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Abstract

Designing proteins with targeted properties is a key chal-
lenge in drug discovery. Traditional approaches often re-
quire tedious wet-lab experiments or specialized, property-
specific models. Here, we investigate a flexible gradient-
based strategy to guide protein generation without repeat-
edly retraining new models. By leveraging pretrained neu-
ral networks, we compute gradients of property-specific
classifiers with respect to the protein (or image) representa-
tion, then incorporate these gradients into a diffusion-based
generative framework. As a proof-of-concept, we first apply
our approach to image generation using pretrained Ima-
geNet models, recovering Inceptionism-like visualizations.
We then shift focus to protein design, integrating an enzyme
and nonenzyme classifier into a generative pipeline. Our re-
sults suggest that gradient-based conditioning can guide the
sampling process toward desired protein properties, demon-
strating an efficient alternative to building new models for
every property of interest.

1. Introduction
Proteins play various roles in biological systems, from

mediating signaling pathways to providing structural sup-
port. Dysfunctional or misfolded proteins have been impli-
cated in neurodegenerative disorders and cancer, and lever-
aging protein function has become a major focus in both
research and therapeutic development [7]. Proteins repre-
sent one of the fastest-growing categories of approved ther-
apies, driven by their high specificity and capacity to be en-
gineered for new applications. Consequently, developing
computational methods to generate novel, foldable protein
structures holds the potential to revolutionize drug devel-
opment. Historically, efforts to design proteins have often
employed wet-lab-based libration generation and screen-
ing approaches that assemble experimentally derived mo-
tifs [3]. More recent strategies based on deep generative
models have shown promise but introduce complexities in
downstream post-processing and risk generating unphysical

symmetries. Advances like diffusion-based networks (e.g.,
RFDiffusion) offer robust capabilities for unconditional and
conditional protein design [6]. Despite these advancements,
a common limitation remains: to tune a generative model
for new protein properties, one typically must retrain or
fine-tune the model from scratch. In this study, we evalu-
ate gradient-based methods, applying principles from back-
propagation, to incorporate existing classifiers or regressors
for protein properties directly into a generative pipeline.
Rather than building a new model each time a different
property is desired, our framework conditions the protein
sequence or structure, x, on multiple target characteristics,
y and z, through a joint distribution p(x—y,z). As a pre-
liminary demonstration, we use this gradient-based idea in
image generation tasks with pretrained ImageNet models to
validate proof-of-concept. We then shift focus to protein
design, seeking to optimize for enzymatic function. Lastly,
we evaluate the resulting designs with distinct property pre-
dictors to ensure that the newly generated proteins indeed
exhibit the targeted attributes. By circumventing the need
for repeated retraining, this paradigm offers a flexible tool
for guiding protein generation and exemplifies a step toward
more efficient protein engineering.

2. Materials and Methods

2.1. Convolutional neural network (CNN) architec-
tures

We evaluated four primary CNN architectures via Py-
Torch: • VGG16Experimental – A variant of the VGG16
model by Simonyan and Zisserman [4]. This particular
“experimental” version exposes intermediate feature lay-
ers, allowing deeper inspection of learned representations. •
ResNet50 – A residual network architecture by He et al. [1],
which can also optionally load Places365 weights for scene-
centric images (Zhou et al.) [8]. For ImageNet-based tasks,
PyTorch’s pretrained ResNet50 is used. • GoogLeNet – A
pretrained variant available in torchvision.models, trained
on ImageNet (1.2 million images). This model provides
general-purpose feature extraction and was used to demon-
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strate “inceptionism” style gradient-based visualizations. •
EfficientNetV2-S – An efficient, mobile-friendly backbone
that extends the EfficientNet paradigm. It was loaded from
TorchVision with ImageNet1K V1 weights [5]. All models
were set to eval mode, not requiring additional parameter
updates so that only the input (image or protein representa-
tion) could be optimized via gradient-based methods.

2.2. Preprocessing and Image Handling

Images were read using OpenCV in BGR format. In-
tensities were scaled from [0–255] to [0–1] and normalized
by subtracting channel-wise ImageNet means and dividing
by standard deviations. Then images were resized for com-
putational efficiency. For synthetic, random starting images
(noise), pixels were randomly sampled from a Gaussian dis-
tribution. For consistent reproducibility random seeds for
NumPy and PyTorch were fixed.

2.3. Gradient-Ascent Visualization

To intuitively examine how a classifier “sees” an image
or what features define a certain class, we implemented a
gradient-ascent method inspired by DeepDream. Focus-
ing on a particular “target neuron” or logit, we computed
the gradient d(activation)/d(image) at each iteration, scal-
ing and adding it back to the image to maximize that neu-
ron’s response. Where necessary, we applied Gaussian blur
to balance fine and coarse details. Multiple scales could
be explored by successively resizing the image, performing
gradient steps, and restoring dimensions.

2.4. Protein Sequence Encoding

Protein sequences were encoded using a Python script
that converts amino acids (A, C, D, E, F, G, H, I, K, L, M, N,
P, Q, R, S, T, V, W, Y, X) to integer indices. Sequences were
padded or truncated to a specified maximum length (300
residues), generating a (300 × 21) one-hot matrix cast to a
float tensor. This representation is compatible with single-
channel CNN inputs after reshaping to (batch size, 1, 300,
21).

2.5. Modified ResNet18 for Enzyme Classification

For protein-related classification, we adopted a custom
ResNet18 with minimal downsampling to preserve spatial
resolution along the sequence dimension. The first convolu-
tion layer was adapted to accept a single-channel input, the
initial maxpool layer was removed, and the stride in layers
3 and 4 was reduced to 1. An attention-based mechanism
was added, providing summarized attention maps at each
layer. The entire architecture outputs both a classification
logit (e.g., enzyme vs. nonenzyme) and multiple attention
maps for interpretability as an option.

Figure 1. Gradient-based image generation using GoogLeNet (a)
and EfficientnetV2 (b). Activations were maximized for the class
representing golden retriever

2.6. Coupling with Chroma for Protein Generation

We then integrated this modified ResNetAttentionModel
into Chroma, a diffusion-based protein design framework
[2]. A custom conditioner class computes the logit or atten-
tion map for a given protein sequence and adjusts Chroma’s
energy function U to guide the model toward sequences
meeting the desired classification outcome. Specifically, the
energy term is updated via a penalty or reward derived from
the classification or attention-based signals. Through iter-
ative sampling, Chroma shifts the protein distribution to-
wards sequences predicted to be enzymes.

3. Results

3.1. Class-Specific Inceptionism in Image Space

As an initial proof-of-concept, we tested whether gradi-
ent ascent could synthesize recognizable images from pre-
trained classifiers. Using GoogLeNet trained on ImageNet,
we maximized the logit for class index 207 (associated with
golden retrievers). Starting from random noise, the image
underwent iterative gradient adjustments, ultimately visual-
izing coherent “golden retriever-like” patterns. Similar re-
sults were obtained with VGG16, ResNet50, and Efficient-
Net, confirming that gradient-based input modification is a
general phenomenon spanning multiple CNN architectures
(Fig. 1).

3.2. Dual-Mode Classifier Combinations

Next, we explored combining two pretrained classifiers
(e.g., VGG and ResNet) by assuming conditional inde-
pendence of their target classes probability. By summing
each network’s class logit (or other activation measure), the
model performed gradient ascent on both targets simultane-
ously. The resulting images displayed semantically mixed
or fused characteristics (Figure 2). This outcome suggests
that with well-chosen hyperparameters (e.g. controlling
gradient magnitude), dual-mode or even multi-mode incep-
tionism can approximate joint distributions p(y, z—x) to
yield composite image features.
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Figure 2. Gradient-based image generation by combining two dif-
ferent classifier (ResNet50: fountain; VGG16: Golden Retriever

3.3. Protein Design with Diffusion and Classifiers

Extending these principles to protein sequences pre-
sented unique challenges, as verifying correctness of newly
generated sequences or structure is not as straightforward
as visual inspection of a golden retriever. We therefore
coupled our gradient-based conditioning with Chroma—a
diffusion-based protein generative framework. A ResNe-
tAttentionModel served as the classifier to differentiate en-
zyme from nonenzyme sequences, providing a suitable
penalty term to guide diffusion sampling. Generated pro-
teins consistently scored as enzymes, according to the same
classifier’s logits. Although these sequences’ functional va-
lidity requires wet-lab confirmation, our results demonstrate
that gradient-based property conditioning can be integrated
into a diffusion approach, testing the generative process
for desirable biochemical traits without retraining an entire
generative model from scratch.

4. Discussion

Our study illustrates how pretrained classifiers can be
used “on demand” to shape generative outputs. By tak-
ing gradients with respect to the input, we effectively im-
plement an iterative feedback loop that prioritizes outputs
satisfying a chosen property, whether it is a visual class
(e.g., dog breed) or a protein function (e.g., enzyme clas-
sification). Although popular deep generative models like
GANs or diffusion networks can embed properties via con-
ditional training, they often necessitate specialized datasets
or model modifications. Our gradient-based approach cir-
cumvents this by reusing existing high-accuracy classifiers,
drastically reducing the need for property-specific retrain-
ing. However, several issues remain. First, balancing multi-
ple properties simultaneously can be non-trivial, especially
if properties are mutually exclusive or highly correlated.
Second, the gradient-based modifications may generate un-
realistic or artifact-ridden structures, underscoring the im-
portance of carefully chosen fixed parameters such as learn-

Figure 3. Enzyme generation using conditional protein generation.
Chroma was used for diffusion-based sampling; enzyme classifier
was used for conditioning. The generated sequence was validated
with the same enzyme classifier

ing rates, normalization steps, and feasibility checks (e.g.,
for protein designs). Finally, thorough domain-specific val-
idation is crucial for tasks such as protein engineering,
where real-world efficacy cannot be inferred directly from
computational outputs alone. In conclusion, gradient-based
property conditioning offers a promising route toward more
flexible, modular design processes. For proteins, this is a
promising advancement toward an integrated frameworks
that combine generative sampling with multiple orthogonal
property predictors, potentially accelerating progress in bi-
ological therapeutics, industrial enzymes, and more.
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