
A.I.R.G.T.R. – Artificial Intelligence for Real-time Gesture-based Tonal
Rendering

Shane Mion
Stanford University

Department of Computer Science
smion@stanford.edu

Jacob Rubenstein
Stanford University

Department of Mathematics
jacobr1@stanford.edu

Abstract

We explore the use of computer vision and deep learning
to enable hand-based gesture recognition for musical inter-
action, aiming to create more accessible and intuitive tools
for musical expression. As an illustrative use case, we cre-
ate a vision-based system that mimics guitar playing, in-
terpreting right-hand strumming motions and finger counts
to trigger musical output, while using left-hand gestures to
modulate sound characteristics such as pitch or echo. To
recognize right-hand finger configurations, we cast the task
as a five-way image classification problem and evaluate
multiple convolutional neural network architectures (Mo-
bileNetV2, ResNet18, EfficientNet-B0) on a custom dataset
that we create using computer vision. We further assess
how data augmentation and environmental variability af-
fect generalization. For the left hand, we develop a comple-
mentary pipeline that leverages machine learning on tem-
poral sequences of hand landmarks to recognize dynamic
gestures, enabling real-time control over expressive musical
parameters such as pitch bends, echo effects, or tonal shifts.
Together, these components form a real-time pipeline for
camera-based musical control, demonstrating a promising
direction for low-cost, intuitive alternatives to traditional
instruments.

1. Introduction

Access to music creation tools is often limited by cost,
complexity, and availability. High-quality instruments,
MIDI controllers, and other digital audio hardware can be
prohibitively expensive, difficult to learn, and requires a
general barrier to entry that is too high for many. Even when
tools are accessible, they often require specialized knowl-
edge or years of training to use effectively. This project
aims to lower those barriers by turning a webcam, some-
thing nearly everyone already has, into a powerful musical
interface. By using simple hand gestures, users will be able

to produce and manipulate sound in real time, without need-
ing prior experience with traditional instruments or music
software. In doing so, the system opens up new possibili-
ties for learning, experimentation, and play, making music
creation more inclusive and approachable.

To make this possible, we’re building a system that inter-
prets hand gestures using neural networks and maps them
to musical actions. The technical challenge lies in ensur-
ing that this interaction feels natural, responsive, and ex-
pressive. The system must detect gestures accurately in real
time using just a single camera feed, and translate those ges-
tures into meaningful musical output. By focusing on intu-
itive interaction and low-cost implementation, we hope to
create a tool that’s both technically interesting and broadly
accessible.

Our approach achieves this through a combination of
deep learning and computer vision. We evaluate core com-
ponents of our system across both classification accuracy
and real-time performance. For right-hand finger recog-
nition, we frame scale degree selection as a five-class im-
age classification task over the A minor pentatonic scale,
achieving over 99% test accuracy using MobileNetV2 on
in-domain data. Left-hand openness controls play mode ∈
note, chord, with a simple landmark-based classifier reach-
ing 95% accuracy. Octave class ∈ 0, 1 is set using left-hand
position, determined through a heuristic angle-based rule
that performs reliably in live settings. Although not deep
learning-based, our Mediapipe-powered strum detection ef-
fectively captures downward hand motion to trigger notes
in real time. All gesture outputs are fused and translated
into MIDI messages, enabling seamless control of synthe-
sis and playback within Max/MSP. Together, these results
demonstrate the feasibility of our approach and highlight
key challenges and design decisions in building real-time,
vision-based musical instruments.

1



2. Related Work
The intersection of computer vision, deep learning, and

musical expression is one that has been well explored, with
various intuitive interfaces for musical interaction emerg-
ing. Our work builds upon several key areas of existing
research, while introducing novel and unique combinations
of methods to fulfill our specific goals.

2.1. Computer Vision and Hand Pose Estimation

The recent advancements in computer vision have been
key for 3D hand pose estimations, work that is crucial for
musical gesture recognition applications. Pavlakos et. al de-
veloped HaMeR [2] (Hand Mesh Recovery), a transformer-
based approach that reconstructs hands in 3D from monoc-
ular input with significantly improved accuracy and robust-
ness. HaMeR uses a large-scale Vision Transformer archi-
tecture and achieves state-of-the-art results on standard 3D
hand pose benchmarks. While our system could potentially
benefit from such precise 3D hand reconstruction, we opted
for a more lightweight approach using 2D landmark de-
tection to ensure real-time performance on consumer hard-
ware.

There is also the jo0707/midiGesture project [1] demon-
strates a real-time gesture recognition system that con-
verts hand gestures into MIDI signals using MediaPipe and
OpenCV. This approach focuses on simple gestures like in-
dex finger pointing and thumb-finger contact for note trig-
gering, which shares similarities with our finger counting
classification approach but lacks a lot of the sophisticated
musical expression capabilities we implement through left
hand modulation.

2.2. Machine Learning and Musical Applications

The development of gesture-controlled music systems
has accelerated through advances in computer vision and
machine learning, with researchers exploring diverse ap-
proaches to bridge physical movement and digital sound
generation. A seminal contribution comes from Yang et
al.’s MuGeVI system [4], which employs deep neural net-
works for hand keypoint detection and maps gestures to mu-
sical parameters through Open Sound Control (OSC) inte-
gration with Max/MSP. While sharing our system’s vision-
based approach and OSC/Max integration, MuGeVI does
not share our guitar-style interaction paradigm that defines
our work, which specifically decouples right-hand strum-
ming detection from left-hand modulation to mirror estab-
lished instrumental techniques.

There are several projects that exist that demonstrate the
versatility of MediaPipe for basic music control applica-
tions. Sgvkamalakar’s Hand Gesture Music Player [3] im-
plements real-time gesture recognition for playback func-
tions, using open palms to play/pause and thumb-index fin-
ger separation for volume control. This is a type of system

that exemplifies the growing accessibility of vision-based
music interfaces but focus on discrete playback controls
rather than the expressive performance capabilities enabled
by our hybrid architecture. Our approach advances beyond
simple trigger mechanisms through finger-count classifica-
tion using convolutional neural networks (MobileNetV2,
ResNet18, EfficientNet-B0) for discrete scale degree selec-
tion, combined with temporal gesture recognition for dy-
namic parameter modulation, which is a dual strategy that
supports both melodic precision and real-time manipula-
tion.

2.3. Bridging to Our Work

Our architecture synthesizes these advancements while
addressing their limitations through three key innovations:
1) Guitar-inspired interaction design separating strumming
detection (via MediaPipe motion tracking) from finger po-
sition classification (through CNN architectures), 2) Hybrid
static-temporal processing that combines MobileNetV2-
based finger-count recognition with heuristic angle rules
for octave selection, and 3) MIDI parameter mapping op-
timized for real-time responsiveness on consumer hardware
The integration of both classification paradigms (discrete
finger counts via CNNs and continuous strumming detec-
tion via landmark trajectories) with additional music capa-
bilities creates a musically intuitive interface that surpasses
the powers of systems focusing solely on singular gesture
types.

Unlike systems that require specialized hardware or mul-
tiple cameras, our approach uses only a standard webcam,
making it highly accessible. While other gesture-based
music systems focus on general playback control or ab-
stract musical interaction, our system provides structured
musical expression through pentatonic scale mapping and
chord/note mode selection. Furthermore, our integration
of both temporal gesture recognition (for strumming) and
static pose classification (for finger counting) creates a hy-
brid approach that combines the benefits of both method-
ologies. This differs from systems that rely solely on ei-
ther continuous motion tracking or discrete pose recogni-
tion, providing both rhythmic control and melodic expres-
sion capabilities within a single unified interface.

3. Data

Our project centers around enabling expressive, two-
handed musical interaction using computer vision. Specifi-
cally, we work towards interpreting right-hand finger poses
and strumming gestures, and left-hand openness and posi-
tion, to control real-time musical output. Because no pub-
licly available and well curated dataset exists for the specific
forms of interaction we were lookin for (in simpler words,
“air guitar” gestures using both hands to simulate pitch, play

2



mode, and octave selection), we created a custom, multi-
modal dataset tailored to the needs of our system.

3.1. Data Collection Process

We collected synchronized video data using a standard
webcam, recording participants as they mimicked guitar
playing with their bare hands. The right hand is used for
two simultaneous types of expression: (1) strumming ges-
tures, which trigger note events and are detected via wrist
movement, and (2) finger configurations, which correspond
to musical scale degrees (1–5 in the A minor pentatonic
scale: A, C, D, E, G). Meanwhile, the left hand controls
two separate musical modifiers: (1) hand openness to toggle
between note and chord play modes, and (2) vertical hand
position to indicate octave class (low or high). In each ses-
sion, participants performed predefined gesture sequences
that covered the full range of these musical states.

Each frame or short video clip will be annotated with:

• scale degree ∈ {1, 2, 3, 4, 5} corresponding to a
note in the A minor pentatonic scale

• play mode ∈ {note, chord} based on left-hand open-
ness

• octave class ∈ {0, 1} (low or high), used only
when playing single notes

We use MediaPipe Hands to extract hand landmarks and
handedness classification, allowing us to segment and crop
left- and right-hand regions from the input frames. The
cropped right-hand images (used for finger classification)
form the core of our neural training set. To facilitate train-
ing, we also developed a custom labeling and collection in-
terface to associate image crops with the appropriate class
labels and to support incremental dataset expansion.

3.2. Dataset Size and Composition

The dataset we created consists of over 1,000 labeled
images of right-hand finger poses distributed across five
classes (1–5 fingers), collected from multiple environments
and lighting conditions. The dataset for left-hand gestures
consists of over 400 labeled images captured from webcam
footage and sorted into two classes, open and closed. These
images were collected across varied backgrounds and light-
ing conditions to improve generalization. These images
were then used to train a binary classifier for left-hand state
recognition. Octave classification is computed dynamically
at runtime using the vertical position of the wrist landmark.

Initially, data was collected under relatively uniform
lighting and background conditions. Early results from
CNN-based classifiers on this dataset were promising in
controlled environments but failed to generalize well dur-
ing real-time use. Specifically, the models struggled to clas-
sify right-hand finger poses accurately in live scenarios with

varying lighting, motion blur, or non-neutral backgrounds.
This revealed a key gap between training and deployment
conditions, which we addressed through two major strate-
gies, which were data augmentation and dataset expansion.

3.3. Data Augmentation

To improve generalization and simulate the visual vari-
ability encountered during live webcam use, we applied
a suite of data augmentation techniques during training.
These include:

• Geometric transforms: random horizontal flips and
small-angle rotations simulate changes in hand orien-
tation.

• Color transforms: brightness and contrast jitter sim-
ulate lighting shifts due to different environments or
camera exposure settings.

• Gaussian blur: added to simulate motion blur or low
camera resolution, both of which were common during
live use and often degraded model performance.

• Random cropping and resizing: implicitly simulated
by jittering hand detection boundaries.

We implemented these augmentations using PyTorch’s
transforms, Compose and applied them dynamically during
training. Empirically, models trained with these augmen-
tation strategies demonstrated marked improvements in ro-
bustness. For instance, finger-count classification accuracy
improved by over 10 percentage points in live webcam tests
compared to the non-augmented baseline. To be specific,
adding blur proved to be especially impactful, as mirror-
ing the camera artifacts introduced by quick hand motion or
suboptimal lighting.

3.4. Expanded Data Collection in Diverse Environ-
ments

While augmentation helped address many generalization
issues, we also found that some failure cases persisted, par-
ticularly when the model encountered extreme lighting dif-
ferences or occluded hand regions. To address this, we
conducted an additional round of data collection for both
the left and right hand with explicit environmental diver-
sity: collecting samples in front of windows, under yel-
low vs. white lighting, at night, and with complex back-
grounds. We also varied webcam angles and hand sizes
(through distance to the camera) to broaden the distribu-
tion of visual inputs. This second dataset, collected under
the folder structure data diff/, was appended to the existing
dataset to train a more environment-robust model. These
additional samples were gathered using the same collection
pipeline, which captured cropped hand regions via Medi-
aPipe, then labeling them with finger counts. We observed

3



that the inclusion of these expanded samples, when com-
bined with data augmentation, led to significantly improved
live performance, particularly in environments such as low-
light strumming or highly blurred frames. It also reduced
model overfitting, as reflected in closer alignment between
validation accuracy and live classification behavior.

4. Methods
Our approach to building AirGtr centers on transforming

video input of gestures from each hand into expressive mu-
sical control signals. We break the system down by hand,
treating the right and left hands as separate pipelines with
distinct tasks and models. For each hand, we explored mul-
tiple technical approaches, including rule based logic and
deep learning classifiers, and iteratively refined them in re-
sponse to both offline and real-time performance. This sec-
tion details the models, preprocessing steps, and system de-
sign choices that we employed for each hand, highlighting
how they draw on key ideas from the course, including the
way that convolutional networks and computer vision in-
tersect. By combining traditional gesture engineering with
modern learning-based techniques, we aimed to create a
system that is both responsive and robust in capability dur-
ing live interaction.

4.1. Right Hand Methods

Our right-hand processing pipeline is responsible for two
key musical control tasks, which are detecting strumming
events and classifying finger poses to determine scale de-
grees. We began by testing a rule based method grounded
in MediaPipe hand landmarks before transitioning to a
data driven approach using a convolutional neural network
(CNN). This section outlines both approaches in detail and
motivates the shift toward neural methods.

4.1.1 Rule-Based Strumming Using Hand Landmarks

Our right hand pipeline began with a rule based approach
using MediaPipe’s 21-point hand landmark model. Strum-
ming corresponds to rapid downward motion of the right
wrist, and this pattern proved to be cleanly separable using
simple kinematic features. Specifically, we tracked the y-
coordinate of the wrist landmark across consecutive frames
and computed a finite difference between these frames to
estimate vertical velocity. When this velocity exceeded a
threshold of 0.08 units per frame, a strum event was trig-
gered, which is when a sound would be played during the
live experiment. To prevent false positives and double-
triggering, we implemented a temporal cooldown of 400ms
between consecutive strums. This thresholding strategy
allowed for real-time responsiveness and maintained high
precision under various conditions, including fast gestures
and variable lighting.

Figure 1. captured as 1 finger during a strumming motion

Figure 2. captured as 3 fingers during a strumming motion

Figure 3. captured as 5 fingers during a strumming motion

4.1.2 Different Finger Classification Methods

While our strumming detection pipeline remained rule-
based throughout development, leveraging MediaPipe’s re-
liable hand landmark tracking and a simple velocity-based
trigger, we decided to take a more comprehensive approach
with respect to the classification of right-hand finger poses.
To establish a baseline, we built off of the above rule based
system to implement a rule based classifier. Our approach
consisted of distinguishing between straight and bent fin-
gers using landmark comparisons. For each finger other
than the thumb, we compared the y-coordinates of the fin-

4



gertip and the PIP joint. A finger was considered extended
if the tip landmark lay significantly above the PIP joint, by
more than a 0.02 normalized units, indicating an upward
posture in the image plane. The thumb required some spe-
cial handling due to its lateral orientation, so we tried to
scale and normalize using the thumb’s unique joint.

However, we also utilized our learnings from class to
evaluate other robust alternatives. We assumed that a neu-
ral network trained on labeled images of hand poses could
more effectively handle noisy input and diverse visual con-
ditions. Instead of relying on geometric heuristics that can
easily vary and be mis-measured, this model would learn
implicit visual cues that generalize across users, lighting
conditions, and camera perspectives.

We began by evaluating a range of convolutional
architectures for image-based classification, including
ResNet18, MobileNetV2, and EfficientNet-B0. These mod-
els were initialized with ImageNet-pretrained weights and
fine-tuned on a custom dataset of cropped hand images,
each labeled with a corresponding finger count (1–5). Crops
were extracted from full frames using bounding boxes in-
ferred from MediaPipe landmarks, with a margin to ensure
the entire hand was included. During training, we also
decided to experiment with multiple optimization strate-
gies. We tried both Adam, with its adaptive learning rates
and rapid convergence, and also stochastic gradient descent
(SGD) with momentum, which we know takes longer to
converge but may have higher accuracy.

4.2. Left Hand Methods

Our left-hand processing pipeline also supports two
forms of musical modulation, selecting octave range and de-
termining whether a chord or single note should be played.
Similar to the right-hand system, we experimented with
both rule-based and learning-based techniques. Octave con-
trol was implemented through a simple rule-based method
using hand height, while hand openness was used to distin-
guish between chord and note modes, and was addressed
through a data-driven image classification approach using
convolutional neural networks. The following subsections
describe the logic and implementation of each method in
detail.

4.2.1 Octave Selection via Wrist Height

To determine which octave class to play from, we used
the vertical position of the left hand relative to the cam-
era frame. because MediaPipe returns normalized landmark
coordinates in the image plane, we directly extracted the y-
coordinate of the wrist landmark. If the wrist’s y-position
exceeded our set threshold, the gesture was interpreted as
belonging to the lower octave. Otherwise, it was treated as
a high-octave gesture. This rule-based system provided a

very simple and easy, yet robust, mechanism for encoding
octave shifts without requiring machine learning. It proved
stable across different users and lighting conditions, as long
as the hand remained clearly visible to the camera.

4.2.2 Open vs Closed Classification via CNNs

To determine whether the left hand was open or closed dur-
ing a strum event, we trained a binary image classifier on
a dataset of cropped left hand images. Our custom dataset
was collected using MediaPipe to isolate and crop hand re-
gions from live webcam input, and each image was man-
ually labeled as either open or closed. We trained multi-
ple convolutional neural network architectures from scratch
(with weights=None) to compare performance across model
families. Specifically, we chose to evaluate MobileNetV2,
ResNet18, and EfficientNet-B0 using a shared training loop
and hyperparameters.

We evaluated MobileNetV2, ResNet18, and
EfficientNet-B0 as they represent different potential good
designs. MobileNetV2’s might minimize computational
cost, ResNet18’s skip connections enable fast convergence
with minimal parameters, and EfficientNet-B0’s generally
achieves strong accuracy-efficiency trade-offs. All three
are lightweight enough for quick real-time inference on
consumer hardware.

Each model was trained for 10 epochs on a dataset aug-
mented with random horizontal flips, color jitter, and resiz-
ing to 128×128 resolution. We used the Adam optimizer
with a learning rate of 1e-4 and a batch size of 32, and ap-
plied cross-entropy loss for supervision. To ensure com-
parability, each model was evaluated using the same dataset
and training loop. Training loss per epoch was recorded and
plotted for all three models.

5. Experiments and Results
We conducted a series of experiments to evaluate the ef-

fectiveness and real-time viability of the system we created,
focusing on both rule based baselines and learning based
models.

5.1. Right Hand Results

We evaluated our right-hand pipeline through a series of
experiments aimed at quantifying the effectiveness of dif-
ferent finger-count classification strategies. Our goals were
to establish a baseline using a rule-based classifier, and then
compare the effectiveness of CNN architectures and opti-
mizers.

5.1.1 Rule Based Finger Classifier

While this approach, as described in our methods section,
was intuitive and interpretable, it underperformed signifi-

5



cantly in practice. On the 65% of test images where Me-
diaPipe successfully identified a right hand, the rule-based
classifier achieved only 40.64% accuracy (115 correct out
of 283 total). Because this method could only hope to work
if MediaPipe was fully able to detect a hand, there were
35% of cases where this couldn’t even happen, so a pre-
diction was not even possible. When the predictions did
happen, the reasons failures were so common was sensitiv-
ity to occlusion, side views, and lighting conditions, which
made the geometric rules brittle and prone to misclassifica-
tion. These results validated the reasons that we also imple-
mented a learning-based approach.

5.1.2 CNN Training and Evaluation

We trained a series of CNN classifiers to predict finger count
directly from cropped hand images. Each crop was ex-
tracted using MediaPipe landmark bounding boxes and re-
sized to 128×128 pixels. We performed an 80/20 train-test
split and tracked training and validation performance across
10 epochs.

Figure 4. Training accuracy comparisons among model and aug-
mentation combinations

To better understand the learning behavior of each archi-
tecture, we tracked training accuracy over 10 epochs for all
model and augmentation combinations (Figure 4). All mod-
els had relatively good convergence, which makes sense
given the simplicity of the classification task, the use of
pretrained ImageNet weights, and the clear visual separa-
bility between the five finger-count classes in the dataset.
With this being said, ResNet18 without augmentation con-
verged the fastest and achieved the highest training accuracy
across all models. This rapid learning can be attributed to
the ResNet architecture’s use of residual connections, which
facilitate optimization by enabling gradient flow through
deeper layers. Combined with its relatively high capacity
and pretrained ImageNet initialization, ResNet18 was able
to memorize the training set more quickly than either Mo-
bileNetV2 or EfficientNet-B0.

Taken together, these results emphasize that dataset di-
versity via environment expansion in the dataset was
more impactful than augmentation in accelerating con-
vergence. Augmentation alone introduced more noise dur-
ing training, making the optimization landscape harder to
navigate. By contrast, real-world samples, meaning col-
lected under varied lighting, background, and camera an-
gles—provided useful priors that better matched live test
conditions while still allowing fast learning. As discussed
in the data section, we quickly found that our models were
almost no better than random guessing in live scenarios
with varied lighting or different backgrounds. Once we ex-
panded our set of environments, augmentation, as showed
in the graph, was proved to no longer add benefit.

Figure 5. Training loss for our quickest converging model

As shown in Figure 5, the training loss for ResNet18
without augmentation drops steeply within the first two
epochs and quickly approaches zero. This rapid conver-
gence is consistent with the architecture’s residual learning
mechanism and pretrained initialization. The minimal loss
plateau after epoch 3 further indicates that the model had
effectively memorized the training data, underscoring both
its high capacity and the relative simplicity of the classifi-
cation task. Generally, this behavior also reflects the ab-
sence of data augmentation, which would have otherwise
slowed convergence by introducing greater input variabil-
ity. While fast convergence can be beneficial, it also high-
lights the need for a more diverse training set to ensure gen-
eralization, motivating our use of expanded data collection
across environments. Using our robust datasets, even with
the worry of overfitting, the model works well, which prob-
ably speaks to the relative non difficulty of the classification
task.

6



5.2. Left Hand Results

To evaluate left hand gesture classification, we trained
MobileNetV2, ResNet18, and EfficientNet-B0 from scratch
(no weights at the start) on our binary dataset of open vs.
closed hand images. Each model was trained using the same
augmented dataset, loss function, and optimizer configura-
tion (Adam, 1e-4 learning rate). Figure 6 shows the training
loss per epoch across all models, allowing for a direct com-
parison of learning behavior.

Figure 6. Comparison of losses between models trained from
scratch on left hand data

We can quickly observe that ResNet18 converges the
fastest and achieves the lowest loss across nearly all
epochs, suggesting that it is best suited for this binary
task under limited data conditions. This is consistent with
ResNet’s higher representational capacity and skip connec-
tions, which allow deeper layers to optimize effectively
without vanishing gradients. In contrast, MobileNetV2 and
EfficientNet-B0 exhibit a more gradual reduction in loss,
suggesting that they have a slower convergence and poten-
tially less efficient use of training data in this context.

It is important to note that all models demonstrate consis-
tent downward trends in loss, confirming that the open vs.
closed classification task is learnable with relatively mod-
est data and light augmentation. The gap in convergence
speed also supports our choice to use ResNet18 in the live
pipeline, where fast and confident predictions are needed
during real-time strumming.

In terms of robustness, we found that models trained
with augmentation performed well under varied lighting
and backgrounds, with the ResNet18 classifier achieving
95% test accuracy in live webcam tests. While training loss
alone does not capture generalization fully, the consistent
trends in Figure 6 validate our training loop and model ar-
chitecture choices. Overall, these results confirm that the
left-hand CNN module is both performant and deployable
in real-world, latency-sensitive scenarios.

Now that we established that ResNet18 consistently out-
performed MobileNetV2 and EfficientNet-B0 in both con-

vergence speed and final accuracy on the left-hand openness
classification task, we conducted a focused hyperparameter
search to further optimize its performance. Specifically, we
explored how different combinations of learning rate, batch
size, and optimizer affected generalization. This search was
motivated by the need to deploy a lightweight but reliable
model in real-time settings, where training budget is limited
but robustness matters.

Figure 7. Comparison of different hyperparameter combinations

The results of our hyperparameter grid search are shown
in Figure 7, which plots ResNet18 test accuracy across
epochs for several optimizer/batch size/learning rate con-
figurations. The most stable and highest performing config-
uration was Adam with a batch size of 32 and a learning rate
of 1e-3, which reached nearly 99% test accuracy by epoch
5. In contrast, larger batch sizes showed less stable training
dynamics, particularly for Adam, which dipped early before
recovering. This is consistent with known behavior where
larger batch sizes can lead to poorer generalization unless
compensated for by lower learning rates or longer training.

Interestingly enough, the SGD configurations improved
steadily over time, but never matched the performance ceil-
ing of the best Adam setup within the 5-epoch window. This
aligns with the idea that Adam’s adaptive learning rates of-
fer faster convergence, especially in low data regimes like
our binary classification task. The combination of pre-
trained ResNet18 features and well-tuned optimization pa-
rameters proved highly effective, validating our final choice
to use Adam, with lr=1e-3 and bs=32 in our deployed sys-
tem.

5.3. Constructing the Air Guitar Pipeline

After building and evaluating the right and left hand
pipelines independently, we integrated the components into
a unified gesture to music system. The final AirGtr pipeline
processes video input frame-by-frame, using MediaPipe to
track both hands and extract hand landmarks. These signals

7



are then routed through separate logic for each hand, with
the right hand controlling pitch and note triggering, and the
left hand controlling chord or note decision and octave. By
combining both sources of input, we created a twohanded
interface capable of expressive control over musical output.
The decisions discussed previously are fused into a com-
pact representation of the current gesture state, resulting in
a pitch class, a play mode, and an octave modifier.

This output is then sent to Ableton Live using MIDI mes-
sages. Each time a strum is detected, a Note On event is
issued with the appropriate pitch and velocity, computed
from the CNN prediction and left-hand context. Chords
are synthesized by triggering multiple notes simultaneously,
while octave and mode settings alter the mapping of ges-
tures to sounds. This real time connection between com-
puter vision and audio synthesis enabled the system to feel
instrument-like, with decent latency and nuanced expres-
sive range. The result is a prototype that transforms silent
air gestures into musically meaningful performances, some-
thing verified through our supplementary videos showing
music being played on our interface.

6. Conclusion
In this paper, we presented AirGtr, a real time, vi-

sion based system for gesture-driven musical expression.
Our system enables two handed musical interaction using
only a standard webcam, with the right hand controlling
pitch through finger count classification and note triggering
through strumming motion, and the left hand modulating
chords/notes and octave. Through a combination of com-
puter vision with rule based logic and deep learning mod-
els, we demonstrated that intuitive and expressive musical
control is achievable without specialized hardware.

Our key results show the following.

• ResNet18 consistently outperformed other archi-
tectures (MobileNetV2, EfficientNet-B0) across both
the finger-count and open/closed classification tasks,
exhibiting faster convergence and higher accuracy,
even when trained from scratch.

• Environmental diversity in the dataset proved more
effective than augmentation alone, with expanded
data collection dramatically improving generalization
to real-world webcam conditions.

• Hyperparameter tuning further boosted perfor-
mance, with the optimal ResNet18 configuration
(Adam, lr=1e-3, bs=32) reaching nearly 99% test ac-
curacy in left-hand classification.

These findings validate that relatively lightweight CNNs
can be paired with good training data and tuned carefully,
and can then deliver robust performance for gesture-based

interaction tasks. We also explore the trade-offs between
rule based and learned approaches, showing where each of-
fers simplicity, generalization, or control.

Despite these strengths, the system does have limita-
tions. Gesture recognition performance really degrades un-
der poor lighting or fast motion, and MediaPipe’s land-
mark detection does occasionally fail during rapid move-
ment which leads to dropped inputs. Additionally, while
our finger classifier generalizes well across environments,
it remains limited by the size and diversity of the training
dataset. Another area for future work is refining left hand
recognition beyond rule based logic using trainable models.

For future work, there are several promising directions.
First, extending the gesture vocabulary beyond five discrete
finger poses could allow for richer melodic control or dy-
namic velocity mapping. We clearly had lightweight mod-
els on small datasets, and hope this serves as a proof of
concept for more advanced systems. In addition, deploying
the pipeline in mobile or embedded contexts could further
democratize access to music.

Ultimately, AirGtr proves that we can combine computer
vision and deep learning, and expand what it means to play
an instrument.

References
[1] jo0707. midigesture: Real-time gesture recognition system

to recognize hand gestures and position then convert them
into midi signals. https://github.com/jo0707/
midiGesture, 2024. Accessed: 2024-XX-XX. 2

[2] G. Pavlakos et al. Hamer: Hand mesh recovery from a
single image. https://geopavlakos.github.io/
hamer/, 2023. Accessed: 2024-XX-XX. 2

[3] Sgvkamalakar. Hand gesture music player.
https://github.com/Sgvkamalakar/
Hand-Gesture-Music-Player, 2024. Accessed:
2024-XX-XX. 2

[4] Y. Yang, Z. Wang, and Z. Li. Mugevi: A multi-functional
gesture-controlled virtual instrument. In M. Ortiz and
A. Marquez-Borbon, editors, Proceedings of the International
Conference on New Interfaces for Musical Expression, pages
536–541, Mexico City, Mexico, May 2023. 2

8

https://github.com/jo0707/midiGesture
https://github.com/jo0707/midiGesture
https://geopavlakos.github.io/hamer/
https://geopavlakos.github.io/hamer/
https://github.com/Sgvkamalakar/Hand-Gesture-Music-Player
https://github.com/Sgvkamalakar/Hand-Gesture-Music-Player

