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1. Introduction
Self-supervised learning is a powerful framework in

computer vision where models learn meaningful represen-
tations from images alone, without relying on any labeled
data. The goal is to extract visual features that can gen-
eralize across numerous downstream tasks like image-level
classification and pixel-level segmentation.

In astronomy, many problems can be framed as com-
puter vision tasks: classifying galaxies, segmenting sources
from the background, detecting anomalous images, finding
sources of a specific type etc. While supervised approaches
have made progress in some of these areas, they are often
constrained by the need for extensive, high-quality labeled
datasets, which can be significant bottleneck.

Recent work has shown the promise of self-supervised
learning in astronomy, using large imaging datasets to learn
general-purpose features [7]. These features can then be
fine-tuned or adapted for numerous specific tasks like mor-
phological classification, anomaly detection or similarity
searches [8].

In this project, we explore the use of DINO (self-
Distillation with No labels), which is a self-supervised
framework that trains vision transformers to learn seman-
tic features without supervision [1, 5]. Furthermore, despite
not being trained for segmentation, DINO’s attention heads
naturally emerge as semantic part detectors, yielding atten-
tion maps that can directly serve as unsupervised segmenta-
tion masks (see examples in [1, 5]).

This makes DINO especially compelling for astronomy
where supervised labels are scarce and interpretability and
generalization are important. By applying DINO to as-
tronomical images, we aim to learn representations that
not only capture the pixel-level structure of galaxies and
sources, but also support a wide range of downstream tasks
from anomaly detection to image classification, all within a
unified, label-free framework.

In this specific project, we focus on understanding the
usability of DINO models for astronomical datasets. The
end goal is to have a DINO based model that can do seman-
tic segmentation on astronomical imaging. In Section 4,
we motivate and discuss this specific problem statement in

Figure 1. (Left) A schematic diagram of the DINO framework
where x is the input image while x1 and x2 are the 2 aug-
mented representations of this input x. (Right) The psuedo-code
of the DINO framework (without including the cropping augmen-
tations). Note that both these figures have been taken from [1].

more detail.

2. The DINO framework
DINO [1] is a self-supervised learning framework that

trains vision transformers (ViTs) using a self-distillation ap-
proach without requiring any labeled data. The core idea is
to have two networks — a student and a teacher — which
learn from each other. Unlike traditional supervised or con-
trastive learning setups, DINO does not rely on labeled pairs
or negative/contrastive samples.

2.1. Vision Transformers

Vision Transformers (ViTs) divide an image into small
patches and treat each patch as a token, analogous to words
in a sentence. These patches are then processed using
the transformer architecture, allowing the model to capture
long-range dependencies and global context across the im-
age. Unlike convolutional networks like ResNets, ViTs na-
tively support patch-level attention, producing interpretable
attention maps that can act as unsupervised segmentation
masks, which is our end target.

2.2. Distillation: The Teacher-Student Framework

The left panel in Figure 1 shows a schematic overview
of the DINO training process. The training process uses
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the distillation framework, where the student network is the
only network directly trained via gradient descent and the
teacher network is constructed as an exponential moving av-
erage (EMA) of the student weights — often referred to as a
momentum encoder. This dynamic ensures that the student
is always trying to match a slowly changing target, leading
to stable training and rich feature learning.

A key component of DINO is the multi-crop augmen-
tation strategy, where multiple views of the same image
are generated. Global crops (typically ≥ 50% of the im-
age size) provide context and help the network understand
large-scale structures. Local crops (typically < 50%) allow
the model to focus on fine details. The teacher processes
only global views, while the student sees both global and
local views, encouraging consistency in feature representa-
tions across different scales and perspectives.

The training objective is to align the student’s output dis-
tribution with that of the teacher using the cross-entropy
loss. Unlike methods like MoCo, DINO does not use con-
trastive loss with negative pairs. Also note that unlike pre-
vious work in knowledge distillations that relies on a pre-
trained fixed teacher, the DINO teacher is dynamically built
during training. This way, knowledge distillation is directly
cast as a self-supervised objective instead of being used as
a post-processing step.

DINO version 2 (DINOv2; [5]) is an extension and im-
proved version of the DINO framework where it combines
two types of training objectives. Just like in the original
DINO, the knowledge distillation (KD) framework is still
kept where it uses the global and local image crops and
the student network learns to match the teacher’s output on
global views. Additionally, there is a Masked Image Mod-
eling (MIM) part, where DINOv2 has the student network
predict features of masked image patches, while the teacher
sees the full (unmasked) image.

These two losses, KD and MIM, are weighted and com-
bined in the final training objective. Additionally, DINOv2
adds a regularization term called KoLeo, which encour-
ages the feature representations in each batch to spread out
evenly (to avoid collapse and improve diversity). These
changes help DINOv2 learn richer and more general fea-
tures, which lead to better performance on a wide range of
tasks like image classification, segmentation, depth estima-
tion etc. [5].

3. Data
In this project, we use data from the DESI Legacy Imag-

ing Surveys Data Release 10 (DR10) [2], which provides
uniform, deep optical imaging in four filters (g, r, i, z)
over ∼15,000 square degrees of the sky. The Legacy Sur-
veys combine data from multiple telescopes and are pro-
cessed with a consistent pipeline, yielding a large, homoge-
neous dataset. We access this dataset via the MultiModalU-

Figure 2. Example of fragmentation in astronomical images.
The left panel shows the RGB cutout, where a diffuse blue galaxy
overlaps with several compact red/orange background galaxies.
The center panel displays a traditional segmentation map, which
fails to separate the overlapping sources. The right panel shows the
primary segment deblended; reconstructing the full extent of the
main galaxy from this is non-trivial and requires additional cues
from color, spatial context, and morphology—information often
lost in binary masks.

niverse dataset1 [9] and separately through direct URL-
based queries to retrieve image cutouts at specified sky co-
ordinates. The MultiModalUniverse DR10 dataset contains
160 × 160 pixel cutouts. Additionally, the dataset includes
morphological classifications from Galaxy Zoo2 for 17, 736
galaxies within the DR10 footprint, allowing for a quanti-
tative evaluation of how well the model learns semantically
meaningful representations.

4. The Problem Statement: Semantic Segmen-
tation in Astronomical Imaging

A key challenge in astronomical image analysis is the
grouping of pixels in physically meaningful ways — a task
analogous to semantic segmentation in computer vision. In
natural images, semantic segmentation involves separating
objects like dogs, trees, or lakes into coherent regions de-
spite overlaps. Similarly, in astronomy, galaxies often ap-
pear blended, overlapping in projection or exhibiting com-
plex internal structure, making it non trivial to distinguish
their boundaries and separating them.

Traditional source detection methods in astronomy are
designed to identify statistically significant peaks in flux
relative to the background noise. These peaks, once de-
tected, are modeled as independent sources, often us-
ing parametric/non-parametric models [4]. When multiple
peaks are spatially close and are fit as multiple sources, they
can be flagged as blended sources, however it is non-trivial
to turn this into a statement on whether the peaks corre-
spond to distinct galaxies or to substructures within a single
extended object.

This ambiguity becomes especially problematic for
nearby, irregular, or interacting galaxies, where complex

1https://github.com/MultimodalUniverse/
MultimodalUniverse/

2https://www.zooniverse.org/projects/zookeeper/
galaxy-zoo/

https://github.com/MultimodalUniverse/MultimodalUniverse/
https://github.com/MultimodalUniverse/MultimodalUniverse/
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/


morphology and partial resolution of internal structure can
cause over-segmentation: a single galaxy may be broken
into multiple sources (see Figure 2). While source mod-
els can model and explain all the observed flux in an image,
they are not designed to assign pixels to semantically mean-
ingful units — e.g., determining that a set of peaks together
constitute a single galaxy.

As a result, estimating global properties (e.g., total flux,
size, or color) of such objects becomes non-trivial. These
properties depend on correctly grouping pixels and sources,
a process that involves integrating spatial, morphological,
and multi-band color information across the image.

Emerging self-supervised learning methods, such as
DINO, offer a promising avenue for addressing this chal-
lenge. These models can learn galaxy representations di-
rectly from seeing many images, without requiring labeled
examples. By developing an internal model of what con-
stitutes a galaxy, including its typical structure, extent, and
color gradients, such approaches can help group pixels in a
way that aligns with physically meaningful units. This ca-
pability could improve the identification of entire galaxies,
including irregular and blended systems, and enable more
accurate measurements of their global properties.

Figure 3. Example segmentation from the Morpheus frame-
work for morphological classification [3]. This demonstrates a
case of semantic image segmentation in astronomy, which goes
beyond simply identifying regions of significant flux. Notably, the
large spiral galaxy at the center is fragmented into multiple seg-
ments due to its internal morphological variation. While the Mor-
pheus framework is performing as intended for its classification
task, our goal is to develop a complementary and more general ap-
proach that instead recognizes and labels such a galaxy as a single
cohesive object.

5. Results
5.1. DINO Attention Heads and Naive Segmenta-

tion Maps

In this section, we explore the attention heads produced
by the DINO model and if they appear to be physically
meaningful. We specifically use the pretrained DINO ViT-
S/8 model.

To extract attention maps from the pretrained DINO ViT
model, we reshape the attention weights. The attention
weights have dimensions 6 × 784 where we have 6 atten-

tion heads with 784 attention weights. As the patch size is
8 × 8, we have a total of (224/8)2 = 784 weights. We re-
shape each head into 2D maps corresponding to the spatial
resolution of the image’s patch grid. We computed the fea-
ture map size using the known patch size of the model and
interpolated these maps back to the original image resolu-
tion using nearest-neighbor interpolation. To produce bi-
nary segmentation masks, we retained only the most impor-
tant regions of each head’s attention map by selecting pixels
that cumulatively account for the top 40% of attention mass
(corresponding to a 0.6 threshold). This procedure ensures
that each attention head highlights its most focused regions,
and the resulting attention maps can be interpreted as unsu-
pervised segmentation maps. Figure 4 shows a few exam-
ples of this.

In Section 6, we outline the method of how we hope
to produce segmentation maps and discuss potential chal-
lenges and considerations associated with this direction.

5.2. Galaxy Zoo morphological classification

To more quantitatively test if the image embeddings pro-
duced by the DINOv2 are meaningful, we test how well it
does on a simple morphological classification task. Note
that there are many other simpler, models that can do mor-
phological classification and can produce similar level of
accuracy. The goal here is to specifically test if the DI-
NOv2 embeddings are informative for astronomical images
that are not in the ImageNet dataset that DINOv2 has seen.

To classify galaxy images using features extracted by DI-
NOv2, we first preprocessed all images by resizing them to
224×224 pixels, converting them to tensors, and normal-
izing them using standard ImageNet statistics. We passed
the images through a pretrained DINOv2 model to obtain
the image embeddings, 1024 for the large model and 384
for the smaller model. These embeddings were saved along
with their corresponding Galaxy Zoo 10 labels. We split
the dataset into 80% training and 20% test sets, and trained
a simple multilayer perceptron (MLP) classifier with one
hidden layer (256 units, ReLU activation) and a final out-
put layer matching the number of classes. The model was
trained using the Adam optimizer and cross-entropy loss
over 30 epochs with a batch size of 64. Table 1 tabulates
the model’s Top-1 accuracy compared to other models. The
accuracies of other models is taken from Table 3 of [9].

It is interesting to see that some labels are well sepa-
rated in the embedding space, for example, labels 2, 3, 8 and
9. These correspond to Merging Galaxies, Round Smooth
Galaxies, Unbarred Loose Spiral Galaxies and Edge-on
Galaxies without Bulge, and indeed these morphologies
are quite visually distinct. In contrast, labels 6,7 are quite
mixed in this space. These are Barred Spiral Galaxies and
Unbarred Tight Spiral Galaxies, which have a more subtle
visual difference between them.



Figure 4. Examples of attention maps and naive segmentation outputs from the pretrained DINO ViT-S/8 model for three different
galaxy cutouts. In each example, the top-right panel displays the RGB image cutout. While the primary galaxy of interest (the largest,
central object) is clearly visible, the images also contain multiple foreground stars and background galaxies. The attention maps highlight
how the model is able to pick up on significant sources in the image, however, not yet distinguishing them as separate sources. Retraining
the SSL on astronomical images will likely help with this.

Figure 5. Examples of galaxies from the Galazy Zoo dataset from each of the 10 labels. These morphologies extend from “disturbed
galaxies” (label 1) and “merginf galaxies” (label 2) to smooth round galaxies (label 3, 4) and spiral galaxies (labels 6 and beyond). The
labels 6 and beyond split spiral galaxies in additional sub classes.

6. Next Steps: Producing Semantic Segmenta-
tion Maps

Since DINO is trained in a self-supervised manner and
does not include a segmentation head, segmentation maps
must be derived from its learned patch embeddings. As de-
tailed in the DINOv2 paper, there are two approaches to
produce segmentation maps: a linear head setup and a +ms
(multiscale) setup. We summarize these two approaches be-
low and plan out our next steps.

Linear Setup: A linear classifier (e.g., a 1×1 convolu-

tion or MLP) is trained to map each DINO patch token to
class logits3. Since ViT processes images as fixed-size, non-
overlapping patches (e.g., 16×16 pixels), an input image of
size 224×224 would yields a 8×8 patch grid. This results
in a coarse, low-resolution segmentation map, which can be
upsampled to full image resolution using bilinear interpola-
tion. As the galaxy images indicate, and depending on the
physical resolution of the image, this might be too coarse
and so the following method might be better.

3Class logits are unnormalized output scores for each class before ap-
plying a softmax function



Figure 6. A confusion matrix for the morphological classification
task using the Galaxy Zoo dataset using the DINOv2 VIT-L/14
model.

Figure 7. 2D t-SNE projection of galaxy embeddings from DI-
NOv2, colored by galaxy label.

+ms (Multiscale) Setup: This enhanced approach im-
proves segmentation quality by concatenating patch tokens
from the last 4 layers of the ViT to improve representation
and increasing the input image resolution to produce more
patch tokens. Applying multiscale test-time augmentation,
where predictions from multiple image scales are averaged.
As detailed in [5], this setup achieves performance close to
supervised methods using a fully finetuned MAE with an
Upernet decoder, demonstrating the strength of DINOv2’s
learned features.

Both setups are limited by the low spatial resolution of
patch-based tokens. To produce finer segmentation maps,
several modifications are possible: we could use smaller

Pretraining Model Top-1 Accuracy
DINOv2 ViT-L/14 73%
DINOv2 ViT-S/14 67%

EfficientNetB0 81%
No pretraining ConvNext-nano 76%

ResNet-18 74%
DenseNet121 73%

Galaxy Zoo ConvNext-nano 90%

Table 1. The Top-1 accuracy of the two DINOv2 models we test
at morphological classification task on the Galaxy Zoo labelled
dataset. We compare the (no pretraining) model performance to
other frameworks with no pretraining as well. For the larger DI-
NOv2 model (ViT-L/14), we find comparable accuracy to other
models. The accuracies of the other models are taken from [9].

patch sizes (e.g., 8×8) to get denser token grids. Also, this
issue is alleviated further if we use a higher resolution im-
ages from telescopes like Hyper Suprime Camera (HSC),
Hubble Space Telescope (HST) and James Webb Space
Telescope (JWST). The Multi-Modal Universe Dataset in-
cludes datasets from these telescopes and we plan on testing
our methods there.

In the very last stages of this project, we came across an
implementation of DINOv2 for just the image encoding as-
pect in the ASTROCLIP model [6]. They use the DINOv2
embeddings to do contrastive learning against the spectral
embeddings of the same galaxies. Their goal is very differ-
ent, but in reading their paper we learned some valuable in-
sights on how we could better process our images. Further-
more, their finetuned DINOv2 model could help us produce
better segmentation maps (using methods described above),
and we plan on exploring this in the future.

This is how they process their images: Each galaxy im-
age, with spatial resolution N × N and C channels (e.g.,
multi-band images), is first divided into fixed-size, non-
overlapping patches of size P × P . These patches are flat-
tened into vectors of dimension P 2 × C, resulting in a se-
quence of K = N2/P 2 patch tokens. Each of these tokens
is linearly projected into a latent embedding space of di-
mension D using a trainable projection matrix. To encode
spatial information, they add a learnable one-dimensional
positional embeddings to each patch token. They use the
ViT-Large (ViT-L) model with a patch size of P = 12. For
galaxy images with three channels, this results in flattened
patch vectors of dimension 432, which are then projected to
a 1024-dimensional embedding space. [6] found that such
a setup achieved strong performance, and smaller variants
were less effective. We therefore intend to use their model
and test its use case on our goal of semantic segmentation.

A potential complication of performing segmentation on
astronomical images is that, unlike in natural images where
objects often have well-defined boundaries, astronomical



objects typically do not. Their brightness peaks at the cen-
ter and gradually decreases outward, eventually blending
smoothly into the background noise. As a result, defining
clear segmentation maps becomes challenging, since there
is no sharp boundary where the object ends and the back-
ground begins. We will need to think carefully about how to
best create the small training set of segmented images, but
image simulations where the ground truth is better known,
is a promising avenue.

7. Conclusions

In this project, we explored the Self-Distillation with No
Labels (DINO) framework [1, 5] and evaluated its appli-
cability to astronomical imaging data. Using images from
the DESI Legacy Imaging Surveys [2] and morphological
labels from the Galaxy Zoo dataset within the MultiModal
Universe Dataset [9], we assessed the quality of representa-
tions produced by pretrained DINOv2 models.

We find that the DINOv2 model performs well out-of-
the-box, achieving a Top-1 accuracy of approximately 73%
on morphological classification tasks (see Table 1). Addi-
tionally, the image embeddings generated by DINOv2 ap-
pear highly informative, indicating that the model—despite
not being trained on astronomical images—can extract fea-
tures that are meaningful for scientific analysis.

Building on these encouraging results, and informed by
recent advancements in image embeddings used for con-
trastive learning [6], we aim to extend this work toward
producing semantic segmentation maps of galaxies in fu-
ture iterations.

References
[1] M. Caron et al. Emerging Properties in Self-Supervised Vision

Transformers. arXiv e-prints, page arXiv:2104.14294, Apr.
2021. 1, 6

[2] A. Dey et al. Overview of the DESI Legacy Imaging Surveys.
, 157(5):168, May 2019. 2, 6

[3] R. Hausen and B. E. Robertson. Morpheus: A Deep Learn-
ing Framework for the Pixel-level Analysis of Astronomical
Image Data. , 248(1):20, May 2020. 3

[4] P. Melchior et al. SCARLET: Source separation in multi-band
images by Constrained Matrix Factorization. Astronomy and
Computing, 24:129, July 2018. 2

[5] M. Oquab et al. DINOv2: Learning Robust Visual Features
without Supervision. arXiv e-prints, page arXiv:2304.07193,
Apr. 2023. 1, 2, 5, 6

[6] L. Parker, F. Lanusse, S. Golkar, L. Sarra, M. Cranmer, A. Bi-
etti, M. Eickenberg, G. Krawezik, M. McCabe, R. Morel,
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M. Cranmer, A. Do, M. Grayling, E. E. Hayes, T. Hehir,
S. Ho, M. Huertas-Company, K. G. Iyer, M. Jablonska,
F. Lanusse, H. W. Leung, K. Mandel, J. R. Martı́nez-Galarza,
P. Melchior, L. Meyer, L. H. Parker, H. Qu, J. Shen, M. J.
Smith, C. Stone, M. Walmsley, and J. F. Wu. The Mul-
timodal Universe: Enabling Large-Scale Machine Learning
with 100TB of Astronomical Scientific Data. arXiv e-prints,
page arXiv:2412.02527, Dec. 2024. 2, 3, 5, 6


