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Abstract

The existing literature on image colorization focuses on
optimizing the accuracy of color pixels of an image from
solely the input of the grayscale version of the original im-
age. In this paper, we approach the task of image coloriza-
tion by investigating the effects of the inclusion captions in
the input of an image colorization model. Using a simple
autoencoder architecture in combination with captions pro-
cessed as text embeddings (specifically using CLIP embed-
dings), we found that the incorporation of captions as input
was able to significantly improve the performance of our
image colorization models compared to a plain image col-
orization model without captions. We observed that when
captions were integrated with the original grayscale input,
the autoencoder both showed a lower pixel-wise MSE loss
from the ground truth and was qualitatively more bold with
including color, while the absence of captions in the input
resulted in more conservative guesses for pixel color.

1. Introduction

Image colorization is a well-known deep learning task
to automate the process of applying color to a grayscale
image. Image colorization is often associated with the
practical application of coloring historical black and white
images. Furthermore, many applicable black and white
images from history include captions with them that can
aid in the accuracy of the colorization of input images by
providing additional context to the image.

In this paper, we survey the performance of an image col-
orization model, with and without the inclusion of text em-
beddings of an associated caption with the grayscale image
input, exploring the effectiveness of BERT and CLIP text
embeddings. We investigate the impact of captioning on
the performance of image colorization models, along with
a survey of captioning in symphony with well-performing
image colorization techniques, such as using the CIELAB
color space to define images during training and U-net
architecture for optimizing the semantic analysis of the
grayscale input.
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2. Related Work

Much of the literature surrounding image colorization
optimizes for inference the color of pixels, just from
the gray scale context of the image. However, we have
not found any significant literature for using captions
that might come with an image to help with inferring
the image color. This turns the classic task of image col-
orization from purely computer vision to a multimodal task.

Autoencoders Autoencoders are a popular, effective
architecture of image colorization. Singh et al. introduce
the strategy of using an autoencoder as an effective way
to colorize images!®/. The autoencoder is three-part,
consisting of an encoder, bottleneck, and decoder, where
the encoder is responsible for recognizing different regions
and segmentations of the input image, the bottleneck is
responsible for further processing of the downsampled
features, and the decoder is responsible for reconstruct-
ing a colorized version of the image from the extracted
features. Hu et al. follows up on the autoencoder with
a simple architecture, consisting mainly of convolutions,
normalization, and max pooling layers on the encoder side
and convolutions, normalization, and upsampling layers
(we use bilinear here) on the decoder side, optimizing
performance with a limited training!?.

Text embeddings Text embeddings are an efficient way
to represent meaningful semantics within a segment of
text. Devlin et al. introduces BERT (Bidirectional Encoder
Representations from Transformers), which is a commonly
used word embedding to define the semantics of a piece
of textl!]. Radford et al. introduces CLIP, contrastive
language—image pretraining, which are embeddings that
are learned from image-text pairs with a contrastive loss!.

Image representation Traditionally, images are repre-
sented as RBG, which are the three channels that represent
the intensities of red, green and blue components. Huang
et. al., specify several empirically well-performing methods
in the field of image colorization, such as defining images
in the CIELAB color spacel®l. Instead of breaking down
each pixel into red, green, and blue channels, CIELAB color



space deconstructs color into a lightness channel (L) and
two other channels (a, b) which represents the warm to cool
hues of the color, where a represents the red-green axis of a
color and b represents the blue-yellow axis of a color. These
channels have been shown to capture the perception of hu-
man visualization better than RGB channels.

3. Data

We trained our models on the Flickr30k Images dataset,
which contains 31,784 unique images from Flickr. Each
image also contains five different captions written by anno-
tators, which totals to over 150,000 unique image-caption
pairings.

Because of the immense size of the dataset and limited
compute resources and training time, we focus on evaluat-
ing our models on subsets of the dataset. During the experi-
mentation phase, we trained and tested our model over 10%
of the dataset. After tuning all hyperparameters, we trained
our final models over 30% of the dataset. We have split
the data into 80% training, 10% validation, and 10% test-
ing sets. The approximate size of each different iteration is
given below:

% of dataset used | No. Train | No. Val | No. Test
10% 12713 1589 1589
30% 38139 4768 4767

Figure 1. Dataset Sizes

4. Methods

We seek to analyze the impact of image captioning in
the effectiveness of image colorization models by training
three different models, each with varying degrees of image
captions incorporated during training, and evaluated their
effectiveness by comparing their final losses to each other
during testing.

As as baseline, we finetuned an image colorization
model over just a grayscale image. We compared this
baseline to two other models, each trained with the incor-
poration of a different text embedding derived from the
image’s captions, Bidirectional Encoder Representations
with Transformers (BERT) and Contrastive Language-
Image Pre-training (CLIP).

All models will be trained on the exact same prepro-
cessed dataset (Flickr30k). They will be trained by being
given an input of the grayscale version of an image, as
well as its associated caption (for all models except the
baseline). The colorized components of the image are
given as the output. They will be evaluated by calculating

each pixel-wise Mean Squared Error loss on the model’s
predicted image against the actual colorized image (we
expand on the specific procedures between processing the
RGB versus CIELAB color spaces in section 4.1).

We will then compare the MSE loss of the captioned
models to the baseline MSE loss of the plain model to
determine how much of a difference image captioning
makes on image colorization models, along with qualitative
observations.

For experimentation purposes, we trained our different
fine-tuning strategies on just 10% of the dataset.

4.1. CIELAB and RGB Color Spaces

While finetuning our models, we investigated the
effectiveness of the RGB versus the CIELAB color spaces.

For the RGB color space, as input, we calculate the
grayscale input image as a weighted average of the three
color channels (1 channel). Then, we use the original RGB
image as the output (3 channels).

On the other hand, for the CIELAB color space, we
convert the original RGB image into the CIELAB channels
(L, a, and b)[3]. Since the L channel represents lightness,
we use the L channel as the input image (1 channel). Since
we are given the L channel, the model just needs to figure
out the the a and b channels, so our output is the image’s a
and b channels (2 channels).

In practice, we have found that predictions within the
CIELAB color space gave more evenly colored results com-
pared to the RGB colorspace. In the figure comparison be-
low, these two images are both generated with the BERT
caption embeddings included, but the RGB coloring seems
to have uneven splotches of green and red among the back-
ground region of trees and a house. On the other hand, the
CIELAB colorspace output seems to have more contained,
controlled coloring, as seen with the green color contained
pretty accurately within the shapes of grass.

CIELAB



Figure 2. RGB vs. CIELAB colorspaces

We can extrapolate this to the meanings of each of the
channels that each colorspace needs to predict. While for
the RBG color space, the brightness of an image is not
distinctly separated from the hues, the model has to both
maintain the brightness values of the image and figure out
the colors to overlay on the pixels within the constraints
of the 3 channels that it has to predict. In contrast, for
the CIELAB colorspace, the model only needs to predict
the hues channels given the brightness channel, because
the semantic contribution of brightness is distinct from
the hues. Therefore, the CIELAB colorspace was able to
consistently able to output less splotchy, more precise color
predictions.

After these initial color space experimentations, we set-
tled on using the CIELAB colorspace for further finetuning
and survey of our models.

4.2. BERT annd CLIP Text Embeddings

To evaluate the role of semantic understanding in
improving colorization, we experimented with two well-
known forms of textual embeddings derived from the
captions: BERT and CLIP. We leverage embeddings
because they are a dense, semantic representation of text.

BERT, embeddings generated from a transformer based
language model, which subsequently has strengths in
strong contextual understanding of the embedded text!!.
We used the pretrained bert-base-uncased model from the
HuggingFace Transformers library to generate sentence-
level embeddings. Each caption is tokenized and passed
through BERT, from which we extract the final BERT
embedding to be used. This embedding is then projected
and concatenated as an additional channel to the grayscale
image.

The other embedding mode we surveyed was CLIP,
which, in contrast, is pretrained to align text and image
representations in a shared embedding spacel*). Because
CLIP embeddings are trained on contrastive loss between
text-image pairs, it is effective at containing multi-modal
semantics between image and text. For our models, we
used OpenAl’'s CLIP implementation, generating a text
embedding by passing each caption through the CLIP text
encoder, and similarly concatenate it with the grayscale
image as input to the colorization model.

Unlike BERT, CLIP embeddings are specifically opti-
mized for alignment with visual content, which may give
the model more contextual understanding of the connection
between the image components and the caption.

4.3. Preprocessing Steps

To properly fit the prompt of image colorization, we
have taken each image in the dataset and produced a
grayscale version of it. We then associated each grayscale
image as an input and associated its colorized version as the
expected output. Each image is resized to 256 by 256 pixels.

In our caption models, we derive a text embedding
(BERT or CLIP) from the caption and concatenate the
embedding to the grayscale image as a second channel.

Finally, because the dataset is structured so that image-
caption pairs are grouped together by a common image, we
also shuffled the dataset so that we don’t just get multiple
groups of the same image paired together during training,
validation, and testing, and train on a diverse variety of
image caption pairings. We generated a random seed and
saved it in order to preserve consistency.

4.4. Architecture

Autoencoders are a well-established architecture for
the image colorization task, found to be efficient and
effectivel’]. Autoencoders follow the structure of down-
sampling from an original input image to extract an
efficient, denser representation of the image, a bottleneck
to further process and extract meaning from these represen-
tations, and then upsample back to an output image of the
expected format.

For our base architecture, we used a simpli-
fied version of the architecture from the autoen-

coder architecture that Hu et al. introduced.
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Figure 3. Base Autoencoder Architecture

We use this architecture for our baseline model of just
colorizing the image without any caption input. More
specifically, each block consists of a convolutional, ReLU,
and batch normalization layer. Each downsample is a max



pooling layer and each upsample is a bilinear upsample
layer. For our RGB experimentation, we predict the values
of the red, green, and blue channels, given the grayscale
version, while for our CIELAB experimentation, we predict
the values of the a and b channels, given just the L channel.

Models are trained over ten epochs, with a batch size
of 32, and evaluated against MSE loss with an Adam opti-
mizer.

5. Experiments

To save time, all experiments with the models were done
using 10% of Flickr30k image dataset. The final models
were testing using 30% of the Flickr30k image dataset. Dur-
ing experimentation, we encountered overfitting issues with
both captioned models, and tried a variety of methods to
reduce the validation loss for both captioned models.

5.1. Initial Experimentation

We initially began our study by training all three models
using 10 epochs, with a learning rate of « = 1073 and no
dropout. Below are our training and validation results for
all three models:

Training and Validation Loss Comparison

0.040

ap!
--- BERT Captioned Model - Val
—— CUIP Captioned Model - Train

0035 ~=- CLIP Captioned Model - Val

0.030
3 0025
0.020

0015

0010

Model | Train Loss | Val Loss | Test Loss
Plain 0.0121 0.0130 0.0130
BERT 0.0109 0.0134 0.0134
CLIP 0.0103 0.0115 0.0115

Figure 4. Initial Results

From the initial results, it seemed like CLIP seemed to
outperform both BERT and the baseline model. However,
all three models also seemed to show various degrees of
overfitting. The overfitting was much more prominent in
both of the captioned models, especially BERT. These pre-
liminary results seemed to suggest that adding captions did
have an effect on image colorization performance during
training, but also made the models more prone to overfit-
ting and as a result demonstrated mediocre final results on
the validation and test data.

5.2. Adding Weight Decay

In order to reduce overfitting on the model, we decided
to try a variety of methods and finetuned a variety of
hyperparameters. The first method we tried to introducing
weight decay into the learning rate. After experimenting,
we found the best weight decay parameter to be 10~°. The
results are shown below:
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Figure 5. Results with Weight Decay

From the results, we see that both the plain and the BERT
captioned models seemed to perform better with weight de-
cay. The most significant difference is reduction in the dif-
ference between the training and validation loss. The BERT
captioned model had around a 0.0023 unit difference be-
tween training and validation losses, but the difference was
reduced to 0.0002 with weight decay. On the other hand, the
CLIP model seemed to perform worse on the test data, al-
though the amount of overfitting on the model also seemed
to reduce significantly.

5.3. Dropout

Another method we implemented to reduce overfitting
was to add dropout layers. We did this by inserting dropout
layers in the decoder blocks of each model, adding a
dropout layer after each ReLU layer. After experimenting
with finetuning hyperparameters, we found p = 0.5 to yield
the best results. Attached are the results after applying
dropout:
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Figure 6. Results with Dropout

Dropout also seemed to help reduce overfitting for both
captioned models. Additionally, dropout seemed to be es-
pecially useful for the CLIP captioned model, yielding a
record low validation loss value of 0.114. Dropout seemed
to be the best addition in terms of both reducing overfitting
and maintaining a low validation and test loss score.

5.4. Learning Rate

In addition to introducing parameters, we also finetuned
the learning rate of the models to test which one gave the
best performance. We ultimately found using a learning rate
of o = 10~* yielded the best results.

5.5. Ending Training Early

Besides finetuning model hyperparameters, we also no-
ticed a common issue throughout experimentation: On the
tenth epoch, the validation losses for all three models ended
up increasing, even though the training losses continued to
decrease. This phenomenon suggests that we were training
the models for too long, resulting in them overfitting on the
training data. To adjust this, we also made the decision to
decrease the number of epochs to 9 during training.

6. Final Results

We ultimately applied each of the adjustments that we
introduced during experimentation and tripled the dataset
size by using 30% of the data from the Flickr30k im-
age dataset instead of 10%. We used a learning rate
of « = 107* with a weight decay value of 107°
and a dropout value of p = 0.5, and trained the data
over 9 epochs. Our final results are shown below:
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Figure 7. Final Results

From the results above, we see that all three of our final
models outperform all of our experimentation results. It is
evident that the expansion of the dataset size, in addition
to the finetuning of the variety of different hyperparameters
such as the learning rate and number of epochs, had a pos-
itive impact on the accuracy of all three models. Addition-
ally, we see that the models no longer suffer from overfitting
issues, with the validation loss even being sometimes lower
than the training loss.

6.1. Text Embedding Performance

The results show that both of the captioned models
slightly but noticeably outperformed the original model
without captions. The BERT captioned model had around
6.77% less loss compared to the original model, and the
CLIP model had around 10.17% less loss. These values
suggest that incorporating captions during training during
image colorization significantly improves its performance,
with CLIP text embeddings performing slightly better than
BERT embeddings.

6.2. Image Behavior

To further visualize the impact of captions in image col-
orization performance, we have displayed a sample image
that was evaluated by the baseline model and one of our cap-
tioned models, BERT. The caption associated with the im-
age was "Two brown and white dogs racing across a lawn”.

Predicted - Plain

Predicted - BERT
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o

Figure 8. Qualitative Example (Dogs in Grass)



From the visualization, we see that the baseline model
simply attempts the shade the image in a different color,
while the BERT model not only performs shading on the
image, but also attempts to color certain elements of the
image, such as the grass and the plants in the background.
However, it fails to capture more subtle elements of the
image such as the road and the color of the fur on the dogs’
heads.

Below is another image with the sample caption: A per-
son on a bmx bike, running a course.”

Grayscale Ground Truth Predicted - Plain

- @

Figure 9. Qualitative Example (BMX Bike)
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From these results, the baseline model once again resorts
to simply shading the image, while the BERT model is
able to accurately shade in the color of the background sky.
However, it fails to capture other elements, like incorrectly
coloring the ground as green and failing to color the clothes
the biker is wearing.

Finally, we have one more image with the sample cap-
tion: ”A brown dog runs in the sand.”

Predicted - Plain

Predicted - BERT

Figure 10. Qualitative Example (Dog in Sand)

From these results, we see that the captioned BERT
model is able to accurately shade in the color of the
background plants. However, model also attempts to color
in the dog brown, but does not finish completely coloring
it.

From these three sample images, we see that the cap-
tioned models are able to color parts of the image, while the
baseline model merely shades the entire image a different
color. From this perspective, it seems like the image cap-
tions influence the models to be more ambitious at “’color-
ing” the image than without them, indicating that caption-
ing contributes contextual information that aids the model
to make more confident coloring decisions.

7. Conclusion

After training two different text embeddings that in-
corporate image captions into the training stage of image

colorization models, we can conclude that captions do have
a positive effect on the performance of image colorization
models, with CLIP slightly outperforming BERT. We see
that when visualizing the images produced by the different
models, the captioned models attempt to actually color in
parts of the image, while the baseline model merely shades
the image.

During the experimentation stage, we learned that
adding captions to the model during training significantly
reduced its training loss, but also resulted in overfitting,
initially causing the captioned models to perform the same
as or below the baseline model. In solving this issue, we
learned that adding weight decay and dropout layers to the
models significantly reduced overfitting, as well as ending
training early and expanding the the size of the training
and testing data. We ended up incorporating all of these
adjustments to produce the best results in our final model.

Finally, we also learned about the CIELAB color space
metric and how much better it was at measuring color than
the RGB color space. The evaluation of models on the
CIELAB color space resulted in more even shadings and
color partitions on images than using RGB, which prompted
us to make a switch in how we evaluated the performance
of our models.

7.1. Limitations

While BERT and CLIP were able to allow the model
to perform better at image colorization than the baseline
model, there were still a number of issues that hindered
their performance. The main issue that limited the perfor-
mance of both models was that many regions of the images
where still left uncolored. This absence is likely due to the
provided captions summarizing the image well but also not
providing enough context into the exact colors of certain
elements.

For example, the sample captions of the image of the
BMX biker from section 6.2 is only able to give the model
general context of the image, allowing the models to paint
the color of the background sky blue, but fails to provide
other specific details, such as the color of the course in the
ground or the color of the biker’s clothes. Without those
details, there is no way for the model to infer the specific
colors of these objects. The performance and improve-
ment of the captioned models largely depend on the qual-
ity and specificity of the captions, and general captions are
not enough to fully capture the details for the color of each
object in the image.



7.2. Next Steps

Our results and experiments have shown that adding
captions significantly improve the performance of image
colorization models. To further improve the accuracy of
these models, there is much more data available in the
Flickr30k image dataset. With a stronger GPU, it’s possible
to give the models more training, validation and testing
data to further improve its performance.

One application for extending this project would be to
address the limitations mentioned in 7.1, the lack of color-
specific captions in the training data. An idea would be
to test whether the incorporation of more detailed, color-
specific captions would result in a significant performance
increase on the models. Doing so would require manually
writing out more detailed, color-specific captions for each
object in the image, and then train two different versions
for each captioned model, one with the current, more gen-
eral captions, and one with more specific, detailed captions.
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