
VAE Matters: Latent Compression Choices for DiT Architectures

Artur B. Carneiro, Eric Liu, Sherry Xie
Stanford University

arturbc, eliu2002, ycxie @ stanford.edu

Abstract

Diffusion Transformer (DiT) models have become state-
of-the-art architectures for image generation, leveraging
tokenizers to compress high-dimensional images into effi-
cient latent representations. Despite various existing tok-
enizer architectures, from discrete Vector Quantized Vari-
ational Autoencoders (VQ-VAEs) to continuous VAEs, the
impact of tokenizer choice on DiT performance has not
been extensively studied. In this project, we systemati-
cally evaluate how different VAE-based tokenizers influence
DiT architectures. Specifically, we benchmark DiT-XL
and DiT-S models paired with widely adopted VAEs,
establishing a baseline using the default VAEs used in
the DiT paper (stabilityai/sd-vae-ft-ema and
stabilityai/sd-vae-ft-mse). We primarily con-
duct experiments with the smaller DiT-S model due to
computational constraints, while maintaining DiT-XL re-
sults as reference points. Our findings provide initial in-
sights into the tokenizer’s effect on generated image qual-
ity and suggest that careful selection and tuning of tokeniz-
ers are critical for maximizing DiT performance. Future
directions include comprehensive experimentation across
additional VAEs and exploration of how tokenizer-induced
latent-space properties correlate with final generative ca-
pabilities.

1. Introduction
Diffusion transformer models (DiT) [4] have emerged as

the state-of-the-art generative models for images. A crucial
component in these systems is the tokenizer, which com-
presses high-dimensional input data into a latent space for
efficient modeling.

In the past, Vector Quantized Variational Autoencoders
(VQ-VAEs) are commonly used for this purpose. As time
goes on, there are several alternative tokenizers such as con-
tinuous VAEs.

However, the impact of tokenizer choice on the down-
stream performance remains underexplored. Therefore, our
research project focuses on this exact issue: namely, how

does VAE choice affect DiT model performance.

2. Related Work

In recent years, diffusion models [1] have proven to be
effective in image generation tasks. There has also been in-
creasing interest in combining the Transformer model [8],
which has emerged as the paradigm for natural language
processing, with diffusion models [4]. Diffusion transform-
ers replace existing U-Net backbones with transformers to
operate on images in the latent space.

The DiT paper, like Stable Diffusion [5], operates in a
compressed latent space defined by a Variational Autoen-
coder (VAE). It uses the kl-f8 autoencoder from LDM,
which was originally trained on OpenImages.

Additionally, several improvements to this autoencoder
have been developed. Notably, two fine-tuned variants,
known as ft-EMA and ft-MSE, were released to enhance
facial reconstruction and compatibility with Stable Diffu-
sion training distributions. These were trained on a 1:1
mixture of LAION-Aesthetics and LAION-Humans. The
ft-EMA model was trained based on the original check-
point using an L1 + LPIPS loss with EMA weights, while
ft-MSE adds an MSE term to prioritize pixel-wise fidelity.
Both models retain compatibility with existing pipelines by
modifying only the decoder.

Beyond these variants, numerous state-of-the-art VAE
architectures have emerged. For instance, NVAE [7] and
VAE-XL [6] improve expressiveness and stability by push-
ing most parameters into ultra-deep residual decoders that
inject latents hierarchically (coarse→fine), use anti-alias
upsample and self-attention for clean long-range detail, and
predict sharper logistic-mixture outputs. Vector-quantized
approaches like MOVQ [2] and Fused VQ-VAE [3] offer
compelling alternatives by discretizing latent space for bet-
ter compression and generative performance. These ad-
vances continue to shape how VAEs are used in large-scale
diffusion systems.



3. Data
We use the CIFAR-10 dataset for this project because it

is a small yet widely used dataset in Computer Vision. Due
to computation constraints, we further sample 10% from the
CIFAR-10 dataset to train on our models.

4. Methods
4.1. Key Methodology

There are two methods to explore the effect of different
tokenizers with Diffusion Transformer Models:

• Fine-tune different VAEs to match the existing DiT
Model Structure

• Retrain the same DiT model based on VAE variants

We aim to control the experiment to only one variable
while exploring the effect of different VAEs. Therefore,
the second method best fits the objective. To that end, we
trained the DiT models conforming to VAE variants in our
experimentation stage.

4.2. Models and Baseline Training Process

We leveraged the machine learning processes taught in
class to train DiT models. Specifically, we utilized the orig-
inal training file of the DiT paper code-base in our training
process. Diverging from the published training process and
results, we used the DiT-S model series due to compute
constraints.

We set a learning rate of 3e − 5 with scheduler. Ad-
ditionally, we trained our model with 10 epochs because
we noticed significant plateauing in training loss after a few
epochs and believed that 10 epochs adequate for establish-
ing the baseline models. The experimentation results are
provided in Section 5.3.

4.3. Evaluation Metrics

To fully compare the performance of our baseline DiT
models and those of DiT models with different VAEs, we
selected the following five evaluation metrics across two do-
mains.

1. Latent Space Data
Using different VAEs will shift the latent distribution
as inputs for DiTs. As a result, latent spcace related
metrics will help track and illuminate how different
VAEs impact DiTs’ performances.

(a) Latent Norm. This metric gives us the average L2
norm of latent vectors. Below is the latent norm
equation we used:

Latent Norm =
1

N

N∑
i=1

∥zi∥2 (1)

Where:

• ∥zi∥2 calculates the L2 norm of vector zi
(b) Latent standard deviation. This metric measures

the spread of latent vectors. Below is the latent
standard deviation equation we used:

Latent Std =

√√√√ 1

N

N∑
i=1

∥zi − z̄∥22 (2)

Where:

• zi is the i-th latent vector
• z̄ is the mean latent vector

2. Image Quality Metrics
We include three different metrics to evaluate both the
pixel level comparisons and the structural level com-
parisons of our generated images and original images.

(a) PSNR (Peak Signal-to-Noise Ratio). It measures
the quality of reconstructed images compared to
the original on the pixel level. It allows us to
quantify the distortion introduced during the re-
construction process. Below is the equation for
PSNR we used in evaluation:

PSNR = 10 · log10
(

MAX2

MSE

)
(3)

Where:

• MAX is the maximum possible pixel value
• MSE is the mean squared error:

MSE =
1

N

N∑
i=1

(Ii − Îi)
2 (4)

Where:

• N is the total number of pixels in the image
• Ii is the value of the i-th pixel in the ground

truth image
• Îi is the value of i-th pixel in the generated

image

(b) SSIM (Structural Similarity Index). This met-
ric measures the perceptual similarity between
original and reconstructed images rather than the
pixel-level differences. Below is the equation we
used in calculating SSIM:

SSIM(x, y) = [l(x, y)]
α · [c(x, y)]β · [s(x, y)]γ

(5)
Where:

• l(x, y) compares luminance

2



• c(x, y compares contrast
• s(x, y) compares structure
• α, β, and γ are weights

(c) LPIPS (Learned Perceptual Image Patch Similar-
ity). This metric uses deep features from pre-
trained neural networks to measure perceptual
similarity between images. Unlike PSNR and
SSIM, LPIPS better aligns with human percep-
tual judgments by comparing images in a learned
feature space. Below is the equation we used for
calculating LPIPS:

LPIPS(x, x̂) =
∑
l

1

HlWl

∑
h,w

∥wl⊙δhwl ∥22 (6)

Where:

• δhwl = ϕl(x)hw−ϕl(x̂)hw is the feature dif-
ference

• ϕl denotes the features from layer l of a pre-
trained network

• Hl and Wl are the height and width of the
feature maps at layer l

• wl represents the learned perceptual weights
for layer l

• x is the original image and x̂ is the generated
image.

4.4. Retrain DiT with VAE variants

After establishing our baseline, we retrained the DiT-S
models using different VAE variants to explore the effect of
different VAEs on the same DiT model architecture.

5. Experiments
5.1. Exploration

We began by exploring different DiT models provided
in the paper [4]. We chose the XL model as it is widely
available on Huggingface and directly downloadable. We
chose the VAE stabilityai/sd-vae-ft-ema cited
in the paper. We ran inference and generated images using
the specified model and VAE to explore its capabilities. Our
sample images from this model are shown in Figure 1.

Since the model was trained on the default VAE, we were
able to run the inference smoothly. In further exploration,
we experimented with the running of the same model using
another VAE stabilityai/sd-vae-ft-mse. We no-
ticed similar results to the baseline we established above.

5.2. Model Selection and Data Sampling

Due to our compute capabilities, we are not able to re-
train models with differnt VAEs using the DiT-XL models.

Figure 1: Baseline Sample Image generated by
DiT-XL-2-256x256 model

.

Instead, we chose to conduct all our experiments using the
DiT-S models. However, since the weights for the DiT-S
models are not released in the paper, we also needed to train
the DiT-S model with the VAEs the paper provided as a
baseline.

To further improve the efficiency of our training while
experimenting process, we sampled the training data by
conducting training on only 10% of the dataset, as previ-
ously explained in Section 3.

5.3. Baseline Experiments

We trained the DiT-S models against 2 VAEs provided
by the original paper: stabilityai/sd-vae-ft-ema
and stabilityai/sd-vae-ft-mse. Using the hy-
perparameters previously discussed in Section 4.2, we
trained our DiT-S models.

A summary of the performances of our baseline models
against the four evaluation metrics mentioned in section 4.3
is included in the following tables:

VAE Latent Norm Latent STD

ft-EMA 1.33782 0.64034
ft-MSE 1.33439 0.63853

Table 1: DiT-Smodel performances with Latent Norm and
Latent Standard Deviation metrics.

3

https://huggingface.co/stabilityai/sd-vae-ft-ema
https://huggingface.co/stabilityai/sd-vae-ft-mse


VAE PSNR SSIM LPIPS

ft-EMA 9.81 0.6383 0.0530
ft-MSE 10.62303 0.66282 0.0579

Table 2: DiT-S model performances with PSNR and SSIN
metrics

We include the final training loss of these two baseline
models in Table 3 for further comparison.

VAE Final Loss

ft-EMA 0.224701
ft-MSE 0.208439

Table 3: Final training loss of DiT-S models

5.4. VAE Variants

To explore the effect of different tokenizers with Diffu-
sion Transformer Models, we selected a variety of different
VAEs to run experiments against. We chose the following
two VAE variants:

1. ostris/vae-kl-f8-d16: We selected this VAE
because it is lighter weight, faster, and trained on a
variety of images. Exploring this lighter weight option
may be useful for future DiT training when there is
compute constraint.

2. stabilityai/sdxl-vae: We selected this VAE
because this is the official SDXL encoder which will
give us a rich latent space.

Similar to our baseline experiments, we also include the
performances of the DiT models trained on these variants
against the four evaluation metrics mentioned in section 4.3
in the following tables:

VAE Latent Norm Latent STD

ostris/vae-kl-f8-d16 1.39753 0.6516
sdxl-vae 1.33439 0.63853

Table 4: DiT-S model performances on VAE variants with
Latent Norm and Latent Standard Deviation metrics.

VAE PSNR SSIM LPIPS

ostris/vae-kl-f8-d16 12.32 0.7155 0.0205
sdxl-vae 9.29641 0.59034 0.1356

Table 5: DiT-S model performances on VAE variants with
PSNR and SSIN metrics

VAE Final Loss

ostris/vae-kl-f8-d16 0.1272484944968284
sdxl-vae 0.2357452244886869

Table 6: Final loss of DiT-S models trained on VAE vari-
ants

6. Analysis

6.1. Training Loss Visualization for All VAEs

In order to fully analyze the performances of these dif-
ferent models, we first include the following figure for all
the training losses.

Figure 2: Training Losses for all the DiT models
.

We notice that the overall shape and trend of the train-
ing process are very similar, with the initial training loss
starting from around 0.95 and the final training loss end-
ing at around 0.20 except for the DiT model trained on the
ostris/vae-kl-f8-d16 VAE, which ends at around
0.12.

This helps us get a general sense that all these VAEs are
suitable VAEs for the DiT model architecture and shows
that there will be minor, fine-grained differences in the ef-
fect of different VAEs on DiTs rather than bigger and more
dramatic differences.

4

https://huggingface.co/stabilityai/sd-vae-ft-ema
https://huggingface.co/stabilityai/sd-vae-ft-mse
https://huggingface.co/stabilityai/sd-vae-ft-ema
https://huggingface.co/stabilityai/sd-vae-ft-mse
https://huggingface.co/ostris/vae-kl-f8-d16
https://huggingface.co/stabilityai/sdxl-vae
https://huggingface.co/ostris/vae-kl-f8-d16
https://huggingface.co/stabilityai/sdxl-vae
https://huggingface.co/ostris/vae-kl-f8-d16
https://huggingface.co/stabilityai/sdxl-vae


6.2. Baseline Model Analysis

We analyze the baseline model performances by look-
ing at the PSNR, SSIM and LPIPS metrics generated in
Table 5. Since the PSNR is based on the pixel-wise er-
ror and we have the MSE term in the denominator of the
equation for PSNR, a higher PSNR means that the gen-
erated image is closer to the original image. SSIM mea-
sures the structural similarity between the generated im-
age and original image. SSIM value of 1 would repre-
sent the generated image is the exact reconstruction of
the original image. Finally, LPIPS measures how far
the generated image is from the original image, so a
lower LPIPS value is better. Looking at Table 5, we can
see that the performances of both VAEs used here are
pretty similar, with stabilityai/sd-vae-ft-mse
performing marginally better in the PSNR and SSIM met-
rics while stabilityai/sd-vae-ft-ema is perform-
ing marginally better in the LPIPS metric.

6.3. VAE Variant Analysis

When looking at the PSNR, SSIM, and LPIPS metrics
for the two VAE variants, we see that the DiT with the
ostris/vae-kl-f8-d16 VAE is performing signifi-
cantly better than the stabilityai/sdxl-vae VAE
in all three metrics. Notably, the LPIPS value gener-
ated by the DiT trained on ostris/vae-kl-f8-d16
is over 6 times lower than that of the DiT trained on
stabilityai/sdxl-vae. To visualize this difference
we see, we also ran inference on both DiT models trained on
these VAEs. Specifically, we ask the model to reconstruct
some original images in the dataset. The reconstructed im-
ages are included in the figures below with the first row be-
ing the original images and the second row being the images
reconstructed by DiT models trained on different VAEs.

Figure 3: Original and reconstructed images generated by
DiT trained on ostris/vae-kl-f8-d16

.

Figure 4: Original and reconstructed images generated by
DiT trained on stabilityai/sdxl-vae

.

As we observed in Figure 3 and Figure 4, the DiT
trained on ostris/vae-kl-f8-d16 reconstructed im-
ages more clearly both on a structural and on a pixel level,
with more visibly similar colors and structurally consistent
shapes. This is aligned with the numerical results we ob-
served earlier.

Notably, the DiT with the ostris/vae-kl-f8-d16
VAE is performing even better than the default VAEs we
selected both on the pixel level and on the structural level.
Figure 5 shows the reconstructed images conducted by the
DiT trained on stabilityai/sd-vae-ft-mse and
Figure 6 shows the reconstructed images conducted by the
DiT trained on stabilityai/sd-vae-ft-ema. We
can see that on both the structural and pixel level, the default
VAEs are generating worse results than the DiT trained on
the ostris/vae-kl-f8-d16VAE. Specifically, Figure
3 offers reconstructed images that are sharper, clearer, and
have a more similar overall structure to the original images
on the first row. This reflects and supports the numerical
values we saw with all three metrics.

Figure 5: Original and reconstructed images generated by
DiT trained on stabilityai/sd-vae-ft-mse

.

5



Figure 6: Original and reconstructed images generated by
DiT trained on stabilityai/sd-vae-ft-ema

.

Even though this VAE is actually lighter weight, the fact
that it is trained on a balance of photos, text, cartoons, and
vector images contributes to the diversity of this VAE and
may have been the reason behind its stellar performance.

6.4. Overall Analysis

Looking at the DiT models trained on both the default
VAEs and the VAE variants, we can see that there is a va-
riety of performances from different VAEs when applied to
the same DiT model architecture. This reflects that the se-
lection of VAEs does play a role in the effectiveness of the
DiT model performance.

7. Conclusion
We trained DiT-S models using both default VAEs pro-

vided by the original DiT paper [4] and other related VAEs
to explore the effect of VAEs on the performance of DiT
models. We noticed that the specific VAE we select does
have a strong influence on both the pixel-level and struc-
tural level performance of generated images. Specifically,
one especially light-weight yet diverse VAE performed bet-
ter at both metrics than the default VAEs given to us by
the DiT paper. Moving forward, developing light-weight
yet useful VAEs could be a promising direction, exploring
whether we can improve DiT performance even in an ex-
tremely resource-limited setting.

References
[1] P. Dhariwal and A. Nichol. Diffusion models beat gans on

image synthesis, 2021. 1
[2] P. Esser, R. Rombach, A. Blattmann, and B. Ommer. Im-

age compression with hierarchical latent vector quantization,
2023. 1

[3] J. H. Lee, Y. J. Ko, and Y. Gwon. Fused vq: Efficient image
representation learning for compression and generation, 2022.
1

[4] W. Peebles and S. Xie. Scalable diffusion models with trans-
formers, 2023. 1, 3, 6

[5] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Om-
mer. High-resolution image synthesis with latent diffusion
models. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 10684–
10695, 2022. 1

[6] K. Sohn, D. Cai, C.-L. Li, T. Chen, H. Zhang, J. Lee,
S. Levine, and M. Norouzi. Vae-xl: Scaling up latent space
models with product quantization, 2023. 1

[7] A. Vahdat and J. Kautz. Nvae: A deep hierarchical variational
autoencoder. Advances in Neural Information Processing Sys-
tems, 33:19667–19679, 2020. 1

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need, 2023. 1

6


