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Abstract

Agentic Retrieval and Editing System for Image Genera-
tion (ARES-GEN) aims to bridge natural language queries
with visual content by developing an image editing pipeline
that retrieves images from the database and edit them when
necessary. We integrate CLIP for the purpose of semantic
search, BLIP for image captioning, GPT-4 for discrepancy
list construction, and InstructPix2Pix for text-guided image
editing. We evaluate the method on a subset of 1000 im-
ages from Flickr Image Dataset. While the retrieval compo-
nent performs exceptionally well, the image editing quality
is limited by the use of lightweight InstructPix2Pix that can
be run locally, which leads to the editing result successfully
capture the semantic intent but with reduced resolution as
compared to the SoTA models.

1. Introduction
The ability to convert natural language descriptions into

a realistic image is one of the most well-known problem
in computer vision and natural language processing. Even
though it is easy for human to describe what they want to see
and mentally modify existing images, creating automated
computational systems that could perform similar task re-
mains a technical challenge. The translation from natural
language intent to visual representation has important ap-
plications for content creation, fashion, digital media ma-
nipulation, and human-computer interaction.

Most approaches to convert natural language queries to
images rely on generating the images from scratch using
difussion models or GAN [4]. Even though these meth-
ods can produce good and realistic results, they often strug-
gle with generating photorealistic content and maintaining
fine-grained details, especially when dealing with complex
scenes. These diffusion-based generated images often ex-
hibit artifacts, inconsistent lighting, and unrealistic textures
which makes them look synthetic.

Our project ARES-GEN stems from a key idea. Instead
of generating images entirely from scratch pixel per pixel,
we can leverage the rick and realistic information contained

in existing photographs and apply modifications to match
user queries better. By starting with real image that already
captures rich realistic features, we can preserve the photo-
realistic qualities which could be difficult to generate.

1.1. Input and Output Specification

The input to our pipeline is a natural language query
which describes the desired image (e.g, ”A man with a black
shirt dunking a basketball”). Our system then uses a seman-
tic search to find a semantically similar image. In this case,
the model might retrieve an image of a man with a white
shirt dunking a basketball. The pipeline then detected the
discrepancy in the shirt color and performed the necessary
modification. The final output of the pipeline is the edited
image that hopefully matches the user query.

This approach has practical applications in content cre-
ation, digital art generation, rapid prototyping, and accessi-
ble image editing tools. By automating the translation from
textual descriptions into visual modifications, we hope to
democratize image editing capabilities.

2. Related Work
. The pipeline built on this project involves multiple re-

search domains: text-to-image generation, image editing,
and vision-language retrieval systems. We organize the re-
lated work into four categories: text-to-image generation
models, instruction-based image editing, image retrieval
systems, and hybrid approaches.

2.1. Text-to-Image Generation Models

Many approaches in the text-to-field generation niche
use a direct generation method via diffusion models and
GANs [4]. Imagen [14] presents a text-to-image diffusion
model with photorealism and deep language understanding,
representing the SoTA in this category. Similarly, Stable
Diffusion uses a latent diffusion approach that focuses on
accessibility, which makes widely adopted open-source so-
lutions.

DALL-E 2 [13] also represents a commercial break-
through that achieved good photorealism. However, relying
only on text might not cater to the complex requirements
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in various applications. Despite their remarkable success,
they still sometimes struggle with fine-grained control and
maintaining photorealistic quality in complex scenes.

2.2. Instruction-Based Image Editing

Researchers have also done works related to image edit-
ing. InstructPix2Pix proposes a method for editing im-
ages from human instructions. Other notable works in
this category involve DragGAN [10], which enables point-
based manipulation, and Paint-by-Example [17] which uses
exemplar-based editing. However, these methods are usu-
ally limited by the quality of the diffusion models they use
and might introduce artifacts during the editing process.

2.3. Vision-Language Models and Image Retrieval

The popular method for bridging the gap between tex-
tual and visual semantic representations is through vision-
language models like CLIP [12]. CLIP is a neural network
trained on around 400 million text-image pairs using con-
trastive learning. It uses a vision encoder for images and
text encoder for languages and project both into a shared
embedding space, which allows direct comparison through
cosine similarity.

CLIP enables image retrieval systems where an image
with similar vector as the text query could be retrieved. Ex-
tensions like ALIGN [8] and FLAVA [15] have improved
multimodal understanding. These VLMs help users search
over image repositories by finding photos that match their
natural language queries.

2.4. Hybrid Retrieval and Generation Approaches

Some works have recently begun to explore the combi-
nations of retrieval and generation. Composed Image Re-
trieval approaches retrieve images while integrating modi-
fications, though focuses more on retrieval rather than edit-
ing. Make-A-Scene [3] combines scene layout with text
generation, while GLIDE [9] uses classifier-free guidance
for better text conditioning. However, these approaches
either focus purely on generation from scratch or perform
editing without utilizing large-scale retrieval.

2.5. State-of-the-Art and Current Limitations

The current state-of-the-art for text-to-image genera-
tion tasks is dominated by difussion models like DALL-
E 3, Midjourney v6, and Stable Diffusion XL. For image
editing, InstructPix2Pix becomes the leading approach for
instruction-based modification, although it suffers from res-
olution limitations. Most practitioners still rely on manual
image editing tools like photoshop for more control, partic-
ularly in professional contexts. Our approach differs from
existing work by combining the strength of retrieval for
photorealism with instruction-based editing.

3. Methods

Figure 1. ARES-GEN Workflow

3.1. Query Processing

User first gives an input to the ARES-GEN model in a
form of natural language query. The query is then processed
with python transformer library’s CLIPModel class to pro-
duce the text embedding

3.2. Semantic Image Retrieval

The text embedding attained from the previous step is
then used to search over the vector database. The search is
done by computing the cosine similarity between the text
embedding and every image embedding that we have pre-
computed within the vector database. We retrieved the top-
K images with the greatest similarity scores and passed ev-
ery image to the captioning process that will be explained
on the next section.
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3.3. Image Captioning with BLIP

During this step, we utilized python transformer library’s
BLIPForConditionalGeneration class to generate captions
for all K images retrieved from the previous step. BLIP
model utilized a unified Multimodal Mixture of Encoder-
Decoder architecture with ViT as the backbone. The model
lies in its boostrapping training paradigm which combines a
captioner and a filter that removes noisy web-scraped text.
We use this model due to its capability to capture fine-
grained visual attributes while still making it feasible to run
locally on a CPU. The hyperparameters that we used to ini-
tialize the model are:

1. max new tokens: this limits the number of new tokens
the model can generate in response to the prompt.

2. num beams: this enables beam search with multiple
beams. This means that the model explores multiple
possible sequences at every step, keeps the top multi-
ple most likely ones, and continues. This mechanism
improves fluency and coherence. More beams tends to
give better output but slower inference time.

3. length penalty: this adjusts how the model scores long
versus short sequences during beam search. Values
greater than 1.0 penalize shorter sequences while val-
ues less that 1.0 penalize longer sequences.

4. no repeat ngram size: this prevents the model from
repeating n-gram sequences. For example, without
this hyperparameter, one might get an output like
”A cat is on the mat. The cat is on the mat.”.
no repeat ngram size ensures that there is no such re-
dundancy during inference.

3.4. Discrepancy Analysis

One of the core components of our ARES-AGEN model
is the discrepancy analysis component, which identifies
differences between user queries and retrieved image
description. These discrepancies could be differences in
attributes, missing objects, and misplaced objects. To
analyze discrepancies, we use OpenAI GPT-4 API using
this prompt:

You are a helpful assistant that analyzes discrepancies
between a user request and an image caption, and suggests
precise image edits to match the request.

Your job is to return a structured list of **clear and ac-
tionable** edits required to modify the image described by
the caption so that it satisfies the user request.

Each edit must have:
- ’edit type’: a short category like ’color’, ’object’, ’action’,
’setting’, or ’attribute’.
- ’description’: a **specific instruction** phrased like a

command, e.g., ”Change the man’s shirt to black.” or ”Make
the man dunk the basketball.”

Do not mention what’s already correct — only list what
must be **added, changed, or removed**.

If there are no required edits, return an empty list.
Input:
Image caption: ”retrieved caption”
User request: ”user query”

Respond with a JSON array of suggested edits [
”edit type”: ”action”, ”description”: ”Make the man dunk
the basketball.” , ”edit type”: ”color”, ”description”:
”Change the man’s shirt to black.” ]

3.4.1 OpenAI Structured Outputs

We also used OpenAI structured outputs to force the model
to output in a form of list of edit instructions. We compute
the discrepancies list for each top-K retrieved image. We
then choose the image from the top-K that requires the min-
imum amount of edits required based on the length of the
output discrepancies list.

3.5. Text-Guided Image Editing with Instruct-
Pix2Pix

The final component of the ARES-GEN pipeline applies
the generated editing instructions with InstructPix2Pix.
This model operates as a conditional diffusion model that
was fine-tuned to follow natural language editing instruc-
tions. Under the hood, the model extends the Stable Dif-
fusion architecture by conditioning the denoising process
on both the input image as well as the text instruction. We
use the pretrained InstructPix2Pix model from the diffusers
library, which is a high-level Python library developed by
Hugging Face for working with diffusion models and was
built on top of PyTorch to simplify loading, running, and
modifying diffusion models. The hyperparameters that are
used for the model initialization are:

1. num inference steps: this sets the number of denois-
ing steps during the reverse diffusion process. In other
words, it indicates how many iterations the model goes
through to transform pure noise into the final image.
For relatively quick inference time.

2. guidance scale: this controls how strong the text
prompt influences the image generation, sometimes
also called the classifier-free guidance scale. Higher
value means that the model will comply more to the
text prompt which could reduce image diversity. A
lower value gives the model more freedom, although
it might ignore the prompt.

3. image guidance scale: this controls how much the
model puts attention on the original input image as op-
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posed to just following the text prompt. This hyper-
parameter is very specific to image-to-image editing
models like InstructPix2Pix. A higher value means
that the model preserves a lot of the input image’s
structure, while a lower value gives more freedom for
the model to change the image based on the instruc-
tion.

3.6. Error Handling and Pipeline Robustness

Due to the reliance of the ARES-GEN pipeline on mul-
tiple external components, error handling mechanisms be-
come essential for maintaining system reliability.

3.6.1 API Failure Management

The system relies on OpenAI’s GPT-4 API for the dis-
crepancy analysis step and could introduce a point of fail-
ure. Motivated by this, we implemented a retry mechanism,
where we use an exponential backoff strategy for transient
API failures with initial retry delays of 1 second, and then
increasing to 2, 4, and 8 second for the next attempts. The
system performs up to 3 retry attempts before continuing
with a simplified fallback approach. The simplified fallback
mechanism basically ensures that the pipeline still returns
an output although the OpenAI API does not work. In this
case, the system will just retrieve an image with the highest
CLIP similarity score and returns it right away, bypassing
the discrepancy analysis.

3.6.2 Image Processing Error Handling

The image processing steps can fail due to corrupted files
or unsupported formats. For this, before further processing,
all images are passed into a basic format validation with the
Python’s PIL library. If an image fails to load properly, it
will be excluded from the candidate pool.

3.6.3 Model Inference Timeout Handling

The InstructPix2Pix editing mechanism can sometimes take
an unreasonable amount of time to complete. To navigate
this, we implement a simple timeout management, where
the editing operations are subject to a 300-second timeout.
If editing exceeds this threshold, the process will be ter-
minated and the system will return the best unedited re-
trieved image with a notification that editing was unsuccess-
ful. This helps with preventing users from indefinite waiting
and ensures that the model still provides output to the user.

4. Dataset and Features

For this project, we used the Flickr30k dataset, which
consists of approximately 31.8k images collected from

Flickr [18]. This dataset is publicly available through Kag-
gle. The Flickr30k dataset contains various everyday scenes
including including people, animals, outdoor activities, ur-
ban environments, and social gatherings. Each image in
the original dataset comes with descriptive captions, though
these are not used in our current implementation.

4.1. Dataset Preprocessing and Subset Creation

Due to computational constraints and to ensure reason-
able processing time when running locally, we created a
subset of 1000 images from the original Flickr30k dataset.
The subset creation process involves the steps below:

1. Image filtering: only images with minimum dimen-
sions of 224x224 pixels were included to ensure decent
resolution

2. Format standardization: all images were converted to
RGB before processing

3. Random sampling: images were randomly sampled
from the original dataset to maintain the distribution
across different scene types and content

4. File validation: each image was validated for proper
format before inclusion.

4.2. Feature Extraction

We used the Hugging Face’s CLIP model, in particular
clip-vit-base-patch32 to embed the images within the sub-
set. The technical implementations are as follows:

1. Model initialization: the pre-trained CLIP model was
loaded

2. Batch processing: images were processed in batches
of 32 to ensure computational efficiency

3. Preprocessing: each image was automatically resized
and normalized according to CLIP’s requirements us-
ing the CLIPProcessor class also coming from Hug-
ging Face’s transformers library.

4. Feature extraction: The vision encoder generated em-
bedding vectors vectors for each image, and were L2-
normalized to unit vectors to allow cosine similarity
computations.

4.3. Data Storage

The embeddings for each image were then saved as a
numpy array of embeddings in a .npy format. We also built
a metadata in a form of .txt file containing corresponding
image file paths for better traceability.
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5. Experiments, Results, and Discussions
Our ARES-GEN pipeline utilizes pre-trained CLIP,

BLIP, and InstructPix2Pix model.For the CLIP-based
image retrieval, we use a batch size of 32 for embedding
generation to ensure memory efficiency and training speed.
We also retrieved top-K with k = 5 images based on
the cosine similarity scores. For the BLIP captioning
model, we used num beams=3 and max new tokens=64
to generate concise descriptive captions. We also used
length penalty=1.1 to force slightly longer outputs and
no repeat ngram size=2 to prevent repetitive phrases.

For the InstructPix2Pix model, we use
num inference steps=30 to ensure decent image qual-
ity while maintaining reasonable inference time,
guidance scale=7.5 to ensure compliance to the query,
and image guidance scale=7.5 to ensure preserve struc-
tural elements of the original image while still allows a
certain degree of modifications. No cross-validation was
performed since all components use pre-trained models
without fine-tuning.

5.1. Results

5.1.1 CLIP Similarity

For the first evaluation metric, we calculated the CLIP sim-
ilarity pre (right after the retrieval) and post editing on 30
data points between the images and the user queries. The
results are shown below:

Figure 2. CLIP Similarity Scores

We can see that 73.3% of the time, the CLIP similarity score
increases after the editing process, which is not necessarily
a good thing as it will be discussed on the qualitative result
section.

Some of the prompts we used for the evaluation purposes
are as follows: To give a clear depiction of what’s happen-
ing, consider the second example where we have the prompt
”A baby sitting on a green bean bag”. Within the dataset, we
have a semantically similar image but with a blue bean bag,
as shown below: The critic agent then recognizes that there

Figure 3. Evaluation Prompts

Figure 4. Example 1 of a Retrieved Image

is a disparity in the color of the sofa, and thus the editing
agent applied the edit and produced the following image:

Figure 5. Example 1 of a Post-Edit Image

5.1.2 Qualitative Analysis and Limitations

Although the quantitative results demonstrate a consistent
improvement in CLIP similarity scores from the editing pro-
cess, a qualitative analysis reveals several important limita-
tions to the current implementation of ARES-GEN. Manual
inspections have shown that post-edit images are not always
qualitatively superior to their pre-edit counterparts.

One of the limitations observed is the model’s difficulty
in handling complex edits that require substantial updates.
The InstructPix2Pix model is observed to be relatively good
for simple attribute changes, such as color modifications as
shown on figure 5, but struggles with more complex ed-
its. One of the fail examples is when we gave an input
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prompt of ”A woman sleeping with a dog besides her”. In
the database, we have an image of a woman sleeping, which
was retrieved correctly. However, when asked to add a dog,
the results are not as expected, as shown below.

Figure 6. Example 2 of a Retrieved Image

Figure 7. Example 2 of a Post-Edit Image

The similarity scores of the two pictures above are more or
less the same, but we could see a degradation of quality on
figure 7.

Despite these challenges with complex edits, our sys-
tem demonstrates a promising quality in preserving the in-
tegrity of the overall structure of the retrieved images. The
editing maintains the spatial relationships between objects,
lighting conditions, and the composition within the image.
This preservation is key for maintaining coherence and en-
sures that the edited images have a photorealistic appear-
ance, which was our main goal for this model.

However, we faced another significant technical limita-
tion during the experiment, which is the degradation in im-
age resolution that occurs post-edit. This can be seen clearly
on figure 5 and figure 7. The InstructPix2Pix model seems
to produce outputs at a lower resolution than the retrieved
images. This struggle might stem from the diffusion model
underlying the InstructPix2Pix model, which was trained
on lower resolution images to reduce computational cost.
Because of this, the iterative denoising process might intro-
duce artifacts and blur fine details, especially when making
localized edits that require accurate spatial control.

The model’s limited ability for deep semantic under-
standing could also contribute to its poor performance on
complex edits. Unlike human who can easily learn the rela-
tionships between objects and maintain logical consistency
during the edit, InstructPix2Pix operates at the pixel level
with limited scene comprehension. Below is another exam-
ple of failed attempt:

Figure 8. Retrieved Image, Prompt: ”A woman carrying a baby
with a blue attire”

6. Conclusion and Future Work
In this work, we introduced a novel retrieval-and-edit

pipeline for context-aware text-to-image generation that
uses existing high-resolution images and applies edits to
match the user query better. Our approach demonstrated
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Figure 9. Edited Image: Wrong Target for the Edit

quantitative improvements in CLIP similarity scores and ef-
fectively applied simple attribute modifications while main-
taining the structure of the overall image. However, qualita-
tive evaluation showed limitations in handling complex ed-
its and resolution degradation due to InstructPix2Pix con-
straints. The primary bottleneck comes from computa-
tional limitations, since all experiments were conducted on
CPU hardware locally. This limits our ability to explore
more sophisticated pre-trained models. For future work, ac-
cess to GPU resources could enable exploration of more
advanced diffusion-based editors and large-scale vision-
language models. Additionally, integrating more complex
agentic pipeline could also help with preventing hallucina-
tions.
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7. Libraries
For this project, we used numpy [5], PyTorch [11], pil-

low [1], diffusers [6], matplotlib [7], tqdm [2], and trans-
formers [16].
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