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Abstract

This paper investigates the intersection of Formula 1
data and 3D Gaussian Splatting (3DGS), examining the op-
portunities and limitations of applying 3DGS techniques to
the fast-paced, visually complex setting of Formula 1 rac-
ing. While prior work has applied 3DGS to general auto-
motive environments, its effectiveness in high-speed motor-
sport contexts remains unexplored. We compare the stan-
dard 3DGS pipeline built on COLMAP with a globally op-
timized GLOMAP-based alternative to evaluate differences
in robustness and efficiency. Leveraging onboard footage,
telemetry, and multi-angle perspectives, we analyze recon-
struction quality, pose accuracy, and the impact of ex-
treme motion on performance. Our experiments include
telemetry-based pose initialization, camera parameter es-
timation under varying visual conditions, and multi-view
training using virtual 360 data. Ultimately, we assess the
feasibility of using 3DGS for practical applications in For-
mula 1, including crash scene reconstruction and analysis
of off-track excursions, using only readily available teleme-
try and onboard video.

1. Introduction

Recent advancements in neural rendering techniques,
particularly 3D Gaussian Splatting, have opened new fron-
tiers for real-time and photorealistic scene reconstruction.
In this work, we explore the potential of applying Gaus-
sian Splatting to Formula 1 racing footage—a domain char-
acterized by extreme speeds, rapid motion, high-frequency
vibrations, and complex visual environments. Formula 1
presents a uniquely demanding testbed for evaluating the
capabilities and limitations of current scene reconstruction
methods. By leveraging onboard footage, synchronized
multi-angle views, and real-world telemetry data, we assess
how Gaussian Splatting performs under high-speed motion,
its accuracy in representing track geometry, and its poten-
tial utility in complex visual contexts such as during crash
events. In summary,

• We analyze two methods of producing Structure-
from-Motion objects. Our pipeline takes in sequen-
tial frames of racing footage as input, processes the
footage into camera poses using an Structure-from-
Motion method, and then reconstructs the scene using
Gaussian splatting.

• We explore using telemetry data as input and output
an interpolated list of camera poses that can be used as
input or evaluation.

• We investigate Gaussian splatting’s ability to estimate
and analyze onboard camera parameters, even with
distortion due to heat and vibration, through experi-
ments. For this experiment, cropped videos are used
as input to the 3D Gaussian splatting procedure, and a
reconstructed scene is the output.

• We experiment with multi-view cameras for improv-
ing reconstructions. We use a 360deg camera as input
to the 3D Gaussian splatting procedure and output a
reconstructed scene.

Our aim is not only to evaluate this technology’s techni-
cal performance in extreme conditions but also to highlight
its practical applications in motorsport analysis, simulation,
and safety research.

2. Related Works
2.1. Structure-from-Motion

Early research on matching images for geometric recon-
struction has explored different techniques. One proposed
method was unguided matching, a procedure that tries to
search for image matches within a corresponding region in
other images for a particular point. Other methods optimize
for some geometric constraint where image points are con-
sidered matches or inliers for a particular feature if they sat-
isfy the specified geometric constraint [1]. For these types
of optimizations, random sample consensus (RANSAC)–an
algorithm that involves sampling sets of points and using
the rest of the points to test for inliers for a set number of
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iterations–is widely used to estimate camera parameters or
image matches [3].

Structure-from-Motion (SfM) is a method that infers
scene geometry by matching points across images of dif-
fering camera positions. While this method can pro-
duce sparse point clouds, SfM does struggle to produce
complete and robust results. COLMAP improves on the
naive SfM method by implementing a geometric verifi-
cation strategy, ”next best view” selection, triangulation
method, bundle adjustment, and an outlier filtering strat-
egy that utilizes RANSAC [10]. The improvements intro-
duced by COLMAP allow for more stable reconstruction
due to its iterative reconstruction process. More recently,
GLOMAP, Global Structure-from-Motion, has been intro-
duced using descriptor-based methods and global estima-
tions [7]. While COLMAP iteratively estimates camera po-
sitions, GLOMAP estimates the position of images all at
once by using rotation and translation averages. GLOMAP
performs on par with or exceeds COLMAP’s performance
and requires less time. However, GLOMAP does tend to
have limitations with symmetric objects during its rotation
averaging step [7].

Both COLMAP and GLOMAP, state-of-art models or
foundations for SfM, are integral to our pipeline, serv-
ing as preprocessing tools for camera pose estimation and
sparse geometry extraction. The efficiency and scalability
of GLOMAP, in particular, are crucial for enabling real-time
scene reconstruction in fast-paced sports environments.

2.2. 3D Gaussian Splatting

SfM objects often act as inputs to algorithms that can
utilize the feature mappings to generate 3D reconstruc-
tions. One method is 3D Gaussian Splatting, which of-
fers a fast and visually compelling method for scene ren-
dering, leveraging a point-based representation augmented
with anisotropic Gaussian kernels [6]. Each point in the
reconstructed scene is modeled as a 3D Gaussian with de-
fined mean and covariance, projected onto a 2D screen as a
“splat.” These splats are then rendered using α-blending in
back-to-front order. This method is much faster than previ-
ous Neural Radiance Field techniques and is competitive in
quality with other rendering methods, but it does struggle
with scenes that have not been properly observed, leading
to elongated artifacts [6].

Since its release, other research has attempted to aug-
ment 3DGS with other capabilities and tasks, specifically
automotive tasks. SplatAD was introduced to allow for
camera and LiDAR pose estimation for autonomous driv-
ing tasks [5]. LiDAR positions were rendered similarly to
normal image rendering, except the 3D gaussians gener-
ated were converted into spherical coordinates; optimiza-
tions used the same loss function as normal 3DGS with the
addition of LiDAR intensity and depth [5]. SplatAD im-

proved runtime, but the method is limited to rendering only
rigid objects, approximating dynamic actors as static. An-
other work uses composite gaussian splatting to allow the
modeling of dynamic actors. DrivingGaussian uses incre-
mental 3DGS to reconstruct the background, then overlays
a composite dynamic Gaussian splatting graph that mod-
els dynamic objects [14]. LiDAR data was used as a vali-
dation metric to ensure geometric consistency. Within the
automotive field, prior work has also explored how 3DGS
can be improved by removing the SfM generation process.
One project explored using global track constraints instead
of COLMAP to improve the geometric consistency among
views [11]. Instead of trying to estimate camera poses, the
method uses the tracks from matching features in all of the
images to optimize camera parameters. This method im-
proves on the original 3DGS pipeline by handling complex
camera views more accurately in reconstruction.

Our project seeks contribute to the applications of 3DGS
in the automotive and motorsport field by reconstructing
tracks with fast-moving vehicles. Building on ideas of aug-
menting 3DGS with LiDAR, we aim to improve the model’s
robustness using telemetry data that are already collected by
racing vehicles.

2.3. Motorsport Visualization Tools

Data collection systems in motorsports have long
recorded speed, performance, and driver inputs for further
analysis by engineers. Tracks also usually have various
cameras at different viewpoints and parts of the track for
teams and regulators to review. Traditional visualization
tools combine telemetry with 3D modeling software–Visual
C++, Open Graphics Library, and CAD tools–to support
race strategy and engineering decisions [8]. These visu-
alizations enabled real-time modeling of vehicle trajectory
and racing lines, improving safety assessments and driver
performance. In addition to providing more visual infor-
mation, this reconstruction was able to improve trajectory
calculations due to more precise racing lines [8]. This data
is prevalent within popular motorsports like Formula 1, but
smaller, amateur motorsports do not always have access to
dense sensor data since they are only collected at specific
locations on the track. Work has been done on how interpo-
lation can be used to estimate racing lines between sparse
points [12]. Using the predetermined track positions and
reference times at specific sectors on the track, the authors
are able to produce visualizations that closely model the true
vehicle position at smaller scale racing events.

Our project hopes to build on the current 3D modeling
techniques used in motorsports to improve driver analy-
sis and even help with crash reconstruction–which has an
added element of model/vehicle deformation that is not pos-
sible using current methods. Similar to how these tech-
niques used existing forms of data collection, our project at-

2



tempts to utilize already existing onboard cameras and track
camera views to achieve better than baseline results.

3. Dataset and Features
Our dataset comprises of both 22 simulated and real-

world segments of racetracks with multi-view racing
footage. Real-world clips collected from public footage of
professional races [4] and simulated clips were recorded on
driving simulators. We focus on well-documented tracks
such as Circuit de Monaco and Yas Marina Circuit and con-
sider only a few complex corners of each track. We also
collect the telemetry attributes of the laps using FastF1 API
[9]. Each clip is approximately 30 seconds long. We pre-
process the data by extracting 400-500 frames from each
clip–roughly enough to capture a major corner or portion
of track. This combination of synthetic and real-world
footage allows us to evaluate our model’s generalization
ability across different lighting conditions, motion patterns,
camera setups, and ideal scenarios.

4. Methods
4.1. SfM: COLMAP

COLMAP follows a three-step procedure: feature detec-
tion and extraction, feature matching and verification, and
incremental reconstruction. During feature extraction, lo-
cal features that are both radiometrically and geometrically
invariant are found [10]. During feature matching and ver-
ification, the method tests every pair of images for feature
overlap and verifies the mapping. During incremental re-
construction, pose estimates are outputted following im-
age registration, multi-view triangulation, and bundle ad-
justment. Images are registered once its pose cameras and
intrinsic paramters are found, and the image can be trian-
gulated to at least one other image in the model. Bundle
adjustment refines the camera Pc and point Xk parameters
found by grouping together redundant images Gr and min-
imizing reprojection error (Eq. 1) where ρ is a loss function
and π is a scene to image space projection function. For this
method, we used code from the original authors [10].

E =
∑
j

ρj(||π(Gr,Pc,Xk)− xj ||22) (1)

4.2. SfM: GLOMAP

GLOMAP is an alternative SfM method that emphasizes
efficiency by adopting a global estimation approach rather
than COLMAP’s incremental method. GLOMAP is built on
top of COLMAP’s feature extraction and feature mapping
procedure. However, instead of incremental reconstruction,
GLOMAP employs global estimation and global bundle ad-
justment, which has the advantage of being initialization
free and robust to outliers. Instead of the reprojection error

used by COLMAP, the authors developed a different opti-
mization function (Eq. 2).

argX,c,d min
∑
i,k

ρ(||vik − dik(Xk − ci)||2),

subject to dik ≥ 0.

(2)

In this equation, vik represents the camera ray that de-
notes the vector of point Xk from camera ci and dik is a
normalization constant [7]. This optimization improves on
COLMAP by bounding the errors in the range [0, 1] and
can converge with random initialization. For this method,
we used code from the original authors [7].

4.3. Baseline: 3D Gaussian Splatting (3DGS)

The baseline Gaussian Splatting model introduced by
Kerbl et al. uses COLMAP to create its SfM point clouds
and outputs a 3D reconstructed model. This method builds
on point-based rendering by representing each 3D point in
the scene as a Gaussian, defined by a mean and covariance
matrix (Eq. 3).

G(x) = e−
1
2 (x)

⊤Σ−1(x) (3)

For storage purposes, the Gaussian is stored as a scaling
three-dimensional vector and a quaternion for rotation [6].
Optimization of these gaussians includes projections and
density control such that geometry can be created, moved,
or destroyed. The loss function used combines an L1 loss
term with a data structural similarity index (D-SSIM) term
where λ is a constant from 0 to 1 (Eq. 4) [6].

L = (1− λ)L1 + λLD−SSIM (4)

Rendering is done by a tile rasterizer that uses alpha, or
transparency, compositing in back-to-front order, which is
fast and efficient for real-time applications [6]. We used the
original package from the authors [6].

Figure 1. Baseline: Gaussian Splatting

4.4. Global Gaussian Splatting

Our global gaussian splatting (GLGS) method uses
GLOMAP to create SfM objects. GLOMAP calls on
COLMAP’s feature extraction and feature mapping meth-
ods, then uses a global reconstruction method and bundle
adjustment. Finally, the resulting SfM object is passed to
the Gaussian splatting method.

3



4.5. Telemetry and Pose Calculations

Camera poses for onboard views can be estimated us-
ing telemetry data from each Formula 1 car’s onboard GPS
and vehicle systems. A subset of this data is made pub-
licly available for broadcasts and is accessible through the
FastF1 Python library [9], including timestamped global po-
sitions. With GPS accuracy within approximately 15 cen-
timeters, the data provides a spatial reference for pose es-
timation. Orientation is inferred by assuming the car faces
its next telemetry point, producing forward-facing vectors
representable as quaternions. While useful for initializa-
tion, this sequence alone is insufficient for structure-from-
motion. Temporal interpolation is needed to align with
video frames, and further refinement. For this method, we
developed code using the FastF1 library.

4.5.1 Quaternion Pose Interpolation

COLMAP uses unit quaternions q for representing orien-
tation, allowing smooth rotation interpolation. Given two
keyframes (p0,q0) and (p1,q1), interpolated pose at t ∈
[0, 1] is computed as:

p(t) = (1− t)p0 + tp1

q(t) =
sin((1− t)θ)

sin θ
q0 +

sin(tθ)

sin θ
q1, θ = cos−1(q0 · q1)

(5)

where q(t) is the spherical linear interpolation (SLERP)
ensuring smooth rotational transitions. This combined in-
terpolation results in continuous, smooth trajectories of both
position and orientation in real space.

4.6. FOV Estimation from Camera Intrinsics

Camera field of view (FOV) can be estimated from
COLMAP’s learned intrinsics when using the pinhole cam-
era model. COLMAP optimizes focal length parameters
(fx, fy), from which the horizontal or vertical FOV can be
computed using:

FOV = 2 · arctan
(
sensor size

2 · f

)
where f is the focal length in pixels and sensor size
is the physical sensor dimension. Despite real-world devia-
tions from the pinhole model, this method yields reasonable
FOV estimates, especially for small-sensor cameras com-
mon in onboard applications.

5. Experiments, Results, and Discussion
5.1. Evaluation Metrics

We use the following metrics for evaluating our methods
and experiments [13].

5.1.1 Peak Signal to Noise Ratio (PSNR)

PSNR measures the quality of the reconstruction by show-
ing how accurately the signal is preserved during recon-
struction.

PSNR = 10 log10

(
MAX2

MSE

)
(6)

5.1.2 Structural Similarity Index Measure (SSIM)

SSIM is a method that can measure the similarity between
images using luminance l, contrast c, and structure s when
considering pixel sample mean µ, sample variance σ2, sam-
pling covariance σxy , dynamic range L, and stabilization
values c1, c2.

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
; c(x, y) =

2σxσy + c2
σ2
x + σ2

y + c2
;

s(x, y) =
σxy + c3
σxσy + c3

(7)

5.1.3 L1 Loss

L1 Loss, also known as mean absolute error (MAE), calcu-
lates the absolute differences between a predicted element
ŷi and the target element yi.

L1 =
1

N

N∑
i=1

|yi − ŷi| (8)

5.2. Experiment 1: 3D Reconstruction

5.2.1 Experiment

We used a frame rate of 25 frames per second (FPS) for each
racing clip. In preliminary tests, we experimented with us-
ing 2, 5, 10, 25, and 50 frames in COLMAP. However, we
noticed that with 2, 5, and 10 FPS, COLMAP would strug-
gle to estimate poses for many of the images, while with 50
FPS it would often create disjoined tracks and take too long
with compute. While 25 FPS tends to be high as an input for
COLMAP, drivers can achieve upwards of 370 km/h, which
is over 100 meters traveled in one second. Therefore, each
frame shifts two to four meter which we found to be optimal
for balancing compute and accuracy.

We begin by detecting and extracting image features us-
ing COLMAP’s pinhole camera model and default parame-
ter settings. Because the input video frames are sequential
in nature, we use a sequential matching strategy to increase
correspondence accuracy between temporally adjacent im-
ages. For the baseline model, COLMAP was used for in-
cremental reconstruction. For the Global Gaussian Splat-
ting model, GLOMAP was used for global reconstruction,
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building off of COLMAP’s feature extraction and matching.
Gaussian splatting was set for 30,000 steps, as longer train-
ing did not significantly improve the reconstruction. For
this experiment, we used SSIM, PSNR, and L1 loss.

5.2.2 Results and Discussion

3DGS-GP L1 7K PSNR 7K L1 30K PSNR 30K

SGP 0.0345 23.2804 0.0162 29.8112
MCO 0.0482 22.1556 0.0179 29.6134
UAE 0.0233 25.7246 0.0131 31.3956
MIA 0.0910 17.3240 0.0539 21.1638
AUS 0.0279 24.6804 0.0179 28.3987

GLGS-GP L1 7K PSNR 7K L1 30K PSNR 30K

SGP 0.0491 21.5023 0.0163 30.5745
MCO 0.0441 22.7742 0.0156 30.5889
UAE 0.0216 27.0788 0.0114 33.1589
MIA 0.1381 14.2397 0.0525 20.7815
AUS 0.0488 20.8762 0.0258 25.5903

Table 1. GLGS and 3DGS metrics for Grand Prix (GP) Circuits:
L1 Loss and PSNR at 7K and 30K steps

Circuit 3DGS SSIM GLGS SSIM

SGP 0.5676 0.5811
MCO 0.5923 0.5935
UAE 0.6586 0.6310
MIA 0.4749 0.4588
AUS 0.5798 0.5934

Table 2. GLGS and 3DGS SSIM over 5 frames

The baseline 3DGS model was able to reconstruct track
segments with a PSNR around 28 and an SSIM of around
0.57 across five tracks (see Table 1). The GLGS model
achieved a PSNR of around 28 and an SSIM of around
0.57 across the five tracks. In other words, the performance
of COLMAP with 3DGS and GLOMAP with 3DGS was
similar; however, specific tracks show more differences. In
Figure 2 Singapore, both methods struggled to reconstruct
”Singapore Airlines” on the barriers–likely due to the rep-
etition of the logo throughout various parts of the track–
however GLOMAP struggled far more due to its method of
global feature matching where the barriers are almost ob-
scured and illegible. For this frame, the 3DGS PSNR was
13.66, and the SSIM was 0.5258. The GLGS PSNR was
11.76, and the SSIM was 0.4786. It is possible that the
COLMAP model could not find any suitable location for
this specific frame and just chose to rely on repeated track
features. On the other hand, GLGS likely could not match
this frame globally so very little reconstruction occurred.

In Figure 3 Australia (first frame), both models did fairly
well visually with GLGS having a slightly higher PSNR and
SSIM than 3DGS. While the method did not have as many
artifacts in Australia, the resolution of both was worse than
the original image. It is also possible that the wider an-
gle allowed both to better reconstruct the beginning of the
dataset.

Figure 2. Comparisons between ground truth image (left), 3DGS
(middle), and GLGS (right) in Singapore

Figure 3. Comparisons between ground truth image (top left),
3DGS (top right), and GLGS (bottom) in Australia

Overall, GLOMAP can provide some additional stability
but does not seem to drastically improve the results in this
task; in some cases where repetition is prominent, the re-
construction is worse than 3DGS. Notice Figure 4, where
COLMAP’s reconstruction of Monaco was disjoint com-
pared to GLOMAP, however GLGS lacked detail in com-
plex patterned sections. While this GLGS is more effi-
cient, it is possible that the recurring advertising and equip-
ment in Formula 1 images makes GLOMAP less suitable
on some tracks to match features and distinguish between
frames (more Reconstruction examples can be found in the
appendix).

Figure 4. Aerial views of the 3DGS model in Monaco and Singa-
pore (COLMAP Left, GLOMAP Right)
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5.2.3 Applied 3DGS Reconstructions

While 3DGS reconstructions are an intriguing technology,
their current applications remain somewhat limited; how-
ever, they may hold considerable potential within the con-
text of Formula 1 crash analysis. When ample footage is
available, 3DGS can be used to generate detailed 3D re-
constructions of crash events. These reconstructions may
support investigations into the causes and dynamics of inci-
dents, and offer a valuable tool for training marshals, med-
ical teams, and engineers in responding effectively to com-
plex crash scenarios. For this experiment, we examined two
complex crash scenarios: George Russell’s incident at the
2024 Australian Grand Prix and Sergio Pérez’s crash dur-
ing qualifying at the 2022 Monaco Grand Prix. Both events
were classified as red-flag conditions due to the immediate
compromise of track safety.

Figure 5. Russell Australia 2024, Pérez Monaco 2022 respec-
tively. (Top) Novel view from 3DGS, (Left) Onboard Training
Data, (Right) Reference

Using COLMAP and 3DGS, we reconstructed the scenes
based on training data captured from the onboard camera
of the car directly behind the crash (Figure 5). From this
data, we generated novel views from alternative on-track
positions, offering new visual perspectives of the incidents
shortly after impact—before track marshals or safety per-
sonnel had entered the circuit. The reconstructions cap-
tured the vehicles and surrounding environment with dis-
cernible detail, though we speculate that improvements in
camera resolution and lighting conditions would further en-
hance the accuracy and realism of such reconstructions in

future implementations. Overall, we believe in the method
has immense potential in further understanding of incidents
like these.

5.3. Experiment 2: Evaluation with Telemetry

We examined two different approaches to employing
telemetry in tandem with 3DGS for Formula 1–training and
evaluating camera poses.

5.3.1 Initialization Experiment

As an initial attempt to improve initialization, we inter-
polated the GPS telemetry to a suitable refresh rate simi-
lar to the video input. We then performed feature extrac-
tion and sequential matching on the video frames, aligning
the resulting initial poses with the GPS data prior to run-
ning reconstruction. However, this approach was ineffec-
tive, as inconsistencies and misalignment between the video
input and the interpolated GPS data led to poor pose esti-
mation and unreliable reconstruction results, with typically
only a few images being utilized in the COLMAP model.
(A telemetry-Generated COLMAP can be found in the ap-
pendix).

5.3.2 Evaluation Experiment

We additionally utilized GPS telemetry data to assess the
accuracy of the camera trajectory estimated by COLMAP.
Trajectories derived from COLMAP poses were visualized
and compared against ground truth paths obtained from the
telemetry, enabling a qualitative evaluation of reconstruc-
tion accuracy. Note: Scale discrepancies were not consid-
ered in the evaluation, as no scale parameters were incor-
porated into the model. We also debated on using quantita-
tive methods to compare the paths but found that the initial
camera angle was dominating the results (even after align-
ing them).

5.3.3 Results and Discussion

Figure 6. (Top) GPS Ground Truth Route, (Bottom) 3DGS Gener-
ated Route
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We see that the resulting trajectory and pose graphs
closely matched the general shape of the ground truth path,
with noticeable errors at the start and end of corners (Figure
6). Unsurprisingly, COLMAP struggled on straights, where
cars are traveling the fastest and track-side detail is dimin-
ished due to long repeating barriers and scenery. Overall,
COLMAPs are not yet effective at modeling track geometry
precisely, even if the visual representations may appear ac-
curate from common angles. We noted, however, that 3DGS
still performs well on geometry directly on the course.

5.4. Experiment 3: Cropping and Camera Param-
eters Estimation

The standardized T-camera used across all Formula 1
cars offers a unique opportunity to study the effects of real-
world conditions on 3D reconstruction under controlled
hardware and placement. Despite identical recording se-
tups, we observed that different sections of identically
cropped footage produced significantly varied camera pa-
rameters when processed with COLMAP or GLOMAP.
This prompted further crop-based experiments to probe
how motion and lighting affect reconstruction stability–
particularly investigating the sensitivities in current pho-
togrammetry.

For our initial experiments, we evaluated the impact
of different training data crops on reconstruction perfor-
mance. We began with the full-resolution T-camera footage
(1920×1080), applying aggressive masking to occlude the
car and prevent interference with feature matching. While
this approach yielded acceptable results on some circuits,
the high memory demands significantly slowed training.
Given the high-speed nature of the footage, we also hy-
pothesized that motion blur near the car body would dimin-
ish the value of this additional data. We therefore tested a
narrower crop (1750×450) focused solely on the forward-
facing region, excluding the car entirely (Figure 7). This
adjustment substantially reduced training time without any
noticeable loss in PSNR or visual quality.

Figure 7. (Yellow) Cropped, (Red) Masked

Although Formula 1 does not publicly disclose the field
of view (FOV) specifications of its onboard cameras, 3D
model estimate suggest effective FOV close to 90◦ after
cropping, we used this as our comprison to the COLMAP

parameters.

5.4.1 Results and Discussion

Using the procedure outlined in the methods section, FOV
estimates were derived from COLMAP’s learned focal
lengths under the pinhole model. The resulting estimates
ranged from 30◦ to 60◦, significantly narrower than ex-
pected. This discrepancy suggests that COLMAP may com-
press scene geometry, particularly under challenging light-
ing or motion conditions. Notably, reconstructions from
night-time circuits with strong artificial lighting overhead–
such as Singapore and Yas Marina–yielded more consistent
and plausible FOV values, likely due to improved feature
correspondence in well-illuminated frames. Overall, we
found that Formula 1 T-cameras and mountings have sig-
nificant room for improvement in terms of distortion and
noise isolation, but that the high-speed nature of the con-
tent may also be to blame in terms of the unreliable camera
intrinsics.

5.5. Experiment 4: Multi-view Reconstruction

The use of multiple onboard cameras in Formula 1
cars presents an intriguing opportunity for studying Gaus-
sian Splatting, due to the inherent redundancy and overlap
across viewpoints, which can potentially improve 3D recon-
struction through better spatial coherence. Our initial ex-
ploration focused on leveraging real-world footage, where
multiple high-quality onboard perspectives are theoretically
ideal for multi-view training. However, in practice, access
to synchronized and complete camera views is limited, as
not all onboard angles are publicly released, and those that
are often suffer from occlusion due to debris, motion blur,
and intense vibrations.

5.5.1 Experiment

We initially attempted training on footage from a real 360-
degree onboard camera, but encountered significant chal-
lenges, particularly with feature matching, which strug-
gled to maintain consistency under such dynamic and vi-
sually noisy conditions. This led us to explore an alter-
native data source: the virtual 360-degree cameras avail-
able in the newly release F1 game, EA SPORTS™ F1® 25.
We sourced a pre-release virtual 360 video [2], and used
it for training (Figure 8). From the 360 video, front, left,
rear, and right views were samples (excluding the car from
the frame), crucially identical virtual cameras settings were
used (Figure 9).

5.5.2 Results and Discussion

With the virtual data, distortion and noise from vibrations
and debris were mostly eliminated, providing a good foun-
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Figure 8. (Top) Real 360 Frame, (Bottom) Virtual 360

Figure 9. Sampled Views from 360

dation for features. Feature extraction was done with shared
camera intrinsics (since they shared the virtual specs) and
we tried two approaches for feature matching: sequential
and exhaustive matching. While sequential converged more
quickly, it would rarely utilize all training images due to
lack of feature pairs across video feed, we found exhaustive
searching with buffer size = sequence length to
be optimal for convergence time and training data utiliza-
tion, since images of the same camera were grouped to-
gether. Under these settings, COLMAP returned the densest
points-per-image of any of the reconstructions we created
(Figure 10).

Figure 10. COLMAP Representations

The resulting 3DGS of the multiview training set was a
significant qualitative improvement over all other examples
we computed (Figure 11). Complex geometry was retained
with street lamps and posts being well represented. Colors
and distance were also preserved. Overall, we think this is
an exciting avenue for Formula 1 to explore, as current re-
constructions are extremely coherent with potential for im-
provement with greater camera resolution and more training
data.

Figure 11. (Multi-View) Off-track Novel 3DGS Views

6. Conclusion
In this work, we explored the feasibility and effective-

ness of applying 3D Gaussian Splatting (3DGS) to the dy-
namic and high-speed environment of Formula 1. By com-
paring the traditional COLMAP-based 3DGS pipeline with
a globally optimized GLOMAP approach, we demonstrated
potential advantages and drawbacks between using iterative
and global feature techniques and their potential in crash
analysis. Using real-world onboard footage and GPS data,
we explored the effectiveness of of using telemetry for pose
estimation and assessment. While exploring various en-
vironments, we analyzed camera parameters and behavior
under motion. Lastly, with virtual multi-angle footage, we
demonstrated the potential for rich, single-pass reconstruc-
tions possible through greater camera technology. Our re-
sults show that with minor adaptations, 3DGS can be a pow-
erful tool for motorsport applications—particularly in re-
constructing crash scenes and analyzing track events using
existing video sources.

Due to substantial dependency issues with COLMAP
and Gaussian splatting, with more time, we would want to
explore how we can augment GLOMAP with the teleme-
try data and even use it in optimization. Similarly, if we
had more resources and access to more granular GPS data,
we would also consider using the interpolated positions for
Gaussian splatting, removing the need for COLMAP, which
could improve efficiency in real-time applications. Since
we saw potential in multiview reconstruction, we would
also like to explore using footage from multiple cars to
improve the reconstruction. Nevertheless, we believe that
this work opens the door to further research on integrating
learned priors and real-time processing in high-motion en-
vironments.
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7. Appendices

Figure 12. (Left) Sainte Devote Corner, (Right) Sainte Devote
GLOMAP

Figure 13. Yas Marina GLOMAP GLGS

Figure 14. Novel COLMAP 3DGS views (Left to Right, Top to
Bottom): Miami, Japan, Canada, Australia

Figure 15. COLMAP generated from GPS telemetry of Azerbaijan
Grand Prix Circuit

Figure 16. (Multi-View) More off-track Novel 3DGS Views
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