Language-Driven Primitive-Based 3D Scene Generation with Infinigen

Eyrin Kim
Stanford University

eyrinkim@stanford.edu

Abstract

This paper introduces a system that enables natural
language control over procedural 3D content generation.
Unlike existing approaches that rely on predefined tem-
plates, our system directly accesses geometric primitive
functions within Infinigen to construct arbitrary 3D as-
sets from scratch. By analyzing natural language descrip-
tions with Large Language Models (LLMs) and translat-
ing them into Infinigen’s primitive functions, we elimi-
nate the need for domain-specific factories while maintain-
ing procedural generation advantages. Our implementa-
tion demonstrates the viability of this approach through a
complete pipeline converting language input to Blender-
compatible assets. Experimental evaluation across repre-
sentative prompts demonstrates that the prompt decompo-
sition and post-generation validation steps significantly im-
prove structural accuracy and semantic alignment. While
the system is effective for standard geometries, it struggles
with complex or unconventional forms, motivating future
work in terms of spatial reasoning and adaptive validation.
Overall, the capability achieved in this work steps towards
greater flexibility in generating customized training envi-
ronments for computer vision and robotics systems.

1. Introduction

The generation of 3D scenes from natural language input
represents a significant frontier in computer graphics, with
broad applications across robotics, gaming, virtual reality,
and the creation of synthetic datasets for computer vision.
Recent advancements have enabled the synthesis of increas-
ingly photorealistic environments; however, many of these
systems operate within constrained frameworks that limit
flexibility or control over individual scene elements.

Several tools today, such as SceneCraft, allow users to
generate Blender-compatible scenes from text prompts, but
rely heavily on pre-built assets and rigid template logic, re-
stricting customization and asset diversity [2]. In contrast,
more recent systems like Infinigen enable procedural gener-
ation of highly detailed and reproducible 3D environments

Michelle Lau
Stanford University

mblau@stanford.edu

entirely from scratch [3]. Infinigen leverages Blender’s ren-
dering engine and exposes a compositional asset construc-
tion pipeline that can, in principle, produce infinite varia-
tions. However, while procedural systems provide greater
scalability and realism, they remain largely inaccessible to
users without deep domain expertise, requiring a strong un-
derstanding of internal APIs, function parameters, and con-
straints, which in turn creates a barrier for those unfamil-
iar with scripting or geometry. Asset generation in Infini-
gen is often driven by “factories”: modular code units (e.g.,
ChairFactory, TableFactory) that combine primitive geome-
try operations into structured templates. While these fac-
tories excel at creating objects within their defined cate-
gories by piecing together relevant primitive functions in
correct structures, they inherently restrict the range of pos-
sible assets to these predefined classes. Creating new as-
set types a;sp requires extending the codebase with new
factories, a process that demands intimate knowledge of
both the system’s architecture and 3D modeling principles.
Furthermore, current tools offer limited support for natu-
ral language interfaces, a growing necessity in creative and
technical workflows. While basic Blender primitives (e.g.,
boxes, spheres, curves) can be scripted directly, they lack
the abstraction and interpolation necessary to produce high-
fidelity assets from flexible prompts.

Large Language Model
|
{ ! 1
Asset Factory Asset Factory { Asset Factory }
N L
I I |
! ] ] ! ] ]

Primitive Primitive Primitive Primitive Primitive Primitive
Function Function Function Function Function Function

Fundamental 3D Rendering Code (Blender)

Figure 1. Infinigen Asset Generation Logic Hierarchy

This project therefore aims to bridge this gap by offering
two solutions. First, our system enhances Infinigen’s pro-
cedural generation with prompt-driven control. Second, un-



like existing approaches that rely on predefined asset tem-
plates (“factories”), our system bypasses these constraints
by directly accessing Infinigen’s primitive geometry func-
tions that form the foundation of its procedurally generated
3D objects (see Figure 1). In doing so, we hope to unlock
greater flexibility in procedural content generation, allow-
ing users to specify and create virtually any geometric con-
struct through natural language prompts. We also hope to
push training computer vision systems’ ability to create pre-
cisely specified scenarios without the constraints of prede-
fined asset libraries or the massive expense of physical data
collection.

The broader impact of this work lies in its applicabil-
ity to domains such as robotics and embodied Al, where
fine-grained control over environmental variability is criti-
cal. For instance, a researcher developing a home naviga-
tion algorithm could use our system to generate thousands
of procedurally varied room layouts, with configurable fur-
niture arrangements, lighting conditions, and obstacles en-
tirely via text. This capability could accelerate development
cycles while improving system robustness through exposure
to a much wider variety of scenarios than would be imprac-
tical to construct via current methods. The ability to spec-
ify rare edge cases or challenging scenarios through sim-
ple text prompts would also prove valuable in adjacent use
cases. Notably, our system builds upon Infinigen’s native
support for exporting indoor scenes to formats compatible
with robotics simulators, such as NVIDIA IsaacSim via the
Universal Scene Description format, enabling direct inte-
gration with IsaacSim for embodied learning and robotics
experiments, expanding the utility of our framework.

2. Related Work
2.1. Text-to-3D Generation

Early efforts in 3D scene synthesis often rely on either
extensive 3D model databases or fully procedural genera-
tors. Infinigen [3] epitomizes the latter approach: it proce-
durally creates photorealistic scenes entirely from scratch,
with assets generated via mathematical rules rather than
fixed external models. More recent text-to-3D methods gen-
erate complex scenes directly from prompts, each with dif-
ferent strategies and trade-offs [2—-6]. GALA3D [4] uses
an LLM to produce an initial coarse layout of a scene and
then employs a layout-guided 3D Gaussian splatting repre-
sentation, which achieves state-of-the-art fidelity and even
allows some editing of generated scenes but operates in
the space of implicit volumetric representations (Gaussian
splats), differing from our use of explicit procedural geom-
etry.

In other approaches, LLMs orchestrate scene creation
via intermediate programs or code [5]. Open-Universe In-
door Scene Generation by Aguina-Kang et al. is a prime

example: it avoids fixed vocabulary and training on 3D
datasets by using an LLM to synthesize a domain-specific
scene program to specify and their spatial relationships.
However, unlike our approach, the pipeline depends on ex-
isting mesh databases and VLM-based search, potentially
inheriting biases or limitations of those repositories. How-
ever, other systems, such as Scenecraft or 3D-GPT [2, 6],
position LLMs as central to the creation of 3D content.
In 3D-GPT, the LLM decomposes user instructions into
subtasks handled by specialized agents (for conceptualiza-
tion and actual modeling) and extracts parametric values to
drive 3D generation. This has been shown to integrate well
with Blender and enable dynamic user-in-the-loop adjust-
ments. We similarly seek the integration of language di-
rectives with a powerful 3D engine, but rather than relying
on Blender’s general toolkit or external assets, we harness
Infinigen’s domain-specific procedural generation to ensure
that scenes are synthesized as zero-shot generations.

2.2. Indoor Scene and Layout Manipulation.

A growing body of work focuses on the controllable gen-
eration of indoor layouts to ensure semantic realism [7—11].
LayoutGPT translates natural language prompts into spa-
tially structured layouts using LLMs and in-context learn-
ing, enabling cross-domain use in 2D and 3D scenes with
strong adherence to spatial constraints like object counts
and relationships [7]. LayoutVLM builds on this by com-
bining differentiable optimization with pre-trained vision
language models, treating object poses as learnable vari-
ables [8]. This allows the system to iteratively refine scene
layouts that are both semantically aligned with prompts
and physically plausible. These approaches separate lay-
out planning from final rendering, a philosophy we adopt
by distinguishing layout reasoning (handled via LLMs and
Infinigen constraints) from geometry creation.

End-to-end indoor scene generators such as Holodeck
and ControlRoom3D emphasize holistic synthesis of scene
generation. Holodeck uses GPT-4 to plan object pres-
ence and relations and populates scenes with retrieved as-
sets from large repositories like Objaverse, solving layout
via constraint optimization [9]. ControlRoom3D enables
user-sketched proxy rooms and stylistic prompts to gener-
ate richly textured, plausible 3D scenes [10]. While these
works have produced notable results, we move away from
asset-dependent pipelines and towards synthesizing both
structure and content from scratch, allowing more flexibility
and eliminating reliance on curated model banks. This pro-
cedural grounding, combined with natural language guid-
ance, enables our system to generate highly diverse, photo-
realistic environments while maintaining structural coher-
ence.



3. Methodology: Generation

Our approach fundamentally diverges from existing pro-
cedural generation systems by introducing natural lan-
guage controllability and eliminating the intermediary fac-
tory layer, thereby establishing a direct mapping from lan-
guage input to low-level geometric primitives that can de-
fine any 3D asset.

We built a system on top of the Infinigen codebase,
introducing a natural language interface capable of trans-
lating textual descriptions of furniture and indoor scenes
into structured 3D assets. Users can provide free-form
prompts—ranging from individual furniture objects like “a
sofa with a comfortable backrest” to full indoor scenes
such as “a dining table with cups on top and four chairs
around it.” These prompts are parsed through a multi-stage
pipeline that culminates in the generation of a structured
JSON specification. The output is then used to generate
a Blender-compatible scene by invoking Infinigen’s low-
level primitives directly, bypassing the need for template-
based factories. Specifically, we utilize Infinigen’s mesh op-
erations (e.g., build box mesh, build plane mesh,
build prismmesh), draw functions (e.g., spin,
bezier_curve, surface_from_func), and object-
level transformations (e.g., center, origin2lowest,
join_objects). These built-in utility functions collec-
tively enable fine-grained control over geometry construc-
tion without reliance on predefined factory abstractions.

Compared to Blender’s basic primitives, which are lim-
ited to fixed shapes like cubes, spheres, and cylinders,
Infinigen’s primitives offer significantly greater paramet-
ric flexibility, procedural expressiveness, and composabil-
ity. For example, while Blender’s primitives are generally
static and require manual scripting for custom forms, In-
finigen’s primitives support high-level configuration of ge-
ometric structure—such as controlled curvature, tilts, and
procedural surface variation—which is crucial for zero-shot
synthesis of complex assets from natural language.

Figure 2. Generated JSON File Mapped to Asset

3.1. Full Agent Breakdown

At its core, the “Full Agent” employs a number of spe-
cialized agents: (1) The “Furniture Classifier” agent ana-
lyzes input prompts to validate furniture or indoor scene de-
scriptions. (2) The “Semantic Decomposer” agent system-
atically breaks down objects into component structures with
precise geometric and spatial specifications. (3) The “Prim-
itive Calls Generator” transforms these abstract components
into concrete Infinigen primitives. It is supported by a
“Context Provider” agent that maintains a comprehensive
database of factory examples within Infinigen. (4) A “Val-
idator” agent checks and corrects any anomalies in com-
ponent connections and spatial relationships. All data ex-
changed between agents is serialized in a consistent JSON-
based interface. Each component’s representation includes
the primitive type, geometric parameters, transformations,
and semantic labels. Finally, this structured JSON is output
in a Blender file that calls the corresponding Infinigen prim-
itives. All LLM-based reasoning across agents is performed
using OpenAI’s GPT-40 model for its improved spatial rea-
soning ability.

3.2. Classifier Agent

The “Furniture Classifier” agent employs a classification
approach that enforces a three-dimensional analysis frame-
work: context evaluation (indoor vs. outdoor usage), phys-
ical characteristic assessment, and spatial relationship anal-
ysis (integration with indoor environments). The classifier
implements a binary classification schema returning either
”pass” or “does not pass” with accompanying explanation,
filtering out irrelevant prompts.

3.3. Decomposer Agent

The “Semantic Decomposer agent” translates natural
language furniture descriptions into structured, component-
based representations. Unlike existing systems that treat
furniture as single, fixed assets, this agent modularizes each
object into discrete parts—such as seats, legs, and backrests
for chairs—each annotated with geometric, spatial, and re-
lational metadata. This enables editable, prompt-aligned
model generation and ensures all user-specified elements
are represented with correct quantity, naming, and symme-
try.

This agent contains a curvature specification system,
classifying each component using six curvature types (e.g.,
straight, ergonomic curve, spiral) and three profile intensi-
ties (gentle, moderate, pronounced), along with directional-
ity (e.g., vertical, outward). This allows the system to cap-
ture nuanced geometric intentions, such as S-curved back-
rests or subtly arched legs, which downstream agents use
to select the appropriate primitives (e.g., Bezier curves for
complex shapes).



Full Agent

Ly Classifier Agent: Decomposition Agent:
“4 whiteboard with a bar for — Ev§luates objects based on |, Determme.s compf)ngnt quantl'tles,
chalk on the bottom” primary use context and geometric descriptions, spatial
physical characteristics relationships, shapes
L Primitive Calls Agent
Context Agent:

Selects relevant geometry primitives

Validation Agent:
Checks spatial connectivity + positioning

Rendering

Blender & JSON Files

Figure 3. Full Generation Agent Workflow

Each output is a clean JSON object containing compo-
nent names, quantities, geometric dimensions, spatial re-
lationships, and connection maps. Identical components
are grouped and marked for replication, while nested and
connected parts are clearly defined. This structured output
forms the semantic foundation for the “Primitive Calls Gen-
erator” and “Validator” agents.

3.4. Primitive Calls Generator Agent

The “Primitive Calls Generator” agent serves as a trans-
lation layer between semantic component specifications
and executable 3D geometry. It leverages a context-aware
prompting system, drawing on a rich library of factory ex-
amples provided by the “Context Provider”, to guide the
selection of appropriate primitive operations. This contex-
tual grounding allows the agent to generalize across famil-
iar construction patterns while accommodating novel con-
figurations. A central feature of its design is a structurally
ordered generation protocol: components are assembled in
a bottom-up fashion, beginning with ground-contact ele-
ments, followed by structurally dependent parts, and con-
cluding with decorative additions.

To ensure physical plausibility, the agent operates under
a tightly constrained specification framework. It restricts
geometry construction to a curated set of operations across
three domains: mesh generation for standard solids, draw-
ing functions for curved or free-form elements, and object-
level manipulations for compositional control. Each func-
tion is governed by predefined usage constraints, prevent-
ing invalid parameter combinations and preserving struc-
tural consistency. Curved components, such as legs or sup-
ports, are handled through specialized Bezier-based gener-
ation, while cushion-like forms use scaled spherical primi-
tives for accurate soft-body representation.

Component replication is governed by a consistency pro-
tocol that guarantees geometric uniformity across instances.
When multiple copies of a component are required, such as
chair legs or drawer fronts, the system ensures that only spa-
tial transformations are different, while all other parameters
remain identical. Naming conventions and spatial arrange-
ments follow strict rules as well.

Dimensional relationships are resolved through an em-
bedded calculation engine that computes precise spatial
dependencies between connected parts. Rules govern-
ing height alignment, span coverage, nesting clearances,
and stacking ensure components meet seamlessly at shared
boundaries. These calculations rely on vector-based dis-
tance measurements and enforce exact junction matching,
which is particularly critical for components like crossbars
or support beams. The final output gives a rigorous JSON
schema, encapsulating all operations, parameters, and trans-
formations, ready for downstream validation and rendering
in Blender.

3.5. Validator Agent

A key innovation of this system is the “Component Val-
idator” agent. While many spatial and geometric rules are
embedded in the prompt in the previous step, we discovered
that the LLM struggles to follow these instructions, often
selecting inappropriate parameters. As a result, generated
structures are often structurally invalid, with common is-
sues such as seats or tabletops floating above their supports,
or base components failing to make ground contact (Fig-
ure 3, Pre-validation). To address this problem, we imple-
ment a four-phase correction pipeline composed of explicit,
rule-based procedures: (1) connection map generation, (2)
ground contact enforcement, (3) horizontal alignment, and
(4) connection integrity checking through rule-based prox-



imity and priority logic.

The first stage constructs a connection map, where the
LLM interprets a list of component names and infers which
parts should be physically connected. If the LLM fails or
produces an invalid format, the system falls back to de-
fault heuristics (e.g. connecting a tabletop to all leg com-
ponents). Next, the validator enforces ground contact by
detecting base components such as legs or frames, calculat-
ing their lowest Z-coordinate, and adjusting all components
vertically to ensure the base sits at Z=0. This maintains
the relative spatial relationships between components while
aligning the structure with a virtual ground plane.

For chair-like structures, the validator performs horizon-
tal alignment to ensure legs are positioned directly under
the seat. Legs that deviate beyond a fixed XY threshold
are translated to align with the bottom of the seat for struc-
tural realism. Then, it executes vertical snapping, raising
or lowering the seat or tabletop so that its bottom surface is
aligned precisely with the highest leg endpoint. Finally, the
system performs connection validation, aligning remaining
parts (e.g., backrests, arms) by analyzing their geometric
anchor points and snapping them to their intended targets
if they fall outside a proximity threshold. It handles a vari-
ety of primitive types, including boxes, cylinders, spheres,
and Bezier curves, by using type-specific logic to determine
connection points and priorities. These corrections are re-
flected in the component’s parameters, which are passed
forward as JSON objects.

4. Dataset

This project diverges from conventional machine learn-
ing workflows in that it does not utilize a traditional dataset
in the supervised learning sense. Instead, our approach
leverages several key resources that form the knowledge
foundation of our system.

Central to our work is a comprehensive documentation
of Infinigen’s primitive geometry functions. We metic-
ulously analyzed the codebase to extract and document
functions from critical modules, including the fundamental
building blocks that Infinigen uses to construct its complex
procedural assets: primitives that are typically hidden be-
hind the abstraction of factory classes. For each primitive,
we created detailed documentation capturing its function,
parameter types, default values, constraints, and expected
behaviors. This documentation serves as a knowledge base
for our language model to understand the capabilities and
limitations of each primitive function. Our data processing
approach focused on structuring the primitive function doc-
umentation in a way that facilitates accurate mapping be-
tween natural language concepts and appropriate geomet-
ric operations. The resulting knowledge base enables our
system to “understand” both the capabilities of Infinigen’s
primitive functions and the natural language descriptions

provided by users.

5. Experiment and Results
5.1. Experiments

To investigate the fidelity and flexibility of our genera-
tion pipeline, we wrote a suite of 150 representative indoor
prompts encompassing both common and edge-case scenar-
ios. Examples range from simple, canonical items (e.g.,
“a four-legged wooden table” or “a small office desk with
two drawers”) to challenging, open-ended prompts (e.g.,
“a chair with a comfortable round seat and three slanted
legs” or “a modern shelving unit that twists around a ver-
tical pole”). For each prompt, we generated outputs using
four agent variants:

e Full Agent (with Validation): Utilizes the complete
pipeline, including object classification, prompt de-
composition, context, access to complex geometry
primitives, and a post-generation validation layer that
performs semantic and geometric checks.

 Full Agent (no Validation): Identical to the above but
omits the post-hoc validation step. This comparison
isolates the contribution of the validation step to gen-
eration fidelity.

* No-Decomposition Agent: Skips the decomposition
step, meaning the model directly proceeds to scene
synthesis without intermediate representations such as
part counts, shape symmetry, or spatial relationships.
This variant reveals how critical decomposition is to
achieving structured results.

* Direct Primitives Agent: Bypasses higher-level primi-
tive calls and instead generates assets using raw Bmesh
operations (operations that allow for the manipulation
of mesh data, such as vertices, edges, and faces). This
removes the abstraction layer that translates decom-
posed object components into semantically meaning-
ful Blender primitives, evaluating whether raw mesh
control can match higher-level procedural generation.

Across all agents, we performed iterative testing and re-
generation as necessary, simulating a realistic development
workflow and surfacing where breakdowns most often oc-
curred. Representative output scenes from these experi-
ments are shown in Figure 3.

To further ensure prompt diversity and model robust-
ness, we tested prompts across multiple asset categories
(e.g., seating, storage) and small scene scales (single-object
vs. room-scale scenes). This design enabled us to analyze
not only the micro-level assembly of discrete components
but also macro-level spatial reasoning, such as orientation,
ground contact, and the preservation of object-object rela-
tionships.



Shelf with three
drawers and round
knob handles

Chair with round seat,
long round backrest,
and three legs

Post- ’
validation:
Full Agent 1

Pre-
validation:
Full Agent

Table with four legs

No
Decomp.
Agent

Direct
Primitives
Agent

Chair with a Dining table with Chair with
Whiteboard comfortable round lmmg avie wiin a comfortable round
seat and four wheels i D seat, three slanted legs

Figure 4. Assets Generated Post-Validation, Pre-Validation, Without Decomposition, Only Direct Primitives.

Procedural Scene G ion E;

Round table with three slanted legs
and a cup on top of it

Bed with a round headrest, drawers
underneath and a nightstand beside it

Figure 5. Procedurally Generated Scene Examples

Dining table with a lamp on top of it

5.2. Evaluation

To assess the quality of the generated outputs, we em-
ployed a qualitative evaluation protocol designed to capture
perceptual and structural aspects of realism not easily cap-
tured by existing quantitative metrics. Drawing from best
practices in prior 3D generation literature [8, 2], we asked
ten students with prior exposure to 3D modeling or graph-
ics coursework to evaluate each generated asset or scene
on three core rubrics: structural coherence (plausibility of
physical composition and support), visual realism (object
continuity and consistency), and prompt alignment (similar-
ity to semantic and spatial directives in the input prompt).

The evaluation revealed that the full agent, particularly
when combined with post-generation validation, consis-
tently outperformed all other configurations. Participants
noted higher consistency in geometric alignment, more ac-
curate replication of object symmetry, and fewer violations
of physical realism (e.g., floating objects or incorrectly in-
tersecting parts). Multi-object scenes especially benefitted
from the validation layer, as it corrected common errors like
inconsistent orientation. However, feedback also indicated
that certain complex scenes — particularly unconventional
prompts — often lacked plausible object scaling and spatial
composition, demonstrating that the system’s understand-
ing of spatial relationships still has room for improvement

in edge cases.
5.3. Discussion

The system excelled at handling simple geometric fur-
niture designs, particularly those with clear hierarchical
structures like chairs and tables. Its modular architecture
provides a clear separation of concerns, handling different
mesh types through distinct pathways while maintaining a
coherent validation pipeline. This approach allows for reli-
able automated corrections, particularly in basic spatial re-
lationships such as ground contact and component connec-
tions, making it highly effective for standard furniture as-
sembly tasks. Furthermore, across the evaluated prompts,
iterative refinement through validation yielded consistent
improvements, particularly in connectivity of the objects,
alignment of duplicated parts, and adherence to spatial in-
structions. The full agent significantly outperformed both
baselines in producing geometrically consistent and seman-
tically meaningful outputs, especially in multi-object scenes
(Figure 4).

When faced with complex geometries, particularly those
involving unconventional base shapes or asymmetric com-
ponents, the system’s limitations became apparent. The
handling of curves presented a particular challenge, as
the current implementation struggles with rotations, ori-
entations, and complex curve intersections. These issues
stem from the current reliance on hard-coded validation
rules for primitive mesh types (e.g., checking axis align-
ment or bounding box overlaps), which fail to generalize to
novel mesh types. When we attempted to substitute these
rules with LLM-generated logic, spatial reasoning short-
comings became evident. LLMs often failed to predict ac-
curate bounds, orientations, or attachment points for irreg-
ular components. Thus, it is clear that substantial improve-
ments can be made to our baseline system.



6. Conclusion and Future Work

This project successfully accomplished its goal of de-
signing a novel system that uses sophisticated geome-
try primitives to procedurally generate assets and scenes,
grounded in the previous work of Infinigen [3]. By inte-
grating natural language prompting with granular geometry
construction, our system demonstrates that complex scenes
can be synthesized from scratch without relying on pre-built
asset libraries. The full agent deployed a multi-step pipeline
to classify, decompose, and contextualize a natural prompt
before carefully rendering the request based on a selection
of unlimited geometry options and validating its semantic
plausibility. Compared to existing systems that either re-
trieve pre-generated assets, our pipeline offers modular con-
trol, infinite asset variability, and strong alignment with user
intent. However, we also recognize the limitations of this
tool, as there is much work to be done in enriching its ability
to zero-shot more unconventional or complicated prompts.

Future work should focus on developing more sophis-
ticated algorithms for bounds detection and curve analy-
sis, while improving the LLM’s spatial reasoning capabili-
ties through specialized training. The system would benefit
from enhanced validation robustness, particularly in han-
dling non-standard bases and complex component hierar-
chies. These improvements would be crucial for expanding
the system’s capabilities beyond simple furniture assembly
to more complex geometric relationships and curved com-
ponents. In addition, fleshing out a more robust surface
modeling stack (algorithms and primitives for generating
realistic curvature, inorganic shapes, etc) is necessary to
expand both the scope of the generated assets beyond in-
door objects and enhance their realism. Finally, the system
would benefit from an interactive feedback loop that allows
users to guide refinement, correct misalignments, or iterate
on generated outputs.

Although there are several key areas for improvement,
we ultimately envision this framework as an enabling in-
frastructure for scalable, flexible, and user-controllable 3D
generation, where creative expression and functional speci-
fication are enabled via natural language.

7. Contributions and Acknowledgments

Eyrin Kim and Michelle Lau collaboratively designed
the methodology, implemented the agents to generate the
scenes, conducted the evaluation, and wrote the paper.
These authors contributed equally to the work. Fan-Yun Sun
advised and mentored on the project.

The authors made use of public code, including the fol-
lowing repositories:

* Infinigen: https://github.com/princeton-vl/infinigen

* 3D GPT: https://github.com/Chuny1/3DGPT

References

[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748-8763. PMLR, 2021.

[2] Peng, X., et al. (2023). ”SceneCraft: Text-driven
3D Scene Generation with Retrieval-Augmented Code
Generation.” arXiv preprint arXiv:2302.01763. 1, 2

[3] Li, Z., et al. (2023). "Infinigen: Infinite Photorealis-
tic Worlds using Procedural Generation.” Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 1, 2,7

[4] Zhou, X., Ran, X., Xiong, Y., He, J., Lin, Z., Wang,
Y., ... Yang, M. H. (2024). Gala3d: Towards text-to-3d
complex scene generation via layout-guided generative
gaussian splatting. arXiv preprint arXiv:2402.07207. 2

[5] Aguina-Kang, R., Gumin, M., Han, D. H., Morris,
S., Yoo, S. J,, Ganeshan, A., ... Ritchie, D. (2024).
Open-universe indoor scene generation using llm pro-
gram synthesis and uncurated object databases. arXiv
preprint arXiv:2403.09675. 2

[6] Sun, C., Han, J., Deng, W., Wang, X., Qin, Z., Gould,
S. (2023). 3d-gpt: Procedural 3d modeling with large
language models. arXiv preprint arXiv:2310.12945. 2

[7] Feng, W., Zhu, W., Fu, T. J., Jampani, V., Akula, A.,
He, X., ... Wang, W. Y. (2023). Layoutgpt: Compo-
sitional visual planning and generation with large lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 36, 18225-18250. 2

[8] Sun, F. Y, Liu, W., Gu, S., Lim, D., Bhat, G., Tombari,
F, ... Wu, J. (2024). LayoutVLM: Differentiable Op-
timization of 3D Layout via Vision-Language Models.
arXiv preprint arXiv:2412.02193. 2, 6

[9] Yang, Y., Sun, F. Y., Weihs, L., VanderBilt, E., Her-
rasti, A., Han, W,, ... Clark, C. (2024). Holodeck: Lan-
guage guided generation of 3d embodied ai environ-
ments. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 16227-
16237). 2

[10] Schult, J., Tsai, S., Hollein, L., Wu, B., Wang, J., Ma,
C.Y, ... Hou,J. (2024). Controlroom3d: Room genera-
tion using semantic proxy rooms. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 6201-6210). 2



[11] Epstein, D., Poole, B., Mildenhall, B., Efros, A. A.,
Holynski, A. (2024). Disentangled 3d scene generation
with layout learning. arXiv preprint arXiv:2402.16936.
2

[12] Tong Wu, Guandao Yang, Zhibing Li, Kai Zhang,
Ziwei Liu, Leonidas Guibas, Dahua Lin, and Gordon
Wetzstein. Gpt-4v (ision) is a human-aligned evalu-
ator for text-to-3d generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22227-22238, 2024. 6



