
CS231N Final Project

Erika MacDonald
emacd@stanford.edu

Baptiste Brugerolle
bbrug2hu@stanford.edu

Nael Ghoundale
naelgh22@stanford.edu

Abstract

Motivated by experimental constraints in fluid mechan-
ics, we aim to reconstruct 3D flow fields from sparse 2D
planar velocity data. In this final project, we use a De-
noising Diffusion Probabilistic Model (DDPM) to predict
missing flow information. The model takes in a subset of
2D velocity fields and outputs the predicted velocity fields
at previously unobserved planes. We train and evaluate our
method using Direct Numerical Simulation data from the
Johns Hopkins Turbulence Database and compare its per-
formance to a baseline approach of linear interpolation and
a simple 3D-UNet. We find that the DDPM outperforms
both baselines on our dataset. These results suggest that
generative models like DDPMs offer a promising method
for reconstructing 3D flow from limited planar data, with
applications in both experimental and computational fluid
dynamics.

1. Introduction

Predicting accurate and complete 3D flow fields is es-
sential in fluid dynamics research and engineering appli-
cations. However, obtaining full volumetric measurements
remains experimentally challenging, costly, and often im-
practical. Standard techniques such as Particle Image Ve-
locimetry (PIV) typically offer precise data only at specific
planar cross-sections. Tomgographic PIV allows for full ve-
locity data in a 3D volume, but requires multiple cameras,
careful calibration, high computational cost, while typically
achieving lower spatial resolution than 2D PIV.

In this final project, we are motivated to develop a
method that infers 3D flow structure from sparse planar
measurements, which could reduce experimental complex-
ity and cost. Aside from experimental fluid mechanics, such
a method would have implications for computational fluid
dynamics. In computational fluid dynamics, Direct Numer-
ical Simulation (DNS) of the Navier Stokes equation can
produce high-fidelity and time-resolved 3D flow data, but
the resulting datasets can be large and thus costly to store.
If 3D fields could be reconstructed from a sparse set of 2D
slices, this could allow for reduced storage without signif-

icant loss of information. Additionally, related techniques
could be applied to super-resolve coarse spatial or tempo-
ral DNS data, which could lower the computational cost of
simulations by inferring the fine-scale dynamics from lower
resolution input data.

For this final project, we aim to reconstruct 3D flow
fields from sparse 2D planar velocity data. Specifically, the
input to our algorithm is a set of 2D velocity fields obtained
from DNS data, with each 2D velocity field corresponding
to a cross-section of the 3D domain. These inputs are spa-
tially sparse, and we then use a Denoising Diffusion Prob-
abilistic Model (DDPM) to infer the missing velocity fields
at the unobserved cross-sections. The output of our model
is a set of predicted 2D velocity fields at the previously un-
observed planes, which allows for partial reconstruction of
the full 3D velocity field.

2. Related Work
We organize the related work into three categories: ma-

chine learning in fluid mechanics, inpainting and genera-
tive modeling with diffusion models, and applications of
DDPMs to volumetric or 3D data.

2.1. Machine Learning in Fluid Mechanics

Machine learning has been increasingly used in fluid me-
chanics to tackle a wide range of tasks, including recon-
structing missing data, accelerating simulations, and devel-
oping reduced-order models [1, 10]. One relevant applica-
tion is the reconstruction of high-resolution velocity fields
from low-resolution measurements. Fukami et al. [3] used
convolutional neural networks to reconstruct higher resolu-
tion 2D velocity fields from coarse 2D input data. Their
architecture used skip connections similar to those used in
U-Net models. These skip connections helped model the
multi-scale nature of turbulent flow, which improved their
results compared to a standard CNN.

Physics-informed methods have also been developed to
help models learn with physical constraints. Raissi et al.
[9], introduced physics-informed neural networks, which
incorporates governing equations, like the Navier-Stokes
equation, directly into training. Similarly, Jiang et al. [5]
used a physics-informed method to learn turbulence closure

1



models.
These studies informed our approach by showing that

machine learning can learn spatial and temporal correlations
in fluid flow. Further, these studies show how an under-
standing of the governing equations can improve models.
However, most of these methods include 2D reconstruc-
tions, whereas our goal is to reconstruct 3D structure from
sparse slices of 2D data.

2.2. Inpainting and Generative Models for Missing
Data

Our problem is also related to image inpainting, where
the goal is to reconstruct missing parts of an image. Thus,
we additionally investigated work related to data inpainting
with diffusion models. The original Denoising Diffusion
Probablistic Models (DDPM) paper by Ho et al. [4] intro-
duced a method to learn the probability distribution of data
by adding noise to data and having a neural network learn
to reverse the noise process. Building off of this, Lugmayr
et al. [8] developed a DDPM based inpainting method that
can take in arbitrary masks and generalizes better for a va-
riety of masks in 2D image inpainting. While our project
involves a fixed set of masks (masking some 2D slices and
not others), this paper was helpful for understanding how
DDPMs can be used in the presence of missing data.

2.3. 3D extensions of Diffusion Models

Although DDPMs have been mostly used for 2D image
generation, there have been a few applications to 3D data.
Dorjsembe et al. [2] synthesized 3D medical images using a
3D DDPM. This study showed how DDPMs could be used
in a 3D context by replacing all of the 2D operations in a
U-Net architecture with the associated 3D operations. This
was helpful in that it showed that a similar implementation
could work for our problem.

Karnewar et al.[6] trained a 3D diffusion model using
2D images, but their 2D input images are 2D projections of
3D volumes. In contrast, our work uses 2D cross-sectional
slices rather than projections. This more closely resembles
the setup in experimental fluid mechanics, where slices of
velocity fields are obtained using a thin laser sheet for illu-
mination.

3. Problem Statement
In this final project, we address the problem of 3D in-

painting for direct numerical simulation (DNS) data with
the goal of reconstructing missing 2D slices of the velocity
field. The input to our model will be a masked 3D velocity
field where some 2D slices along the depth dimension are
known and others are missing. We will train a 3D DDPM
to reconstruct the full 3D volume given the available slices.

We will have two baseline methods to evaluate the ef-
fectiveness of our model. The first baseline will simply be

a linear interpolation of the velocity fields between the un-
masked 2D slices. The second baseline will use a 3D CNN
without diffusion to assess the impact of using a DDPM.
We will compare the performance between these methods
using mean squared error.

4. Dataset
Although the goal of this project is to improve experi-

mental methods, we will first build a model using results
from direct numerical simulation (DNS) given the time con-
straints for the project and the availability of data. We are
using data from the Johns Hopkins Turbulence Database,
which includes space-time history of DNS of isotropic tur-
bulence, fully developed turbulent channel flow, homoge-
neous buoyancy driven turbulence, and more [7]. There
is about 100 TB of data available for most of these cases.
To start with, we are starting with the fully developed tur-
bulent channel flow. This dataset has a domain length of
Lx×Ly ×Lz = 8πh× 2h× 3πh where h is the half chan-
nel height. x, y, and z are nondimensionalized by this half
channel height such that

x ∈ [0, 8π], y ∈ [−1, 1], z ∈ [0, 3π]

In Fig. 1, we display the streamwise velocity fields for a
slice of this data in the center of the channel (y = 0) and
for an adjacent slice, when y = 0.25. The total stored grid
resolution of this dataset is Nx×Ny ×Nz = 2048×512×
1536 with a DNS timestep of ∆t = 0.0013 and a stored
time step of δt = 0.0065, with a total of 4000 stored time
steps.

However, for the sake of this project, we will only use
X × Y × Z = 32 × 32 × 32 data points taken at N = 64
time snapshots from tstart = 0.1 to tend = 5. We divided
up the dataset into a training set (90%) and a validation set
(10%) to help us counter potential overfitting.

To achieve training the model on only a few ”observed”
streamwise planes, we use a mask to designate these ob-
served planes (mask = 1) and to treat the remaining planes
as missing (mask = 0).

5. Methods
5.1. DDPM

From the previously discussed dataset, we extract a 5D
tensor of shape (C,N,X, Y, Z) where C = 6 is the number
of channels consisting of ux, uy , uz , as well as the x, y and
z meshgrid. N denotes the number of time snapshots these
quantities have been recorded. X , Y and Z denote the 3
spatial dimensions of the problem. We globally preprocess
the velocities to have zero mean and unit variance, a stan-
dard for diffusion-based conditional inpainting approach:

uc =
uc − µc

σc
, for c ∈ {x, y, z}

2



Figure 1. Two slices of nearby velocity fields.

where µc and σc are the global mean and standard deviation
for channel c. When training, we extract the wanted time
snapshot from this 5D tensor to obtain a part of the input of
the model: a 4D tensor u of size (C,X, Y, Z).

To get the actual conditional input xcond of our model,
we first simulate incomplete observations by creating binary
masks M ∈ {0, 1}1×X×Y×Z that randomly zero out a per-
centage of the cross-sectional slices along the Y -axis. The
masked input is defined as:

umasked = u ·M

We concatenate the mask and spatial grid coordinates to the
masked velocity, producing:

xinput = concat (umasked,M, grid) ∈ R7×X×Y×Z

Then, we define a forward diffusion process, inspired
by DDPMs, that gradually perturbs the normalized ground
truth velocity field ũ with Gaussian noise. For a given
timestep t ∈ 1, . . . , T , the noisy sample is:

xt =
√
ᾱt × x0 +

√
1− ᾱt × ϵ

where ϵ ∼ N (0, I) is Gaussian noise, αt = 1 − βt,
ᾱt =

∏t
s=1 αs and βt is such that it linearly increases from

βstart to βend over T steps. Note here that the subscript t
represents the current diffusion step, and not physical time.
This gives a xnoisy tensor of size (3×X × Y × Z)

Finally, we concatenate xnoisy with xinput, producing a
conditional input:

xcond = concat (xnoisy, xinput) ∈ R10×X×Y×Z

Our denoising model ϵθ is a 3D U-Net designed for vol-
umetric data. It takes the concatenated tensor xcond as input
and outputs a 3-channel tensor estimating the noise ϵ. The
U-Net includes:

• Encoder Path: Two convolutional blocks with in-
stance normalization and SiLU activations (a standard
in DDPM), followed by max-pooling layers for down-
sampling.

• Bottleneck: A deeper convolutional block without
downsampling.

• Decoder Path: Transposed convolutions for upsam-
pling and skip connections from the encoder for spatial
detail preservation.

• Output Layer: A 1 × 1 × 1 convolution to produce a
final 3-channel prediction.

To actually train the model, we want to minimize the
following MSE:

LMSE = Ex0,t,ϵ

[
∥ϵ− ϵ0 (xt, xcond, t) ∥2

]
At each iteration, we sample a timestep t ∼ Uniform(1, T )
and draw Gaussian noise ϵ ∼ N (0, I). This loss encour-
ages the model to learn to reverse the diffusion process and
recover the original field from any noisy intermediate xt.

Finally, to infer new slices using our model, we generate
a sample starting from pure Gaussian noise xT ∼ N (0, I)
and iteratively denoise it using the learned model. At each
step t, we compute:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

· ϵθ(xt, xcond, t)

)
+
√

βt ·z

where z ∼ N (0, I) if t > 1, otherwise z = 0. After T
steps, the output x0 is a fully reconstructed velocity field
consistent with the initial masked slices.

Training is done for 20 epochs using the AdamW op-
timizer (learning rate of 10−3, decaying weights of 10−5,
with a 90/10 train/validation set split. For initial testing,
we mask 50% of the slices.

5.2. Baseline: Linear Interpolation

We apply a non-learning method based on 1D linear in-
terpolation along the Y-axis. We start with the same prepro-
cessed input from the DDPM.

3



For each missing slice y = yi, we identify the two near-
est observed slices ya and yb containing the slice, and inter-
polate linearly:

f (yi) =
yb − yi
yb − ya

f (ya) +
yi − ya
yb − ya

f (yb)

If the missing slice lies outside the range of observed
slices (i.e., before the first or after the last), we copy the
nearest available observed slice ynearest:

f(yi) = f(ynearest)

where f represents the entire 2D slice of the velocity field
at location y.

5.3. Baseline: 3D CNN Reconstruction with Partial
Slices

We implemented a baseline using a 3D UNet to re-
construct missing velocity slices from partial observations.
Each input volume contains 7 channels: the 3 velocity com-
ponents, 3 spatial coordinates, and a binary mask indicating
observed slices. During training, 4 random slices along the
Y -axis are masked out per sample.

The model have a UNet 3D CNN architecture with skip
connections and instance normalization. The model takes as
input a volume with 7 channel, comprising masked velocity
components (ux, uy, uz), spatial coordinates (x, y, z), and
a binary mask indicating observed slices. The architecture
has three encoding and decoding blocks with skip connec-
tions, using InstanceNorm3d and ReLU activations. Train-
ing was done over 30 epochs using the Adam optimizer with
learning rate 10−3, batch size 2, and weight decay 10−5.
The loss function computes MSE only on the unobserved
(masked) parts of the field:

L =
1∑

(1−M)

∑[
(1−M) · (û− u)2

]
Training is done for 30 epochs using Adam (learning rate
10−3, batch size 2), with a 90/10 train/validation split. This
baseline helps assess the performance of our DDPM by pro-
viding a supervised reconstruction reference under similar
input constraints.

6. Results
Each of the three following sections is assigned a figure

(4, 5, 6) that shows 9 plots, with all of them representing
a slice at a fixed Y of the whole flow. The first column
shows the Ground Truth ux, uy and uz . The second column
shows the Reconstructed / Predicted ux, uy and uz . The last
column shows a quantitative representation of the error be-
tween the Reconstructed / Predicted and the Ground Truth
velocities, adding both qualitative and quantitative results.

6.1. Linear Interpolation

From figure 4, we can see that linear interpolation is a
surprisingly efficient baseline. It assumes smooth variation
of the velocity field along the Y axis and reconstructs miss-
ing slices by performing 1D linear interpolation between
the nearest observed slices. Despite being purely algorith-
mic and requiring no training data, this method effectively
enforces continuity in space. Given the nature of channel
flow and the rough resolution in Y , this smoothness as-
sumption can hold in some regions of the channel flow. The
baseline was implemented using weighted averaging across
neighboring slices, and it showed consistent performance in
RMSE metrics across all velocity components.

Figure 2. RMSE vs Number of Masked Slice

Masked Slices RMSE

15 0.13810
14 0.06356
13 0.04940
12 0.03641
11 0.03111
10 0.02482
9 0.02194
8 0.01673
7 0.01472
6 0.01328
5 0.01189
4 0.01058
3 0.00972
2 0.00843
1 0.00475

Table 1. RMSE for varying numbers of masked slices

6.2. UNet

Despite access to a large dataset and spatial coordinates,
the UNet baseline underperformed relative to linear interpo-

4



Figure 3. Loss vs Epochs (Test and Validation sets)

Epoch Train Loss Val Loss

1 0.175989 0.089104
2 0.072076 0.054862
3 0.070736 0.047305
4 0.068906 0.051460
5 0.054268 0.041779
6 0.052523 0.045186
7 0.045705 0.037464
8 0.042841 0.035262
9 0.043038 0.024918

10 0.032847 0.031779
11 0.039190 0.043129
12 0.032643 0.040832
13 0.031174 0.033826
14 0.034595 0.042339
15 0.031821 0.023664
16 0.038325 0.027038
17 0.029598 0.041786
18 0.030816 0.021771
19 0.031609 0.018090
20 0.038495 0.056204

Table 2. Training and validation loss over 20 epochs

lation according to figure 5. This is likely due to the ”gen-
eral” nature of CNNs like UNet: the model learns patterns
in data but has no understanding of physical quantities like
velocity continuity or smoothness. In contrast, linear inter-
polation ”unwillingly” assumes a smooth gradient between
slices, which inadvertently aligns better with physical ex-
pectations in certain flow regions. Moreover, the UNet must
generalize across random masking configurations, which
increases the difficulty of training. Its local convolution ker-
nels and lack of long range context may limit its ability to
resolve large field structures from sparse 2D slices inputs.

6.3. DDPM

The DDPM baseline outperforms both UNet and linear
interpolation despite lacking explicit physical constraints.
Its strength lies in modeling the full distribution of plausible
velocity fields from sparse observations. The iterative de-
noising process captures long-range spatial dependencies,
enabling globally coherent reconstructions. By learning
from realistic turbulent flow samples, DDPM develops an
implicit physical prior, yielding smoother and more accu-
rate results than linear or convolutional methods. The Loss
vs Epochs we obtain in figure 3 shows that the DDPM is
well implemented: clear downward trend of the loss; a rel-
atively smooth and stable training curve, meaning no ex-
ploding gradients; no major overfitting phenomenon present
with the validation loss remaining rather low. With this, we
can be confident about the validity of our DDPM.

7. Conclusions
In this project, we explored the reconstruction of 3D ve-

locity fields from sparse 2D slices using generative model-
ing. We implemented and compared three approaches: a
linear interpolation baseline, a supervised 3D UNet, and a
Denoising Diffusion Probabilistic Model (DDPM).

Despite its simplicity, linear interpolation provided a
strong baseline by implicitly assuming spatial smoothness,
which can be partially valid in turbulent channel flows. The
3D CNN baseline, trained on a relatively large dataset and
augmented with spatial coordinates, underperformed due to
its lack of physical inductive bias and inability to capture
long range dependencies across slices.

The DDPM was able to progressively refine its predic-
tions through a learned denoising process, using the statis-
tical structure of the data to generate coherent and better
quality velocity fields. Rather than relying on hard coded
physics, the model achieved to implicitly captured more
global flow patterns by training on the dataset.

These results highlight the potential of DDPM for vol-
umetric inpainting in fluid mechanics. Future work could
involve adding physical constraints directly into the diffu-
sion process, training on much larger datasets and testing
the model on experimental PIV data to assess its general-
ization beyond simulation.

8. Contributions
• Erika MacDonald: Dataset preprocessing, Literature

review, Report, Baselines and DDPM Design.

• Nael Ghoundale: Implementation of the 3D CNN (U-
Net) baseline, development of the linear-interpolation
baseline, Report and dataset preprocessing.

• Baptiste Brugerolle: Design, implementation of the
full DDPM codebase, Report, dataset preprocessing.

5



Figure 4. LINEAR BASELINE: Evaluating ux, uy , uz: Ground Truth vs. Reconstructed vs. Error

6



Figure 5. UNET BASELINE: Evaluating ux, uy , uz: Ground Truth vs. Reconstructed vs. Error

7



Figure 6. DDBM BASELINE: Evaluating ux, uy , uz: Ground Truth vs. Reconstructed vs. Error

8



References
[1] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. Machine learning for fluid mechanics. Annual review of fluid mechanics,

52(1):477–508, 2020.
[2] Z. Dorjsembe, S. Odonchimed, and F. Xiao. Three-dimensional medical image synthesis with denoising diffusion probabilistic

models. In Medical imaging with deep learning, 2022.
[3] K. Fukami, K. Fukagata, and K. Taira. Super-resolution reconstruction of turbulent flows with machine learning. Journal of Fluid

Mechanics, 870:106–120, 2019.
[4] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–

6851, 2020.
[5] C. Jiang, R. Vinuesa, R. Chen, J. Mi, S. Laima, and H. Li. An interpretable framework of data-driven turbulence modeling using deep

neural networks. Physics of Fluids, 33(5), 2021.
[6] A. Karnewar, A. Vedaldi, D. Novotny, and N. J. Mitra. Holodiffusion: Training a 3d diffusion model using 2d images. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, pages 18423–18433, 2023.
[7] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink. A public turbulence database cluster

and applications to study lagrangian evolution of velocity increments in turbulence. Journal of Turbulence, (9):N31, 2008.
[8] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: Inpainting using denoising diffusion prob-

abilistic models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11461–11471,
2022.

[9] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378:686–707, 2019.

[10] R. Vinuesa and S. L. Brunton. Enhancing computational fluid dynamics with machine learning. Nature Computational Science,
2(6):358–366, 2022.

9


