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Abstract

This paper presents a novel data augmentation technique
for semantic segmentation in low-data regimes. The method
generates out-of-distribution training samples by mixing se-
mantic classes with controlled co-occurrence frequencies,
thereby increasing contextual diversity in the dataset. A
co-occurrence likelihood score enables precise control over
how common or rare the class pairings are in the syn-
thetic data, to adjust the similarity between the augmented
dataset compared the the original data distribution. Two
tunable hyper-parameters govern the frequency of combi-
nations and the ratio of synthetic to real data. This ap-
proach improves pixel-wise segmentation accuracy in low-
data regimes, increasing validation accuracy from 49.88%
to 52.63% by augmenting the training set three-fold with
synthetic images. These results show the importance of
carefully controlling the distribution of augmented data in a
low-data regime, as small datasets are prone to overfitting
if overwhelmed with large amounts of synthetic data. This
work highlights the potential of controlled, context-aware
augmentation strategies to enhance semantic segmentation
performance while mitigating the costs of manual labeling.

1. Introduction
Semantic segmentation datasets are significantly more

expensive to produce than image classification datasets,
as they require pixel-level annotations rather than sim-
ple image-level labels. For high-resolution datasets like
ADE20K, which contain images commonly resized to
512×512 pixels, this labeling process demands intensive hu-
man labor to accurately delineate each object. This paper
explores a data augmentation strategy that generates out-of-
distribution training examples by overlaying objects from
different semantic classes that rarely co-occur, as measured
by a co-occurrence likelihood score. This approach serves
two purposes: (1) it reduces the dependence on large, di-
verse labeled datasets by synthetically introducing novel
contexts, and (2) it improves robustness to partial occlu-
sions, encouraging the model to focus on class-specific vi-

sual cues rather than contextual priors. This paper uses a
copy-paste technique to merge together features from differ-
ent images as new images to the dataset. The paper outlines
experimentation with two hyper-parameters that control the
amount of augmented data compared to real data, and the
uniqueness of the image pairs that generated the augmented
data. By generating an augmented dataset 300% the size of
the original dataset and adding it to the original dataset, the
validation accuracy increased from 49.88% to 52.63% when
evaluated on the same PSPNet model. The augmented data
pairings were sourced from the rarest pairings of the origi-
nal dataset. The higher the ratio of augmented data to real
data, the more overfit the model became. When varying the
rarity by selecting different quantiles of the co-occurrence
list to use as the source of augmented pairs, any augmenta-
tion improves the model, but the more common pairings ac-
tually improved the model more compared to the rare pair-
ings.

Figure 1. Examples of Synthetic Images using Augmentation
Method

2. Related Work

Prior techniques such as ClassMix [2] and Copy-Paste
[1] have demonstrated the benefits of mixing classes and
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objects in segmentation tasks, primarily to enhance semi-
supervised learning or increase data diversity. ClassMix,
for instance, generates augmented blending labelled images
together to enable more effective use of unlabeled data.
This method relies on the assumption that combining simi-
lar regions (e.g., sky with road, or car with street) can help
reinforce class boundaries and improve label propagation.
Similarly, Copy-Paste focuses on object-level augmentation
by extracting objects from source images and pasting them
into new target scenes. This technique is typically used
for semi-supervised models to improve classification when
dealing with intra-class diversity and occlusion patterns. In
contrast, our method introduces class combinations with
controllable contextual rarity using a co-occurrence ma-
trix. Rather than preserving only realistic compositions, we
selectively introduce uncommon pairings to challenge the
model’s contextual assumptions. This is especially effective
in low-data regimes—on the order of 1,000 images—where
models tend to overfit to limited scene priors. By modulat-
ing contextual plausibility, our approach encourages better
generalization to novel or out-of-distribution scenarios. In
contrast, prior methods are typically applied in large-scale,
semi-supervised settings where the inherent data diversity
reduces the need for controlled mixing. In smaller-scale
regimes, however—where training data may not reflect the
test distribution—our ability to selectively inject augmenta-
tions based on co-occurrence likelihood allows for targeted
diversification without overwhelming the dataset with syn-
thetic examples.

3. Data
This project utilises the ADE20K dataset from MIT

CSAIL, which includes over 25,000 semantic-segmentation
labelled images and masks. The data set includes a di-
verse range of objects pictured both indoors and outdoors.
The images are resized to be 3x512x512 for the training
to simplify computation. Each image is accompanied by
a segmentation mask that categorizes each pixel as 1 of
151 unique classes such as “person”, “grass”, “chair”, etc.
Below is an example of the raw images and segmentation
masks.

This project tests a hypothesis that smaller datasets can
be artificially augmented to improve learning objectives.
After the data was separated into train, validation, and test
sets, the training dataset was decreased to one sixteenth
of its original size. The final training dataset consisted of
1010 images and the validation dataset consisted of 2000
images. To understand the distribution of the dataset, a his-
togram of pixel class labels were plotted. The most fre-
quent class labels are background elements such as “wall”
and “building,” which tend to occupy large portions of the
images. These classes dominate in terms of pixel cover-
age but exhibit relatively low variation in visual appearance

Figure 2. Example images from dataset; indoor and outdoor

across different scenes, and are likely to be easier to iden-
tify compared to intricate and highly variable features like
“person”. Furthermore, the 4th most ubiquitous label is
“Class 0”, which corresponds to unknown features in the
dataset. Since there are no similarities between unknown
pixels, “Class 0” was removed when calculating training
loss to prevent overfitting and destabilizing the learning.

Figure 3. Pixel-wise frequency of each class label of training set

4. Methods
4.1. Architecture Choice

To test the hypothesis that context-clash augmentation
improves segmentation models, a baseline model was first
established. The architecture selected is a PSPNet (Pyramid
Scene Parsing Network) with ResNet-18 as the backbone.
This model is very standard for segmentation and has won
the ImageNet Scene Parsing Challenge. It uses spatial pool-
ing at multiple scales to capture features of different sizes.
It then up-samples and concatenates these features with the
original feature map, to enable the model to have global
scene understanding with fine-grained details. Typically a
PSPNet uses a ResNet-50 or ResNet-101 backbone. For
ablation studies, both these models require too much mem-
ory and compute to run all the trials required to compare
parameters. Thus a ResNet-18 backbone was subbed in,
which has 18 layers instead of 50, resulting in 11.7 million
parameters instead of 25.6 million. This prevented training



jobs from failing due to memory overflow or taking hours to
train over thousands of high resolution images. The final ar-
chitecture used ResNet-18 as the backbone, training dataset
of 1010 images, batch size of 8 and 5 epochs for evaluation.
A single training run took 8 minutes, which allowed for 3
repeated trials for each set of parameters to account for any
weight initialization differences. All training and validation
accuracies were averaged over 3 trials.

4.2. Pre-processing

The RGB images were all resized to be 512x512 pixels,
then normalized using pre-computed mean and standard de-
viation from ImageNet. Instead of calculating the distribu-
tion over the training dataset, it saves compute to use values
that are computed from 1.2 million images from ImageNet.
By making all images the same size and normalizing, the
training is more efficient because it does not need to ac-
count for different image sizes and models learn faster with
zero mean and unit variance. When using a ResNet back-
bone it is also recommended to use ImageNet normalizing
since that is how they are usually trained.

4.3. Training Setup

Semantic segmentation is a classification task at the pixel
level, where each pixel is assigned to one of 151 classes.
Therefore, this paper uses cross-entropy loss, which com-
pares the predicted class probability distribution at each
pixel with the ground truth label. This loss encourages the
model to assign high confidence to the correct class for ev-
ery pixel. The optimizer chosen is Adam, which is better
suited to a more complex model like PSPnet with many
different pooling layers. Thus, using Adam can make the
model converge faster and be less sensitive to hyperparame-
ters. The learning rate was tuned by overfitting a very small
training to ensure the rate is not too low or high. Using a
small dataset of 10, the learning rate of 0.001 was able to
overfit to above 90%. The batch size of 8 was the highest
my computer could handle without memory overflow, es-
pecially since the augmented datasets reached up to 5000+
high resolution images. Batch size, learning rate, optimizer
were all kept constant for the ablation study.

4.4. Data Augmentation Technique

In order to augment the dataset by artificially creating
context-clashing images, the dataset must first be analyzed
to quantify the rarity of label combinations. Here, a list is
used to compute the co-occurrence likelihood of each pair
of labels. A helper function loops over each image in the
dataset and if two labels both appear in an image the fre-
quency counter for the pair iterates. At the end, all the fre-
quencies are normalized to give a likelihood of a pair of
labels occurring simultaneously. Context-associated pairs
like “floor” with “ceiling” occur much more frequently than

Figure 4. Training set accuracy for 10-image set intentionally over-
fit to validate setup and set learning rate to 1e-3

context-clashing pairs like “car” and “sofa”. A histogram
is plotted to show the most popular label pairs. The hy-
pothesis is that only training on the vanilla dataset fails
to expose the model to out-of-distribution pairings, which
prevents the model from being able to generalize when la-
belling real world data with unseen pairings. By using this
co-occurrence list to filter for rare pairings, we can control
how unusual the augmented data is compared to the raw
dataset.

Figure 5. Frequency of label pairs co-occurring in train dataset

Given the size of the dataset, the pairing space is very
sparse. This log scale graph shows the co-occurrence like-
lihood in a histogram, showing that most pairing occur at a
near-zero likelihood. Only very select pairs actually repeat
across the dataset such as 1 and 4, which are “wall” and
“floor”.

The co-occurrence list is split into 5 quantiles, with
quantile 0 being the rarest pairings, and quantile 4 being
the most common pairings. This quantile choice is a hy-
perparameter when augmenting the data. The second hy-
perparameter is num aug, the number of augmented data
points. Ablation studies are conducted to find the impact of
the augmentation size and rarity of augmentation content on
the model learning.

To augment the data, the helper function takes in
the original dataset and the specified quantile of the co-
occurrence list for that dataset. It generates num aug new



Figure 6. Log scale histogram of frequency of co-occurrence; most
pairs are extremely rare

Algorithm 1 Context-Clash Augmentation Procedure
1: Compute co-occurrence matrix of label pairs
2: Select quantile of rare pairs for augmentation
3: for i = 1 to num aug do
4: Select label pair (la, lb) from quantile subset
5: Find image Ia containing la and image Ib containing

lb
6: Extract mask Ma of label la from Ia
7: Copy pixels from Ia masked by Ma onto Ib
8: Append augmented image and mask to dataset
9: end for

images by looping over the quantile subset of label pairs,
searching for image a with label a, and image b with la-
bel b from the original dataset. Then, it makes a sticker
mask from image a where the pixel label is equivalent to la-
bel a, and copies it onto image b by replacing the pixels in
image b and its segmentation mask. This new image is ap-
pended to the dataset. For computation efficiency the label
to image lookup table is created ahead of time.

4.5. Example of Overlaid Synethetic Image

To visualize the synthetic image, a helper function is
used to generate a plot showing the side-by-side of the orig-
inal image and the augmented image as follows. The ex-
ample image mixes together doctors with a building facade,
which adds novel context to the images.

5. Experiments
There were two main experiments to validate the effec-

tiveness of the data augmentation technique exploring how
the amount of augmented data and the uniqueness of the
pairs used for augmentation affects the validation accuracy.

The training set has 1010 samples. For experiment 1 it
was augmented by 10%, 100%, 300%, 500% to 1100, 2020,
4040, and 6060 samples respectively. The PSPNet with
ResNet-18 backbone was trained 3 times each with batch
size of 8 and epoch of 5. The training loss, optimizer, etc
are kept constant as per the Methods section. Overlaying the

Figure 7. Example of synthetic data with two mixed images

validation accuracy of the models with different augmenta-
tion amounts, it can be observed that an augmentation of
300% results in the best performance of the model, with an
improvement from 49.88% to 52.65% validation accuracy
at epoch 5.

Figure 8. Model validation accuracy varying augmented dataset
size

% of Aug Data Final Validation Accuracy
Baseline 49.88%
10% 48.50%
100% 50.31%
300% 52.65%
500% 51.03%

Table 1. Validation accuracy for models trained with different
amounts of augmented data. The 300% augmentation yields the
best performance.

However, increasing the augmentation to 500% resulted
in a slight drop in validation accuracy to 51.03%, despite



a higher training accuracy. This suggests overfitting to the
augmented data. This can also be seen in the training ver-
sus validation accuracy graphs, where the training accuracy
becomes much higher than validation accuracy and valida-
tion accuracy begins to stagnate. This is showing how the
model is memorizing and overfitting to the training data.
Since the synthetic samples were generated by copy-pasting
regions within the original training images, many visual fea-
tures remained redundant. At high augmentation levels, the
dataset becomes dominated by these partially repeated pat-
terns, reducing the model’s ability to generalize to unseen,
real-world scenarios.

Figure 9. Baseline model training and validation accuracy over 5
epochs

Figure 10. 500% augmented data training and validation accuracy
over 5 epochs

This highlights the importance of not just how much but
also how data is augmented. Careful tuning of the augmen-
tation scale is essential to avoid overwhelming the model
with synthetic noise.

The second experiment fixed the augmentation amount
at 100% and instead varied the quantile of the co-occurrence
likelihood used to select image pairs for augmentation.

These quantiles correspond to how frequently certain im-
age regions are likely to appear together. The aim was to
test the hypothesis that combining rare, out-of-distribution
image pairs might help the model generalize better.

Figure 11. Model validation accuracy varying the quantile of
sorted co-occurrence list used to generate the augmented pairs for
synthetic dataset

Quantile Final Validation Accuracy
Baseline 49.88%
0 (Least Likely) 50.31%
2 (Medium Likely) 50.78%
3 (Most Likely) 51.63%

Table 2. Validation accuracy for models trained with different co-
occurrence quantiles in the augmented data. The highest accuracy
is achieved using the most likely co-occurrence quantile.

Contrary to the hypothesis, the best performance was ob-
served when using image pairs from the most likely co-
occurrence quantile (Quantile 0). All augmented models
outperformed the baseline, but the model trained with the
most probable pairings achieved the highest validation ac-
curacy. This result suggests that generating synthetic exam-
ples from realistic, high-likelihood combinations helps the
model better generalize to the validation set. Since the val-
idation data originates from the same un-augmented source
as the training data, it is likely to contain these common
patterns. Therefore, targeting augmentation on likely but
unseen variations enables the model to learn and generalize
the dominant visual patterns more effectively and improve
validation accuracy the most.

As discussed in the Alernative Methods section, an-
other hyperparameter originally explored is the sticker size
threshold. By limiting the allowable sticker to be at a min-
imum 20% the size of the original image, we are able to
prevent augmentations of only very small sections of the
image that could be mistaken as noise. However, compared
to the baseline this actually worsened the performance of
the model, decreasing the validation accuracy from 49.88%
to 48.40%, thus this method was not further explored in fa-



vor of a simplier approach with less hyperparameters. A
possibility as to why this method did not improve the model
is because only large background objects take up more than
20% of the image, and thus this augmentation technique is
not able to produce synthetic data with fine-grained objects
and the contextual-novelty it can provide is limited.

Figure 12. Model training and validation accuracy when imposing
a 20% minimum sticker size constraint

6. Conclusion
In conclusion, the experiments demonstrate that

carefully controlled data augmentation can improve
segmentation-labelling model performance, especially in
low-data regimes. Increasing the amount of augmented
data up to a point enhances validation accuracy, but ex-
cessive augmentation risks overfitting due to redundancy in
synthetic samples. Moreover, selectively generating aug-
mented pairs based on common co-occurrence likelihoods
proves more effective than focusing on rare or unlikely com-
binations, as it better aligns with the distribution of the val-
idation data. These findings highlight the importance of
balancing augmentation quantity and quality, and of using
contextual co-occurrence information to guide augmenta-
tion strategies that promote robust generalization.

Some further steps to explore would be to graph a his-
togram of the correctly labeled pixels and then target the
synthetic data creation to the most commonly incorrectly
labelled pixels. This add-on to the method should see even
greater improvements in the segmentation accuracy by in-
tentionally augmenting the dataset where the model does
not perform well to account for a lack of diversity in the
dataset in that category. Since this paper has shown poten-
tial in using context-aware augmentation to improve model
robustness, further modification to isolate and target model
classification weakness should improve this technique even
more.
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