and visual priors
from Stable Diffusion v2.1 [2]. This model was trained
from scratch on a filtered subset of LAION-5B, a 5.85b
image–text pair crawl derived from Common Crawl. Sta-
ble Diffusion v2.1 is fine-tuned from stable-diffusion-2 [14]
with an additional 55k steps on the same dataset, and then
fine-tuned for another 155k extra steps with punsafe= 0.98.

For preprocessing in the training of the stable diffusion
model, images were center-cropped or padded to square
768x768 patches, converted to latent space via a frozen
auto-encoding VAE, and pixel-values are normalized to
[−1, 1]. During training the model sees no additional
data augmentation besides the stochastic forward-diffusion
noise. Text conditioning is supplied by OpenCLIP-
ViT/H/14 embeddings of the captions. No hand-crafted fea-
tures are used and all supervision comes from paired text.
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4.2. Evaluation Set

To evaluate our multi-style modifications, we curated a
70-image subset from the MS-COCO 2014 test split [10]
and resized to 512x512 pixels. The images were hand se-
lected to ensure diversity in:

• Subject matter: people (19), natural landscapes (18),
street/architecture (17), isolated objects (16).

• Structural complexity: simpler scenes of foreground
against background, vs. more complex multi-object
scenes.

To ensure controlled evaluation, the content images were
held constant while systematically varying parameters such
as style weight and content strength. For relative style
weighting experiments, we tested each configuration on
batches of 5 images to assess consistency and visual coher-
ence. See Figure 1 for a visual.

Figure 1: Sample of three images from our COCO2014 sub-
set

5. Experiments and Results
Our experiments were performed on a set of four artists

we handpicked for their distinctive and recognizable styles:
Vincent van Gogh, Claude Monet, Salvadore Dali, and
Pablo Picasso. Examples of each style are shown in Fig-
ure 2.

5.1. Tuning Hyperparameters

5.1.1 Noise Strength

We performed a sweep for the the noise strength added
to the source image in order to determine optimal value
to balance the content versus style tradeoff. To quantify
how noise strength correlates with content preservation, we
used Learned Perceptual Image Patch Similarity (LPIPS)
as our metric. LPIPS measures how perceptually differ-
ent two images are from a human visual perspective by
comparing deep feature maps extracted from a pretrained
network (VGG). We chose this metric for measuring con-
tent preservation over other measure such as Mean Squared
Error(MSE), because it detects content preservation even
when style changes through being sensitive to semantic and
structural changes instead of smaller changes such as light-
ing and color shift. In contrast, MSE penalizes all pixel

Figure 2: Style samples: Van Gogh, Monet, Dali, Picasso
(left to right, top to bottom)

shifts which would blur style influence with content preser-
vation. In particular, we ran a range of noise strength val-
ues from 0.1 to 0.9 with fixed prompt styles ”Van Gogh”
and ”Picasso” on 70 source images and plotted strength v.
computed LPIPS with the original source image, as shown
in Figure 3. As expected, we observe that higher noise
strength is correlated with less content preservation and the
opposite is true of lower noise strength.

Figure 3: Noise Strength versus Content Preservation

Qualitatively, we relied on two iterations of forced-
choice protocol via human evaluation, first on a broader
range of strengths and then on a more focused strength
range based off initial respondents. Out of 30 respondents,
we take the average of each individual respondent’s pre-
ferred strength to the following on the same image run with
three different artist prompt combinations.
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• Iteration 1: Given the source image, choose the im-
age that most closely resembles a modification of [in-
sert prompt, e.g. turn this image into the styles of Van
Gogh and Picasso] with options of strengths 0.1 to 0.9.

From this initial surveying, we observed that the optimal
noise strength was concentrated near 0.5 as seen in Figure 4.
To further refine the optimal weight, we conducted a second
round of evaluation focused on the narrower strength range
of 0.4 to 0.6, which emerged as the most frequently selected
interval in the initial iteration.

Figure 4: Iteration 1 Human Evaluation Results

• Iteration 2: Given the source image, choose the image
that most closely resembles a modification of [insert
prompt] with options of strengths 0.4 to 0.65.

Figure 5: Iteration 2 Human Evaluation Results

As reflected in Figure 5, our qualitative evaluation re-
sulted in an averaged best strength of 0.47.

5.1.2 Style Weight

To quantify the effectiveness of intentionally weighting
prompts on the output image, we ran a varied set of weights

on 70 images and used Contrastive Language-Image Pre-
training (CLIP) [13] to measure the similarity between out-
putted images and each style prompt. When comparing the
relative similarity between prompts with higher weights and
prompts with lower weights, we did not notice any correla-
tion in the computed CLIP similarities as seen in Figure 6.
This indicates that CLIP similarity does not accurate reflect
human perception of style influence since the outputted im-
ages were very visually different in style as seen by Fig-
ure 7 but received similar CLIP similarity scores across
prompts. Thus, we proceeded with a qualitative analysis
of the weights applied to multi-style transfer.

Figure 6: Heatmap: Prompt Weight and CLIP Similarity

To understand how the relative style weights influence
perceived stylization, we generated three weight splits—
[0.2, 0.8], [0.5, 0.5], and [0.8, 0.2]—for every pair drawn
from {Monet, Van Gogh, Picasso, Dali}. For each setting
we sampled five content images from our COCO2014 sub-
set and rendered them with the optimal noise strength found
earlier (s = 0.47).

Because manual expert rating was infeasible, we were
recommended to adopt a lightweight LLM-assistant evalua-
tion. Each batch (source image + three stylized candidates)
was fed to GPT-4o with the prompt: “Which candidate
most closely matches a α/β split between Artist A and Artist
B?”. The model returned a rank ordering that we treat as a
proxy for human preference.

Observations:

• Style dominance. Highly abstract styles (e.g. Dali)
tend to overwhelm more representational ones (e.g.
Monet). In these cases, an asymmetric [0.2, 0.8] split
in favor of the weaker style produced images that
GPT-4o judged closer to an “even-looking” blend
than the nominal [0.5, 0.5] setting. As an example,
7c shows strong Dali influence even in the 80/20
Monet/Dali split; in this case a 20% Dali interpolation
looks more equally weighted than the 50/50 case.
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• Non-linear mixing. Pairing two very strong, idiosyn-
cratic styles (e.g. Picasso + Dali) often yielded hy-
brids that looked like neither parent style as seen in Fig
7b, suggesting destructive interference in the guidance
vectors.

• Best pairings. The most visually coherent blends in
all five test images were Picasso + Van Gogh(7a) and
Monet + Van Gogh (7d). These pairs preserved rec-
ognizable stylistic components from both artists while
maintaining decent content structure.

Figure 7 shows notable samples from our weight testing
schema along with their source images on the left.

(a) Picasso/Van Gogh style interpolation in 20/80, 50/50, and 80/20
weight scales

(b) Picasso/Dali style interpolation in 20/80, 50/50, and 80/20 weight
scales

(c) Monet/Dali style interpolation in 20/80, 50/50, and 80/20 weight
scales

(d) Monet/Van Gogh style interpolation in 20/80, 50/50, and 80/20
weight scales

Figure 7: Sample weight experiment results for four style
combinations

5.1.3 Classifier Free Guidance

Replicating our quantitative experiment on noise strength,
we performed a sweep for guidance scales from 1 (default

no guidance) to 12.5 using LPIPS to measure the effect of
guidance scale on content preservation on 70 source images
with fixed prompts ”Van Gogh” and ”Picasso.” As seen in
Figure 8, we see a clear trend between lower guidance scale
and higher content preservation. This matches our expec-
tation since more focus on conditioning to the style prompt
will decrease content preservation. While the overall trend
resembles that of noise strength, we observe greater devi-
ation from the average (measured by standard deviation),
suggesting that guidance scale has a less direct impact on
content preservation.

Figure 8: Guidance Scale (CFG) versus Content Preserva-
tion

For a qualitative analysis, we see clearly that increased
guidance scale increases the amount of ”stylization” of the
image, as seen in Figure 9. In line with the quantitative
differences observed between noise strength and guidance
scale, visual inspection of the output images reveals that
guidance scale better preserves content, even while inten-
tionally incorporating more style. Next, we surveyed 30
people to choose the visually optimal guidance scale for a
set of images. Our results in Table 1 show the comparison
of optimal guidance scale vs. image complexity, demon-
strating that more complex images require a lower guid-
ance scale to preserve content compared to simpler images
as shown in Figure 10. Survey participants also indicated a
threshold of 7.5 for which any guidance scale beyond this
point rendered image with large content loss without visual
appeal. Given these results, we averaged our best guidance
scale to 2.4.

5.2. Baseline Comparison

As a baseline model for comparison, we used Instruct-
Pix2Pix by Brooks et al. [1] for their advanced image al-
teration capabilities. InstructPix2Pix is built on the same
Stable Diffusion backbone [2] as our model, so quality gaps
can be traced to guidance and fine-tuning strategies rather
than pre-training. Crucially, iP2P accepts only a single tex-
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Figure 9: Guidance Scale: 1, 3, 5, 7.5, 10, 12.5 (left to right,
top to bottom)

Figure 10: Guidance Effect for Simple, Standard, and Com-
plex Image

Image Type Optimal Guidance Scale

Simple 3.2
Standard 2.7
Complex 1.3

Average 2.4

Table 1: Optimal guidance scales for different image com-
plexities.

tual instruction and therefore lacks an explicit mechanism
to balance or fuse multiple artistic styles. Introducing our
compositional guidance module on top of the same back-
bone isolates the contribution of explicit multi–style con-
trol.

Our experimentation schema included a human-
evaluation qualitative analysis of five-image batches in
two-option forced-choice protocol run on various artist
style combinations of the aforementioned four artists. We
ran the same image, style weights, and prompt through our
model (with best hyperparameters found earlier of 0.47
strength and 2.4 guidance) and on iP2P.

Thirty participants completed a two-alternative forced-
choice survey: given the source content and the text prompt,
they selected the output that “better reflects the stated style
mixture while preserving content.” Across votes, 63% re-
ported our model as more accurate to the style weights and
given prompt.

Qualitative comparison of outputs produced the follow-
ing observations:

• Inability of baseline to handle multiple outputs. iP2P
typically reproduced only the style with the higher
weight, ignoring the secondary artist; our method re-
tained salient cues from both artists even for asymmet-
ric mixes.

• Style–content trade-off. When CFG scale was low-
ered to improve content fidelity, iP2P outputs became
weakly stylized; compositional guidance maintained
stronger texture transfer at the same content level.

Sample survey choices are shown in Figure 11. Overall,
the experiment confirms that explicit, weight-aware compo-
sition yields perceptibly better multi-style transfers than our
baseline.

(a) ”Turn the input image into a 80% Picasso, 20% Van Gogh style
with a modification strength of 0.47”

(b) ”Turn the input image into a 80% Monet, 20% Dali style with a
modification strength of 0.47”

Figure 11: Sample benchmark comparisons. Left to right:
source image, our model’s output, benchmark output

6. Conclusion and Future Works
In this project, we presented a diffusion-based frame-

work for multi-style artistic transfer using compositional
denoising, classifier-free guidance, and tunable control over
style weights and content preservation. By leveraging Sta-
ble Diffusion’s pretrained latent denoising model, we suc-
cessfully synthesized stylized outputs that reflected combi-
nations that reflected combinations of the artistic styles of
Monet, Van Gogh, Picasso, and Dalı́. Through a quantita-
tive and qualitative hyperparameter sweep, we found that
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a noise strength of approximately 0.47 and a classifer-free
guidance of 2.4 offered the best tradeoff between stylization
and content preservation. Our human and LLM-assisted
evaluation highlighted the model’s ability to capture stylis-
tic nuance and respect user-specified weightings more ef-
fectively for multi-style transfer than our baseline model
(InstructPix2Pix).

Interestingly, we observed that style dominance and non-
linear mixing effects introduced challenges in balancing
strongly abstract styles like Dalı́ against more structured
ones like Monet. In these cases, compensatory weighting
helped—but not always linearly—underscoring the inher-
ent complexity of composing learned style priors. Overall,
our model offered greater flexibility and control than single-
style approaches, especially in capturing multi-style blends
with both visual coherence and content awareness.

For future work, we would explore style-specialized
finetuning of the underlying diffusion backbone for each
artist prompt. Currently, all guidance relies on a general-
purpose text-conditioned model; while this allows for flex-
ibility, it lacks style-specific depth. Training or fine-tuning
smaller diffusion heads per style on dedicated datasets could
improve style fidelity, reduce mode collapse when mix-
ing styles, and allow for richer prompt embeddings beyond
CLIP alone. With more compute, we would also investigate
adversarial training such as adding a discriminator network
to better disentangle style and content features during guid-
ance, enabling more precise multi-style interpolation.
Ultimately, our goal is to move toward a model where artis-
tic intent can be expressed with greater subtlety and con-
trol, making machine learning a true collaborator in creative
workflows. Yet in doing so, we are reminded that artis-
tic style: its gestural representations, innate creativity, and
unique distinction, is an inherently human quality. While
models may mimic brushstrokes or color palettes, the spirit
behind the art remains something deeply personal and irre-
ducibly human.

7. Contributions

Catherine implemented the model pipeline, which
includes image encoding and compositional denoising,
along with advanced features such as style weighting
and classifier-free guidance. She also ran quantitative
tests for hyperparameter tuning. Christina performed
qualitative testing of all hyperparameters via human and
LLM-evaluation and evaluated our model against our
InstructPix2Pix baseline. Both authors contributed to
ideation, experimentation, and writing the report.

In our project builds on top of Stable Diffusion 2.1 [2]
and uses InstructPix2Pix [1] and CLIP [13] for baseline
evaluation.
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