
Slippify: Parsing Super Smash Bros. Melee Frames

William Hu
Stanford University
willhu@stanford.edu

Samuel Do
Stanford University
samdo@stanford.edu

Matthew George Lee
Stanford University

mattglee@stanford.edu

Abstract

We use convolutional neural networks (CNNs) and deep
spatial autoencoders to convert visual gameplay from Super
Smash Bros. Melee to a state representation including ob-
servations and player actions. We will consider some of the
key characteristics and challenges to parsing Melee frames,
evaluate data augmentation techniques, and extend our ex-
isting model architecture to temporal data. Our experi-
ments demonstrate that larger CNN architectures do better
than simpler models and highlight challenges in capturing
spatial information with spatial autoencoders.

1. Introduction

Games have proven to be a good means to evaluate the
capabilities of models, motivating a number of research ef-
forts from highly specific models that optimize for master-
ing a single game [6] to ones that promise generality [4]. To
achieve generality, an input format that is uniform across a
wide range of games is needed, and vision promises to ful-
fill this role. We want to make visual data more accessible
to training models that play games.

In Super Smash Bros. Melee, SLP is a standardized data
format for encapsulating the entire game state throughout
the course of a game, including information such as player
positions, actions, and hit points. These SLP files have
been the basis of a number of projects that aim to leverage
this data to train a bot with human-like performance [3].
However, collecting this data often requires players to not
only play through the slippi emulator, but also enable SLP
recording. Melee games that were played on the console
or without the SLP recording feature enabled have previ-
ously been out of reach in a SLP-based machine learning
system. Our project aims to remove this limitation by ex-
ploring a number of techniques (CNNs, data augmentation,
and AutoEncoders) to convert a Melee replay (in the form of
a sequence of frame-by-frame images) into a compact state
representation of (observation, action) pairs. Specifically,
we do the following:

1. Introducing a baseline CNN model for predicting state
representations from gameplay frames.

2. Evaluating color jitter as a data augmentation method.

3. Investigating larger and deeper CNN architectures
(ResNet-like structures).

4. Exploring unsupervised learning via deep spatial au-
toencoders.

5. Extending the framework to encode actions i.e. player
controller input.

1.1. Why Melee?

Our choice of Melee was a bit arbitrary, but a few fac-
tors definitely made the choice easier. Most significantly,
there is an existing emulator (Slippi) and a gameplay replay
data format (SLP) that is supported by the emulator. This
allows us to, with a SLP file of a game, reconstruct game-
play frame-by-frame, lending itself naturally to an abundant
source of data pairs such a system can be trained on.

2. Related Works
2.1. Deep Residual Learning for Image Recognition

He et al. introduced residual connections, an impor-
tant architectural component that has enabled the creation
of deeper neural networks [5]. Through these skip connec-
tions, larger models have the ability to represent the identity
function and do at least as well as their smaller counterparts.
We base the model used in one of our ablation studies on the
ResNet architecture presented in the paper.

2.2. Deep Spatial Autoencoders for Visuomotor
Learning

The task of learning good state representations exists
outside of game-play agents (i.e. robotics). Finn et al. [1]
propose the use of deep spatial autoencoders, an autoen-
coder architecture that uses a spatial softmax after the con-
volution layers to reinforce learning spatial information (i.e.
where instead of what). Rather than a flat vector of acti-
vations, this architecture applies a softmax over the spatial

1

dimension (W * H) for each channel. It then computes the
expected 2D position of each softmax distribution and uses
it as the low-dimension state representation. We apply a
similar architecture to learning the Cartesian coordinates of
Players 1 and 2 given a Melee frame in an unsupervised
manner and contrast this approach to others.

2.3. Other work in playing Melee

Firoiu et al. [2] tackled playing Melee in the pre-slippi
era and, as such, approached it using raw pixel inputs. They
developed environment wrappers around the Slippi emula-
tor, collected data via expert replays, and trained standard
convolutional neural networks for policies using direct RL
algorithms (such as PPO). Their work demonstrated the fea-
sibility of learning robust visual-based policies for Melee
but highlighted significant challenges in sample efficiency
and frame prediction accuracy. Their work highlights the
difficulties of applying RL and CV to Melee. In the post-
slipppi era where we now have a concise representation of
game state in the form of a SLP file, a mature emulator in
the form of Slippi, and a rich dataset of Melee replays, we
are able to decouple the problem into two: (1) drawing ob-
servations from a Melee frame and (2) acting on those ob-
servations to emulate human-level performance in playing
Melee. The focus of this project is in understanding the
characteristics of and make an attempt at solving (1).

3. Dataset

3.1. Manually Generated Data

When Melee is played on a certain emulator known as
Slippi Dolphin, completed matches are automatically saved
as .slp (Slippi) files for personal replay and review. These
files contain game state data, frame-by-frame player inputs,
etc. without storing the video of the match. This is an ef-
ficient representation of data for both storage and machine
learning, but our goal is not to learn from the raw game state
data.

We want to use computer vision to learn from the frames
(images) of the match, so we convert the .slp file to a
.mp4 file using Slippipedia, which uses Playback Dolphin
to re-emulate the match as a video. The command-line util-
ity ffmpeg then allows us to slice the .mp4 file into in-
dividual frames which can be fed into our computer vision
model.

We mostly rely on an existing dataset that is mentioned
in the next section, but having this data pipeline allows us to
convert the dataset into the representation we require. Addi-
tionally, if we need specific training examples, we can hand-
craft precise situations using the manual pipeline - though
this is likely not that practical or useful.

3.2. Existing Dataset

Luckily, there exists a very active online community sur-
rounding machine learning for Melee. Because of this, there
is a large curated dataset[7] of .slp files that we can use
out-of-the-box with the following properties:

• ”95,102 SLP files.”

• ”Unzips to 200GB.”

• ”All tournament sets, with varying skill levels.”

• ”Pruned to remove handwarmers, doubles, less than 30
second matches.”

• ”CC0 Licensed, so use it however you want”

This dataset helps with the bulk of the model learning.
Unfortunately, the existing infrastructure to dump frames
from .slp files requires simulating the entire match in
real-time, so we only retrieved the frames from a couple
replays. In each replay, there are over 10 thousand frames,
so this was sufficient for our purposes.

The Google Drive link to the dataset is here.

3.3. Data Preprocessing

The SLP files are their corresponding Melee frames need
to be preprocessed accordingly depending on the down-
stream task and methodology used. Firstly, observation and
action data need to be normalized to have zero mean and
unit norm. This is done by taking the global mean and norm
of the entire dataset and subtracting each point by the cor-
responding global mean and dividing it by the global norm
with some small ϵ to prevent division by zero. This is impor-
tant for ensuring that all targets are weighted equally during
training.

The frames themselves are resized to the expected input
shape each method requires (i.e. the deep spatial autoen-
coder expects 240x240 images whereas the CNN expects
64x64 images). The pixel channels are then normalized be-
tween [-1, 1].

An individual frame is paired up with its corresponding
entry in the SLP file and consecutive chunks of them are
shuffled in the data loader for training. In the context of
learning the observation state (i.e. Player 1 X, Player 1 Y,
etc), these chunks are used to black out portions of the data
so that frames neighboring test data are not included inside
the training data (we pick a chunk size of 5 by qualitatively
inspecting the replays). In the context of learning the action
state, this same logic is used to specify a window of frames
from which the model learns the action taken from the mid-
dle frame. We believe this context is essential to inferring
actions, and the window size is later used as a hyperparam-
eter we sweep over.

2

https://drive.google.com/file/d/1ab6ovA46tfiPZ2Y3a_yS1J3k3656yQ8f/view?usp=sharing

4. Methodology

4.1. Input/Output

To formalize the problem, we want the model to take,
as input, a frame of game-play and output an appropriate
state representation in the format of (Player 1 X, Player 1 Y,
Player 1 Percent, Player 1 Facing, Player 1 Action, Player 2
X, ...). Notably, we break down the task into two subtasks:

• Predicting observations: this task is invariant to the
ordering of frames in a replay. Indeed, one would
expect the model to be able to accurately predict the
positions, percentages, and other similar information
from a single frame without looking at the surround-
ing frames. All the information needed is contained
within a frame.

• Predicting actions: this task is contingent on being
able to understand an entire window of frames. The ac-
tions that players take at any given frame should be in-
ferred from the game-state before and after that frame.
As a result, the action-prediction model expects, as in-
put, a window of frames from which it predicts the ac-
tion taken at the middle frame.

4.2. Supervised Observation Prediction

To our knowledge, there are no existing baselines or
projects for converting Melee game-play to SLP. Due to
how the view of any particular frame changes relative to
player positions, there is no easy way to apply object detec-
tion methods that rely on a fixed camera view. As a result,
we trained a simple model based on the following method-
ology and architecture to target Melee with the hypothesis
that the model may be able to learn absolute positions of
players relative to distinctive features of the stage or back-
ground.

• An Encoder that takes a RGB frame o as input and
outputs a vector z̃ with information that encapsulates
the game-state at that frame. This is a 4-layer CNN
with layers consisting of a convolutional layer fol-
lowed by a ReLU activation and finally a dropout
layer. The output of the last convolutional layer is fed
through a fully-connected linear layer to produce the
final state representation z̃.

• The Loss is computed as the MSE loss between the
predicted state representation z̃ and the target state rep-
resentation z that represents that frame in the SLP file.

• The Optimizer used is Adam and learning proceeds
using stochastic gradient descent over a configurable
batch size and learning rate.

4.3. Data Augmentation

Data augmentation techniques such as color jitter and
random crop are commonly used as a form of regulariza-
tion by presenting the model with a greater diversity of data
during training. However, due to the importance of spatial
information in our context, we do not use data augmentation
techniques such as horizontal flip or random crop since it 1)
changes the absolute position of players and 2) may crop out
either player entirely. We instead opt to simply apply ran-
dom color jitter using the torchvision.transforms
library and specify the jitter with brightness = 0.2,
contrast = 0.2, saturation = 0.2, and hue =
0.05. This data augmentation is only applied during train-
ing. The validation and test datasets are not affected. The
transformed data is added on top of the original training
dataset and, as a result, we reduce the number of epochs
during training by half, ensuring that all models train for
the same amount of time.

4.4. A Larger Model

In addition to the base 4-layer CNN model, we ex-
periment training with a larger model. It mimics the
ResNet architecture, using residual connections between
layers whose input and output shapes match [5]. This sta-
bilizes training in deeper architectures that employ a larger
number of layers.

4.5. Unsupervised Learning using Deep Spatial Au-
toencoders

Having established some measure of a baseline on the
task itself, we wanted to explore how we might tackle the
task in a context where labeled data might not be readily
available. To do so, we apply the deep spatial autoencoder
architecture introduced by Finn et al. [1]. We would like to
note that, in using a deep spatial autoencoder, we are lim-
iting the task of constructing a state representation of the
frame to only the relative player positions with respect to the
current frame (rather than including other information such
as player percentages, orientations, and actions). This lim-
itation is a characteristic of this specific methodology, and
we leave a more general autoencoder for encoding Melee
frames as future work.

• An Encoder that takes a RGB frame o as input and
outputs a vector c̃ with expected 2D positions. This is
accomplished by applying a spatial softmax over each
of the output channels of the last convolutional layer
to attain a per-channel probability distribution. This
probability distribution is then used to compute the ex-
pected Cartesian coordinate for each channel. The fi-
nal output is a vector of shape (B, 2C) where B repre-
sents the batch size and C the number of output chan-
nels of the last convolutional layer.

3

• A Decoder that takes the above vector of coordinates
as input and reconstructs the image. This is a simple
fully-connected linear layer (which Finn et al. argues
is sufficient to produce a suitable feature representa-
tion) [1].

• The Loss is computed as the reconstruction loss be-
tween a down-sampled and grayscaled version of the
input image Idownsamplek,t

and the output of the De-
coder dec(fk,t) where k refers to the replay and t refers
to the image in that replay.

L = 1
t∗k

∑
t,k ||Idownsamplek,t

− dec(fk,t)||22

4.6. Supervised Action Prediction

We extended our base formalization by supporting an-
other novel encoding task: player action prediction. In
the original formalization in Section 4.2, we encoded each
frame of game-play into a game state representation known
as observations. It contains information about what is visi-
ble in the frame, such as character positions, character dam-
age, etc.

Predicting player’s controller input, or actions, cannot
be derived from a single frame because the effects of actions
cross frame boundaries. For example, consider a player us-
ing the controller to walk right. From one frame, we can
see that the player may be facing right, but it is impossible
to know a player is moving right unless we have at least two
frames.

Thus, predicting actions presents a new challenge in
learning over the temporal axis. Instead of learning a frame
to observation encoding, we learn a frame window to ac-
tion encoding, where the frame window has a length of W
frames. This is a hyperparameter that we can tune, and we
will show the performance of different window sizes in Sec-
tion 5.

Model architecture. We use the encoder architecture
described in Section 4.2 to test the application of CNNs to
the temporal domain. We do not use autoregressive models
such as RNNs, because we make the assumption that ac-
tions are temporally local and do not require a long context
window into the past.

To feed input into this architecture, we concatenate all
frames in the window along their width and use the follow-
ing two architecture ablations.

1. Allow model growth. We avoid adding layers, and
the 4-layer CNN is not changed. This means that the
shape of the last CNN layer output is kept at (C, 4,
4 · W). Because the linear layer is the last layer left,
its input dimension must be multiplied by W since the
input of the model is W concatenated frames. This
dramatically increases the number of parameters; each
additional frame in the window would cause the linear
layer to increase its input channels by C · 4 · 4.

One intuition for this architecture is that as the frame
window increases in size, the model size should also
greatly increase to capture longer patterns across the
window. One argument against it is that although the
input size is larger, we are at more risk of overfitting
because the dataset size does not change. We feed
overlapping windows of the original dataset as differ-
ent samples for data efficiency.

2. Minimize model growth. We add one more layer to
the CNN, so that the output of the CNN has shape (C,
1, W). This means that the model size would not grow
as quickly for a larger frame window as in the last vari-
ation. We cannot entirely remove growth in the tem-
poral dimension, because the order of frames matter.
We assume that any model the applies pooling over the
temporal dimension would not perform well; a confir-
mation of this would be future work.

This variation allows us to see whether model growth
is truly necessary with a larger frame window.

5. Experiments

5.1. Evaluation

Quantitatively, we evaluate our model based on the loss
taken between the predicted observation (or action) z̃ and
the ground truth z. As mentioned previously, data is nor-
malized to have unit variance and zero mean so loss is in
fact a measure of relative error.

For the deep spatial autoencoder experiment, this com-
parison breaks down so we qualitatively examine the coor-
dinates output by the encoder as well as the reconstructed
image from the decoder.

5.2. Parsing Observations Supervised

default small is our constructed baseline - a
small 4-layer CNN trained on the default dataset.
jitter small is the result of training the same model
over the collected default and jittered data. Runs with the
suffix big uses the larger CNN architecture with residual
connections.

4

Figure 1. Loss curves for training a small/large CNN on jit-
tered/default data.

Test Loss Small Large
Default 0.11592 0.08699
Jitter 0.11747 0.10390

Table 1. Comparison of test loss across size and augmentation set-
tings.

As can be seen on Figure 1 and Table 1, the larger model
consistently outperforms the smaller model. Furthermore,
training on the combined dataset of default and jittered data
does not improve test loss over just training on the de-
fault data. As mentioned in Section 3, the test and train-
ing datasets are derived from the same game replays with
windows of frames being blocked out to ensure that an ex-
tremely similar frame (i.e. the one right before or after) to
test data finds its way into the training dataset. However,
this may not be enough to see the benefits of training on jit-
tered data; the test data may need to be drawn from a game
with a completely different background or stage. Instead,
the larger model is able to properly overfit onto the default
dataset and, as a result, perform the best compared to the
other configurations.

5.3. Parsing Observations Unsupervised

Training the deep spatial autoencoder for this task proved
to be difficult and yielded a few interesting results. At the
beginning, the reconstructed image the decoder outputs is
just noise.

Figure 2. Reconstructed im-
age at Epoch 0

Figure 3. Down-sampled
image

Towards the end of training, however, we see some vague
features appearing.

Figure 4. Reconstructed im-
age after training

Figure 5. Down-sampled
image

However, instead of being able to capture fine details
such as the characters, the model instead focused on sta-
ble features across all the input frames such as the game
clock (situated at the top of the frame in the middle) and
player percentages (situated at the bottom left and right cor-
ners). We further visualized the output of the encoder layer
by plotting the coordinates on the original image.

Figure 6. Spatial softmax coordinates plotted over the original im-
age. There are a total of 16 points on this image, but most of them
are being blocked by others due to the high overlap in coordinate
positions among them. Note the blue and pink points labelled 15
and 10 respectively.

5

As seen in Figure 6, the coordinates congregate on two
points: the game clock and the center of the image. Finn
et al. proposed this architecture while targeting images that
had fairly uniform backgrounds (i.e. solid color or slightly
textured) with only a few objects [1]. As a result, we may
need a larger model for complex scenes such as the ones
in Melee. Going forward, we would also want to experi-
ment with different data augmentation techniques that oc-
clude the background and any features that might distract
from the player positions. Another means to better differen-
tiate the players themselves is increasing the down-sampled
image resolution from 60x60.

5.4. Action Prediction

5.4.1 Basic Hyperparameter Sweep

We first ran a hyperparameter sweep over learning rate,
batch size, and dropout. We did this first to make some ba-
sic hyperparameter choices and fix those in place to avoid
a Cartesian explosion when picking values for interest-
ing hyperparameters (i.e. W , the frame window length),
due to training constraints. We chose batch size=64,
dropout=0.1, and learning rate=0.001 accord-
ing to the validation loss graph in Figure 7.

Figure 7. Action encoder basic hyperparameter sweep. Run
bA dpB lrC refers to batch size A, dropout B, and learning rate
C.

5.4.2 Frame Window Length Selection

We swept 5 frame window lengths: 1, 3, 5, 7, and 9. These
are odd lengths to simplify indexing and have a central
frame that we can pick to select the action target. Below
is the reasoning for each:

• 1-frame windows. This is primarily a sanity check of
our explanation for why multiple frames are needed
to predict actions. We need to see runs with
window len=1 perform worse than one or more of
3, 5, 7, 9.

• 3,5-frame windows. We should see an improvement
over 1-frame windows due to having the context of
multiple frames passed to the model.

• 7,9-frame windows. We are curious to see if these
window length values do better due to more context,
or worse due to too much noise from frames that are
far away from the actual action.

5.4.3 Model A Results: Allow Model Growth

For the model architecture that allows model growth, we
have the train loss over epochs in Figure 8 and final test loss
in Table 2.

Figure 8. Action encoder with allow model growth: train loss over
epochs

5.4.4 Model B Results: Minimize Model Growth

For the model architecture that minimizes model growth,
we have the train loss over epochs in Figure 9 and the final
test loss in Table 2.

Figure 9. Action encoder with minimum model growth: train loss
over epochs

6

Final Test Loss
Window Length Model A Model B

1 0.79665 0.77700
3 0.60027 0.56931
5 0.95704 0.90058
7 0.74687 0.66354
9 0.78414 0.73127

Table 2. Comparison of model growth and minimized growth
across different window lengths.

5.4.5 Analysis

We will refer to the architecture that allows for model
growth as Model A and the architecture that minimizes
model growth as Model B.

All runs train well. The training loss curves between the
two architectures have one key difference - larger window
lengths in Model A result in larger training losses. This is
expected because Model A allows for more parameters with
increased window length, so it makes sense that Model A is
more difficult to train for a larger window length. We see
that the training loss curves for Model B are unremarkable,
which is confirmation that the model size is not growing as
much with the window length.

The final test loss across both architecture types confirm
our strongest hypotheses about window length. Namely, we
see that only having one frame (i.e. window length of 1) re-
sults in significantly worse performance than having some
additional context (window length greater than 1). On the
other end of the spectrum, we see that having too much con-
text (window lengths of 5, 6, and 7) performs worse than
having only the immediate frame context (window length
of 3). Thus, we can be assured that with a window length of
3, the model is using the surrounding context to improve its
prediction and using just enough to get better results. Any
more context and it seems that the input is too noisy for the
model to generalize effectively.

Comparing the two architectures Model A and Model B,
we see that the final test loss patterns (i.e. the ranking of
window lengths) do not differ significantly between each
other. However, the actual losses do differ between Model
A and Model B. Consider both architecture types for a win-
dow length of 3. Both models trained to similar train losses,
but we see that the Model B type does significantly better
despite having many less parameters than the Model A type.
This is a surprising result: we do not seem to need more pa-
rameters for a larger temporal sequence, and it might even
be detrimental. However, one alternate idea to consider is
that the temporal axis span of the minimum data to predict
correctly may be short enough that having more parameters
would be cumbersome. In that case, it would be interesting
to explore a task that required longer temporal axis span and
testing Model A types and Model B types with shorter win-

dow lengths inside of that span. Unfortunately, since Melee
games happen quickly, the discretized and feasible window
lengths are not sufficient to test this theory.

One open question is why a window length of 5 showed
much higher loss than even larger context windows such as
window lengths of 7 and 9. One possible theory for this
result is that a window length of 5 is barely too much data
such that the model can memorize the spurious patterns of
the training windows, but with window lengths of 7 and 9,
the model must actually procure the correct signals for ac-
tion prediction since there is too much data to memorize.

6. Conclusion
Parsing Melee frames to a condensed state representation

continues to be a difficult task. Slippify is the initial effort to
characterize this problem and apply a suite of computer vi-
sion techniques - supervised and unsupervised - to attempt
to solve it. In particular, we note down the temporal nature
of extracting action information from consecutive frames.
Our experiments ultimately show some promise when re-
gressing to a ground truth in the case of supervised learning
and the difficulty of applying unsupervised techniques to
cluttered frames.

Moving forward, we would like to gather a more diverse
set of game replays to train with and augment frames to em-
phasize key features such as player positions. Furthermore,
future work may include applying a 3D-CNN, where time
is the third dimension to represent frame windows.

References
[1] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and

P. Abbeel. Deep spatial autoencoders for visuomotor learn-
ing, 2016.

[2] V. Firoiu, W. F. Whitney, and J. B. Tenenbaum. Beating the
world’s best at super smash bros. with deep reinforcement
learning. CoRR, abs/1702.06230, 2017.

[3] E. Gu. Hal: Training superhuman ai for super smash bros.
melee. https://github.com/ericyuegu/hal, May
2025. GitHub repository. Accessed: 2025-05-23.

[4] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Master-
ing atari with discrete world models. CoRR, abs/2010.02193,
2020.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

[6] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. P.
Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess
and shogi by self-play with a general reinforcement learning
algorithm. CoRR, abs/1712.01815, 2017.

[7] u/bananaman8367. Help me create a machine learning project
with your replay files!, 2021. Reddit post on r/SSBM, ac-
cessed May 2025.

7

https://github.com/ericyuegu/hal

