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Abstract

Due to the computational efficiency of GANs during in-
ference and capability for meaningful latent space inter-
polation, it gained widespread usage among low-compute
users for anime face generation, particularly with Style-
GAN. While StyleGAN has demonstrated impressive gener-
ative capabilities for anime faces, it has a complex architec-
ture built from many empirical observations such as weight
demodulation and path length regularization. DC-GAN has
a simpler architecture, but has considerably worse genera-
tion quality. Inspired by the sparse and high-frequency style
of anime line art, we propose FDSA-GAN, which integrates
a frequency-domain self-attention block in the early layers
of DC-GAN in order to attend to frequency-domain infor-
mation to capture stronger global frequency understanding
for the model to gain better line art generation quality. We
use the gochiusa dataset’s manga and anime faces. With
FDSA-GAN, we observed the most consistent improvement
compared to DC-GAN (ranging from 5-10 percent) for Ker-
nel Inception Distance.

1. Introduction

Anime as a cultural medium rose in popularity exponen-
tially in the 21st century. Anime face generation reached
a local maximum in popularity during 2019, when people
began using StyleGAN on various anime datasets to gen-
erate realistic depictions of anime character faces. Anime
face generation has numerous use cases, including charac-
ter sketches for quick prototyping or working as a tool for
people not well-versed at drawing and developers who want
to design characters with low overhead. Additionally, de-
spite diffusion models tending towards stabler convergence,
GANs when tuned well allow for directly meaningful latent
space interpolation and more computationally efficient in-
ference (only requiring one forward pass), which is a major
benefit for users who have low compute resources.

However, StyleGAN has a complex architecture built

065
066

067
from empirical observations, which is difficult for inter-ggg

pretability, which is especially relevant when designing anggg
architectural changes on pre-existing GAN architectures.g7q
Currently, DC-GAN, which has a more simple, feasible ar-g74
chitecture to build modifications on, doesn’t generate as re-g72
alistic results as StyleGAN. With FDSA-GAN, we add ag73
simple Frequency-Domain Self-Attention block to the earlyg74
layers of DC-GAN, maintaining the overall simplicity ofp75
DC-GAN while improving anime and manga line art gen-g7¢
eration. Compared to human faces, anime faces have muchg77
sharper, high-frequency information along with sparser de-g7g
tails or imperfections, making the locality bias of convolu-g79
tions a potential bottleneck for DC-GAN which can be mit-ggg
igated with the FDSA block. The input to FDSA-GAN is agg1
random noise vector z from a prior distribution (Gaussian).pgo
By passing the noise vector into FDSA-GAN, a generatedggs
anime or manga face image, with a focus on accurate lineggg
art is outputted. 085

For training, real anime/manga images are used as dataggg
for the discriminator to classify between generated and realgpgz
images, propagating a signal for the generator to learn from.ggg

Furthermore, we extend analysis towards manga faceggg
generation. While GAN-based manga face generation hasggg
been less researched compared to generation of RGB animegg1
faces, we believe the black and white nature of manga,go2
which provides more emphasis on line art (our main areaggs
of interest), allows manga face generation to be a useful ad-gg4
jacent metric to assess our model’s ability to capture high-gg5
frequency details and global structure with less color-basedgog
noise. We hypothesize that there will be a strong correlationggz

between manga line art and anime line art fidelity. 098

099
2. Related Work 100
2.0.1 Seminal CNN-based GANs (DC-GAN) 12;
While earlier GAN architectures like DC-GAN [11] had103

success in generating realistic images of human faces104
(CelebA) or digits (MNIST), they struggled to properly gen-105
erate anime faces [2]. This was attributed to the general lack106
of natural, stochastic local textural information of anime107
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faces compared to human faces, which tend to have more
inconsistencies/imperfections compared to the clean line art
of anime. Considering the nature of early convolutional lay-
ers (which have a smaller receptive field), the locality bias is
ingrained in typical CNN-based generators, making it diffi-
cult to pick up signals in anime faces which focus more on
a global context.

2.0.2 Improving GAN Stability, Scalability, and Reso-
lutions

There have been many GAN architectures introduced in the
last decade. The Wasserstein GAN (WGAN) [1] used the
Lipschitz constraint, Earth Mover’s Distance (EMD) with
the critic to yield more meaningful losses. BigGAN [3]
showed that GANs could be successfully scaled to higher
resolution images. ProGAN introduced the concept of pro-
gressive growing, such that the model starts with a low spa-
tial dimension and increases with spatial upsampling. [7].

2.0.3 Attention Mechanisms for GANs

Self-attention allows for efficient modeling of long-range
dependencies. [13] Though it was originally proposed in
the natural language domain, self-attention was extended to
visual domain with architectures such as the visual trans-
former (ViT) [4]. The Self-Attention GAN (SA-GAN) [14]
applied the self-attention mechanism to GANs, which was
shown to exhibit improved image quality both visually and
in metrics like Inception Score (IS) and Frechet Inception
distance (FID).

2.0.4 State-of-the-Art Architecture for Fidelity and
Style (StyleGAN)

StyleGAN [&] and StyleGAN?2 [9] represent state-of-the-art
for GAN-based image generation, which extended to not
only human faces, but also anime faces and other domains.
StyleGAN adopted the progressive growing of resolutions,
and also introduced numerous innovations, such as the in-
troduction of a mapping between noise vector z and inter-
mediate vector w (using this w as input for AdaIN), which
allowed disentanglement of style. StyleGAN2 used weight
(de)modulation as a surrogate for this while mitigating the
water droplet problem (artifacts from AdalN in StyleGAN)
and used path length regularization to mitigate the tendency
for components to stay fixed during latent space interpola-
tion. Before an input passes through the convolutional layer
of a block, its weights are first modulated and demodulated
based on the z to w value, independent of the input itself.
There have been numerous successful attempts leveraging
the use of StyleGAN for anime face generation, including
Rem, Emilia, and other anime characters. While StyleGAN
has had great results on anime face generation, it used a

lot of empirical tricks like minibatch standard deviation thaq 22

weren’t derived from first principles. B,

165
166

The most similar work to FDSA-GAN is USE-CMHSA-167
GAN [10], which also tries to improve anime character gen-'68
eration, which used upsampling squeeze excitation mod-'69
ule [5] with convolution-based self-attention. Meanwhile,170
our approach focuses on frequency-domain multi-head at-1771
tention. We start from DC-GAN [11], and build from an172
observation of anime and especially manga faces: the gen-173
eral lack of mid-frequency information (consider how line!74
art often has wide regions with extremely little variation'7”
which can shift to high variation with singular strokes), and176
surplus of low-frequency and high-frequency information!77
characteristic of line art. This means a main flaw of DC-178
GAN is in the earlier layers where the simple convolutional 179
blocks do not capture global information well, and do not!80
leverage the information across the frequency domain. Mo-'81
tivated by this observation, we propose a way to improve 82
global frequency-domain contextual understanding in the'83
early layers where the receptive field is still small. We be-184
lieve this leads to potential improvements in line art gener-'85
ation by adding a frequency-domain self-attention block to'86

2.0.5 Anime-inspired GAN Architectures

gain such information in the earlier layers. 187
188
3. Method 189
190

General Adversarial Networks (GANs) offer importantqgq
benefits for generating high-fidelity anime/manga faces,{92
particularly from their capacity for learned latent space in-1g93
terpolation and efficient one-pass inference. Alternative ap-194
proaches like Diffusion Models require multiple passes dur-1g5
ing inference for denoising. GANs are capable of implicitly{gg
learning high-dimensional data distributions, training a gen-197
erator network to map noise vectors z from a simple priorigg
distribution (such as Gaussian) to the data manifold. Thisqgg
section details the methodology of our proposed FDSA-5qq
GAN. We first briefly note the foundational GAN frame-504
work, then compare the architectural design choices of thesgo
DC-GAN architecture (baseline) with the StyleGAN archi-5g3
tecture (a visual SoTA benchmark). Finally, we introducesgg
our proposed Frequency-Domain Self-Attention (FSDA)2q5
module and how it can be integrated into the traditional DC-5qg
GAN. 207

The generator aims to produce realistic fake images,ogg
while the discriminator aims to accurately classify betweensgg
generated and real images. Both the standard DC-GAN ands1g
our proposed FDSA-GAN are trained using the standardsq4
GAN minimax loss formulation as follows: 212

213
1 214

+Ez~pz(z) [log(l — D(G(z)))} 215

m&n max V(D,G) = Egrpy () [log D(z)]
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3.1. DC-GAN

The baseline architecture, DC-GAN [1 1], was a seminal
architecture that improved GAN-based image generation.
It highlighted a number of important design choices, such
as the deep convolutional structure, replacement of pooling
layers with strided and transposed convolutions, and use of
batch normalization, which allowed for stabler training and
improved image generation quality. DC-GAN defines both
Generator G and Discriminator D as deep Convolutional
Neural Networks. DC-GAN replaces pooling layers with
strided convolutions for the discriminator, and with trans-
posed convolutions for the generator. It uses the ReLU ac-
tivation for the generator, and LeakyReLLU for the discrimi-
nator, with batch normalization for both architectures.

3.1.1 DC-GAN Generator Architecture:

Given a latent vector z € R%, the generator G(z; 0,,) maps
z to image G(z) € RE*H*W _ The generator consists of a
series of L upsampling blocks. For[ =0,...,L — 1,

I+1 1) (). gli+1
h(+):G(+)(h(),0§+))

2
= ReLU(BN(ConVTranspose(h(l) )

where BN represents batch normalization and ConvTrans-
pose is a 2-dimensional transposed convolution.

3.1.2 DC-GAN Discriminator Architecture:

The discriminator follows a similar structure to the genera-
tor. D(z;04) maps x € REXHXW (o scalar. Assuming a
series of L stacked layers, forl =1,...,L — 1:

B+ — D(z+1)(h(z);9(gl+1))

3
— LeakyReLU(BN(Conv2d(h®; 6{1)))

As the final discriminator (output) layer, the sigmoid acti-
vation is applied to convert logits to probability.

D(z;04) = o(output) 4
3.2. StyleGAN

In contrast with the DC-GAN’s simple architecture,
StyleGAN has a large number of architectural changes,
motivated by empirical observations. StyleGAN achieved
high-resolution image quality, along with disentangled la-
tent space and style control. StyleGAN’s success in gener-
ating not only high quality human faces, but also the first
GAN architecture to generate accurate anime faces, makes
it a strong SoTA qualitative benchmark for evaluating new
GAN architectures for anime/manga face generation.

Let f(-; ¢¢) be the mapping network, g(-; 6,) the synthe-
sis network. G(2; ¢5,04) = g(f (2 ¢5); 0).

270
271
In order to promote disentanglement, z is mapped through272
an 8-layer MLP to yield w, a more disentangled intermedi-273

3.2.1 Mapping Network (f):

ate vector. It transforms z € Z to w € W as follows: 274
275

w = f(2;¢) (5)276

277

3.2.2 Adaptive Instance Norm (AdaIN) and278
(De)Modulation: 279

280
With layer 4 of g, the transformation M LP;(-; ¢;) maps W

to styles (ys;,yp,q) With s denoting scale and b denoting,,_,
bias:

283
(Ys,i» Yb,i) = MLP;(w; ;) ©),5,
Defining x,(f) as the k-th feature channel at layer 7, the?®°
AdalN operation can be described as follows: 286
287
(1) (1) 288

iy (@) (i i Ty — p(xy”)
AN, 8 i) =y D) O
o(zy,”) (M290
) 291
t bk 292
293

The purpose of AdaIN was to use w was to normalize the
feature activations and apply a specific scale and bias. The
style/intermediate vector w is used to modulate the normal-2%>
ized features in order to inject a distinct style. However, it*?%
was noted that normalization produced water droplets” [9].
In StyleGAN2, AdaIN was replaced by modulation and de-2%%
modulation. There are also many additional architectural®??
choices, such as noise injection and path length regulariza->%°
tion which help StyleGAN achieve maximum output qual-zg;

1ty.

303
3.3. Frequency-Domain Self-Attention (FDSA) 304
3.3.1 209

306
The design of the FDSA block is motivated by the receptive307
field limitations of early convolutional layers for the genera-308
tor. The earlier layers of DC-GAN consist of simple convo-309
lutional blocks which are not global frequency-aware. Stan-310
dard convolutions can gain larger receptive fields in deeper311
layers, but earlier layers typically do not have direct access312
to the full tensor. For anime faces, which has much sparser313
local information compared to human faces, the represen-314
tation capabilities of standard convolutional layers may be315
lower, making it more difficult to capture global context.316
Additionally, the line art quality of anime faces is much317
sharper than human faces, making the information from318
anime faces higher frequency. The FDSA block aims to ad-319
dress these limitations by introducing a self-attention block320
in the frequency domain to gain such information in the ear-321
lier layers, even in the earlier layers the GAN should be322
able to gain a stronger global representation and understand323

294

Motivation
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high-frequency quality of line art to generate more accurate
anime faces.

3.3.2 Baseline Implementation Details

The Frequency-Domain Self-Attention block will be inte-
grated into this baseline DC-GAN, which follows the archi-
tectural details outlined in DC-GAN. We chose to imple-
ment DC-GAN from scratch with pytorch given the objec-
tive of integrating an efficient, simple architectural change
to DC-GAN to get closer performance to StyleGAN’s com-
plex architecture, particularly in image fidelity focused on
the line art style of anime. The original DC-GAN gener-
ator starts with a mapping from noise vector z to a tensor
(1024, 4, 4). Tt then consists of spatial upsampling blocks
(with channel downsampling), using transposed convolu-
tions for upsampling, then applying batch normalization
with ReLU. The DC-GAN discriminator consists of down-
sampling blocks using strided convolutions, with batch nor-
malization and LeakyReLU activation.

The successful anime generation model I will compare
my improved model against is StyleGAN2 with WGAN-
GP loss function. For StyleGAN, we used an already im-
plemented version from LabML [6], which uses an MLP to
map the z noise vector to an intermediate vector and usage
of weight modulation and demodulation. WGAN improved
the training stability of GANs along with a meaningful loss
by adopting Wassserstein distance, Lipschitz constraint, and
the critic.

3.3.3 FDSA Overview

The Frequency-Domain Self-Attention (FDSA) block is in-
serted right after the projection of noise vector z, before
convolutional layers, operating on the dimension 1024 x 4
x 4. The early placement of the FDSA block is chosen for
two reasons: smaller spatial dimensions reduce the compu-
tation costs of the quadratic self-attention mechanism on the
frequency domain, and increasing global contextual under-
standing in the earlier layers can propogate to deeper layers,
which can augment their larger receptive fields. In situa-
tions with moderately high compute, the FDSA block could
be introduced in later layers (such as 8x8 or 16x16) to obtain
more frequency bins for more fine-grained global context.
Continuing from the pre-conv layer placement assumption,
A 2D FFT is applied to each of the 1024 channels of the
4x4 feature maps, yielding complex tensors. Each spatial
location in the frequency-domain feature map forms a to-
ken along the channels, yielding 16 spatial frequency loca-
tions (tokens). After concatenation of real and imaginary
components, each token will have dimension 2048 (1024 x
2). Given these tokens, we can apply standard self-attention

[15]

378
379
| 380
381
382
e U 383
384
385
386

387
We first want to transform the input Xj, to frequencysgg

domain using FFT2D to get Xcomplex freq € CBxCxH XW.389
Then we split Xcomplex_freq iNtO Separate real and imaginarysqq
parts, also concatenating them along the channel dimension:3g4

Project and reshape o

Figure 1. DCGAN + FDSA Generator

Xreal,part = Re(Xcomplex,freq) (8)222
Ximag,part = Im(Xcomplex,freq) (9)394
Xfreq = Concat( [Xreal,parta Ximag,part]) ( 1 0)395

This yields Xpeq € RPXC*HXW such that ¢ = 2029

. . / 397
Xireq is reshaped into Xikens € REXN X Cenea, where each, o

spatial location in the frequency-domain feature map forms

a token along the channels, making there be H x W tokens of 400
. . ’ S ) o

dimension C¢,,.q- For simplicity, let Cf,.g = C'. Now we,,

can use traditional multi-head self-attention on these tokens. 402

3.4. Multi-Head Self-Attention (MHSA) 403

404

Let N, be number of heads, di, = C/,.q/Nn. Follow- 405
ing the Pre-LayerNorm concept, Layer Normalization is ap- 406
plied to Xiokens before the QKV projections. For head i

/ ’407
Wlth WQ1 5 WKl s W‘/z = Rcembed Xdj :

408
Qi = LN(Xtokens)WQi (11)409
Ki = LN(Xuokens) W, (1271
Vi = LN(Xtokens)WW (13)412
such that Q;, K;, V; € REXN*dx Now we can perform the?13
typical self-attention calculation. 414
415
KT
H, = softmax (Qz : ) V; (14)416
Vg 417

, 41
Then concatenate all H; to Heopear € RE*N *Cemvea and per—418

form the output projection:

420

Xatt = Hconcat . WO (15)421

422

3.5. Residual Connection and Normalization 423
424

Now, X, is reshaped, to split into the real and com-
plex components, and obtain the output complex frequen-
cies such that the 2D IFFT can be applied, in which we

. 427
can obtain the real component output Xpaa1 o Such that
X, represents the original spatial domain input tensor (pre-
FDSA block)

Xout = LN(Xin + Xspatial,an)

429
430
(16)431
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Figure 3. Example Manga Image

4. Dataset and Features

The gochiusa dataset [ 12] was used to train FDSA-GAN,
which consisted of 39537 images from the anime Is This Or-
der A Rabbit. We used a 80-10-10 train-validation-test split.
Importantly, the resolutions of these images varied largely,
from 26x26 to 987x987, with a 356x356 median resolution.
In our experiments, we directly resized all images to 64x64,
which was the input size FDSA-GAN trained on due to the
low compute resources available. In future research, the
impact of training with different original image resolutions
will be experimented with by dividing the dataset into gen-
eral resolution bins. Since FDSA-GAN is built from a DC-
GAN base, we directly use the input images in their resized
dimensions.

Example images are shown in Figures 2 and 3.

5. Experiments

Most of the hyperparameters follow the methodology of
DC-GAN, besides the integration of the FDSA block. We
use the Adam optimizer, and experiment with two learn-
ing rates, specifically 1r=0.0002 and 1r=0.001. We initialize
B1 = 0.5 and By = 0.999. We also experimented with
different dimensions of the latent vector z, specifically di-
mension 50, 100, and 200. FDSA-GAN also uses the same
number of layers as DC-GAN as shown on Figure 1. Train-
ing was conducted with a batch size of 64 images.

The most important method of evaluating the effective-
ness of FDSA-GAN is through visual comparisons to DC-

GAN and StyleGAN. The expected results are that by intro- %%

ducing the frequency domain self-attention block, the anime”®’
face cohesiveness will be integrated with line art style better >
than the vanilla DC-GAN. Specifically, qualitative evalua-"?
tion includes viewing the general sharpness of the images, 490
specifically the line art quality of the anime faces and hair”
style. An ideal anime face should be drawn sharply, w1th— 492
out the blob-like structure which GAN outputs often exhibit”
for anime faces. Additionally, we introduce the concept 404
of comparing anime face generations from manga 1mages495
vs anime images, expecting that manga images due to the
black-and-white coloring should prove easier for most GAN*Y’
architectures to mimic, which could serve as another base—498
line that distinguishes model improvements from a general499
understanding of line form in monochrome conditions com-"%°
pared to more noisy, colorful conditions. o0t

Quantitatively we evaluate the performance of FDSA- 202
GAN using numerous metrics. We compare the distribu-
tional similarity between generated and real images with505
Kernel Inception Distance (KID) for FDSA-GAN vs DC-
GAN. This score has significance, but the task of exhibit-
ing sharper line art is something that can be found by vi-
sual inspection quite easily, so the qualitative evaluation
is more directly important. No cross-validation was done.
Due to the higher computational costs for training GANs
compared to classification CNNs, we focused primarily on
anime face generation, which has a larger target audience,
but also perform a quantitative comparison between DC-
GAN and FDSA-GAN for the manga dataset.

We also consider other metrics, such as the Deep Im-
age Structure and Texture Similarity (DISTS), Learned Per-
ceptual Image Patch Similarity (LPIPS), and SSIM (Struc-
tural Similarity Index Measure) between FDSA-GAN and 19
DC-GAN. A lower Deep Image Structure and Texture Sim- 52
ilarity score indicates more structural similarity such that
the learned deep features and generated and real 1mages
are more similar. A lower Learned Perceptual Imag6523
Patch Similarity score, using deep features from pre—trained52 4
CNN:gs, indicates better perceptual similarity, which is more
similar to human preferences.

510

’513
514

525
526
527
5.0.1 StyleGAN Qualitative Analysis 523
5
I first generated anime images with StyleGAN. The outputs530
demonstrated extremely sharp hair quality characteristic of531
anime, as well as mostly well-formed facial structure. This532
can be seen from the first row of Figure 4. While there were533
some flawed image generations in the second row, particu-534
larly the face at coordinate (2,3), the overall line art qual-535
ity was still noticeably superior to the DC-GAN anime face536
generations. The middle image also has issues around the537
chin, where it seems like a chunk of the face is missing.538
Overall though, the quality is quite high. 539
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Table 1. Quantitative Results for Anime Face Generation. 594

Model Configuration KID DISTS LPIPS SSIM 595
596

DCGAN (z=100, Ir=2e-4) 0.22£0.01 0.332+0.0060.48+0.01 0.187 £ 0.006 597
FDSA-GAN (z=100, Ir=2e-4) 0.21 £0.01 0.301 £0.0050.47 +0.01 0.211 £ 0.004 598
DCGAN (z=200, Ir=2e-4) 0.23£0.01 0.3124+0.0050.48 +0.01 0.192 £ 0.004 599
FDSA-GAN (z=200, Ir=2e-4) 0.21 £0.01 0.303 +£0.0050.47 +0.01 0.192 + 0.004 600
1

DCGAN (z=50, Ir=2e-4) 0.19+£0.01 0.3134+0.0060.47£0.01 0.222 £ 0.004 282
FDSA-GAN (z=50, Ir=2e-4) 0.19+£0.01 0.303+0.0050.46 £0.01 0.212 £ 0.005 603
DCGAN (z=100, Ir=1e-3) 0.20£0.01 0.331 £0.0050.53 +£0.01 0.172 &£ 0.005 604
FDSA-GAN (z=100, Ir=1e-3) 0.18 £0.01 0.329 +0.0040.52 +0.01 0.191 £ 0.007 605
606

Table 2. Quantitative Results for Manga Face Generation. 607

Model Configuration KID DISTS LPIPS SSIM 608
609

DCGAN (z=100, 1r=0.0002) 0.304 £0.002 0.304 £ 0.006 0.444 + 0.009  0.129 £ 0.006 610
FDSA-GAN (z=100, Ir=0.0002) 0.299 £ 0.001 0.294 4+ 0.003 0.436 4+ 0.004  0.130 +£ 0.006 611
612

613

614

615

616

617

618

619

620

621

622

S = 623

Figure 6. DC-GAN for Anime Images 624

625

626

=l
.
3

Figure 5. StyleGAN for Manga Images

I then generated manga images with StyleGAN. Despite
the greater emphasis on line art due to the monochrome
quality of manga, StyleGAN seemed to reach a similar level
of quality in its image generations compared to anime. In
Figure 5, StyleGAN also had poor image generations, par-
ticularly with the images on the left which had deformed
facial structure. Interestingly, the top left image exhibited
a mostly sharp deformation in the facial structure, while

the middle left image showed a more blob-like deformation. 5,
This points to the presence of two types of generation errors, g,
one from general facial structure, and the other from lack of;, 4
frequency information. Overall, with the manga face gener-5,,
ations, there was also more residue for some of the i111ages631
which indicated a lack of full understanding towards the lineg,,

art style that defines manga. 633
634

5.0.2 DC-GAN vs FDSA-GAN Qualitative Analysis®*®
(Anime) 636

637

Next, I tried evaluating the anime outputs from DC-GAN.638
As expected, in Figure 6 the vanilla DC-GAN had major639
issues with anime face generation, with numerous gener-640
ated faces showing eye deformations, face deformations,641
and fading hair color. For FDSA-GAN as shown in Figure642
7, while face deformation still occurred as shown in the bot-643
tom right image, the degree was not as large as DC-GAN,644
and the occurrences were less. Additionally, there were no645
cases where the hair color had the fading effect, or the entire646
image was deformed. Generally, there was clear qualitative647
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Figure 9. DC-GAN + FDSA for Manga Images

improvement in anime face generation, and the generation
quality of FDSA-GAN was much closer to StyleGAN’s out-
puts, though StyleGAN still had improvements in general
clarity.

5.0.3 DC-GAN vs FDSA-GAN Qualitative Analysis
(Manga)

Finally, I tried evaluating the manga outputs from DC-
GAN. Again as expected, the vanilla DC-GAN is far worse
at understanding the line art of manga compared to Style-
GAN or FDSA-GAN. The issues seemed to grow even more
apparent, with 4/9 images in Figure 8 exhibiting glaring is-
sues in the generation quality, with random artifacts occur-
ring on the face, the hair. For the bottom left example, one
of the eyes even seems completely missing, showing the in-

ability for DC-GAN to learn the line art style of manga even702

more so than for anime. In contrast, FDSA-GAN showed’’
much better generation quality, with only 1/9 images in Fi g-704
ure 9 showing issues in generation quality. Overall, it seems
that with manga face generation, the use of the Frequency-
Domain Self-attention block becomes more important, po-
tentially due to the even greater lack of local details for the7
network to learn from, furthering the importance of under-’
standing high-frequency information to adjust for the in- o
creased importance of line art understanding.
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712

713
5.0.4 DC-GAN vs FDSA-GAN Quantitative Analysis -,

Quantitatively, we experimented with a variety of z dimen-""°
sions (50, 100, 200) and learning rates (2e-4, le-3). We ob-/16
served that the metrics were mostly consistent across anime’ !’
and manga, such that FDSA-GAN improved KID metric.”'®
Besides in the case (z=50, Ir=2e-4) in which the Kernel”'?
Inception Distance was the same between DC-GAN and’?°
FDSA-GAN, we observed that FDSA-GAN had 5-10 per-721
cent improvements in KID. It is possible that due to the’??
smaller z dimension, the image generation task was simpler723
both for DC-GAN and FDSA-GAN due to the generator’ >
needing to learn a simpler mapping from the latent vector’2°
to image. Based on these observations, FDSA-GAN tends’2®
to have great improvements in image quality when the latent”?
vector is of higher dimension, due to how a higher dimen-"%%
sional latent space has greater capacity for encoding image729
variations. 730
For the other metrics, we observed that the both DIST
and LPIPS scores had slight improvements when using732
FDSA-GAN. For DISTS, FDSA-GAN consistently reached’*®
lower scores, while for LPIPS, the effects were more’ >4
marginal for the anime dataset. However, for the manga735
dataset, the LPIPS score had a larger improvement, suggest-736
ing that FDSA-GAN was more effective for improving the "’
LPIPS score in the case with manga (less local color-based” *®
noise). For SSIM, the results were very mixed, indicat-"%?
ing that the luminance and contrast of generated anime and’*?
manga images for FDSA-GAN and DC-GAN were mostly741
the same. This implies that while the FDSA block had’*?
marked improvements regarding the overall facial structure, **
the frequency-domain self-attention wasn’t very effective in’%

S731

improving qualities like luminance or contrast. a8
746

6. Conclusion ar
748

Our proposed FDSA-GAN, which integrates a749

frequency-domain self-attention block in the early layers750
of DC-GAN in order to better attend to frequency-domain751
information to gain global frequency statistics, in order for752
the model to gain better line art generation quality. The753
integration of the FDSA block to DC-GAN maintains the754
general structure of DC-GAN, but enables higher-quality755
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line art generation both for anime and manga faces. It
achieves a middle ground between the complex architecture
but SoTA generation results of StyleGAN, the simpler
architecture but considerably worse generation quality of
DC-GAN. The primary metrics which FDSA-GAN exhib-
ited improvements ranging from 5-10 percent compared to
DC-GAN was Kernel Inception Distance. For future work,
given higher compute we would explore the effects of
binning different resolution images into separate datasets,
and scale up FDSA-GAN beyond 64x64 images. We would
also experiment with different placement locations of the
FDSA block to test for optimal placement configurations.
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