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Abstract

In this project, I apply supervised learning methods to
perform anatomical semantic segmentation of images taken
from laparoscopic surgery. My primary aim will be to de-
velop a model that can perform single class segmentation
and identify the gallbladder in images taken from gallblad-
der surgery. In particular, I implement a U-Net model, per-
form hyperparameter tuning, and evaluate the performance
of the model against pre-trained/fine- tuned models in order
to assess whether transfer learning is an effect approach at
addressing the data shortage issue that plagues biomedical
and surgical domains.

1. Introduction

Surgery has traditionally been practiced with the “open”
technique. In open surgery, the tissues and organs requiring
surgical therapy are directly visualized and manipulated.
However, technological advancements have enabled the de-
velopment of minimally invasive surgery. Minimally inva-
sive surgery is done by inflating a body cavity, such as the
abdomen, with CO4 to create working room, making small
5-12 mm incisions, and placing ports into the body cavity
of interest. A camera is then inserted through one of these
ports to visualize tissues requiring operative therapy. The
operation is then entirely carried out under indirect visual-
ization, where the surgeon uses long instruments inserted
through the ports, and visualizes/supervises the movement
of those instruments through a live-streamed video feed.
In many surgical specialties, minimally invasive techniques
have replaced traditional open techniques as the standard of
care. Consequently, there is an abundance of image/video
data that is generated throughout the course of everyday sur-
gical practice.

Being able to perform safe and effective surgery requires
that surgeons are able to recognize the visualized anatomy,
and map the things that they see to their own mental model
of what the anatomy should be like. In other words, sur-
geons must perform semantic segmentation of the things
they see in order to perform safe surgery. Surgical mis-

takes/errors (eg. cutting the wrong structure) are often the
result of misclassification during this process of semantic
segmentation. Thus, semantic segmentation is of critical
importance to the task of performing surgery.

Anatomical segmentation can be particularly challeng-
ing in cases of high disease severity. It is well known
that higher severity cases are associated with higher rates
of complications, a fact that is at least partially due to dif-
ficulty in performing anatomical segmentation in compli-
cated cases. Having an automated system to aid in anatomi-
cal semantic segmentation could prove to be incredibly use-
ful to surgeons managing patients with severe disease, and
could help to reduce complication rates and improve surgi-
cal safety.

Minimally invasive gallbladder surgery (laparoscopic
cholecystectomy) is one of the most commonly performed
procedures in the United States. As such, data from la-
paroscopic cholecystectomies is the most available for use
in the development of computer vision models. While the
gallbladder operation involves fairly complex and intricate
anatomy, the gallbladder itself is usually visually distinct
and it is usually the first thing that medical students and
surgical trainees learn to distinguish. As such, it is a ripe
target for segmentation model development.

2. Related Work

Muscagni et al. were the first to publish on the appli-
cation of supervised learning techniques to the problem
of semantic segmentation of laparoscopic surgical images
[6]. They approached this problem by using a pre-trained
DeepLabv3+ model, and fine tuning it with expert labeled
surgical images. The DeepLabv3+ model applies an Xcep-
tion encoder to an atrous convolution along with a decoder
network to perform semantic segmentation [1} 2.

Surgical images and videos are relatively scarce sources
of data for training machine learning models, due to data
privacy requirements and other restrictions due to its nature
as healthcare data. Furthermore, annotated surgical image
data is even more scarce, as expert surgeons and clinicians
are the only ones with the training to interpret this data; and
unlike other medical domains such as radiology and pathol-



(a) SAM2 Automatic Mask Generation

(b) SAM2 Mask with Box-Prompt

Figure 1: SAM2 Semantic Segmentation Output. Figure shows the output of SAM2 automatic segmentation. The light
yellow in the upper middle portion of the image represents the gallbladder. This qualitatively appears to be a reasonable
segmentation, although it can be improved. This current segmentation misses a sliver of the gallbladder immediately to the
left of the yellow segmentation mask. Figure [Tb|shows reasonable appearing segmentation masks with a given bounding box

prompt.

ogy, useful annotations are not routinely generated as part
of the surgeons workflow. This paucity of data has made
model development in the surgical image/video domain par-
ticularly challenging, and is likely a main contributor to-
ward stifled innovation and progress in this domain.

In a prior class (CS 131), I attempted to approach this
problem with an unsupervised, edge detection-based seg-
mentation method. Unsupervised methods are desirable be-
cause they don’t require the curation of expert labeled data
for model development, and because they are often effi-
cient to run and don’t require an expensive training process.
Specifically, I used Farid edge detection, applied a graph-
search method to link pixels within contiguous “islands”
delimited by edge- pixels, “within-island” color averaging,
and k-means clustering to create segmentation masks. How-
ever, as will be shown in section 6, this approach did not
work well, likely related to the fact that edges are too non-
specific of a feature in isolation to be useful for semantic
segmentation.

Transfer learning is a well-described approach to over-
coming challenges in developing robust models with lim-
ited annotated data. However, successful transfer learning
depends on the existence of similarities between domains
[14]). I hypothesize that images from laparoscopic surgery
are far enough out of distribution from the training data
that was used to train the DeepLabv3+ model, and conse-
quently, that the transfer learning process doesn’t contribute
significantly to model performance. In this project, I imple-

ment a U-Net model and train it using the same data that
Muscagni et al. used, and evaluate the performance of this
model trained from scratch.

3. Data

The Endoscapes dataset [[7] is a publicly available dataset
that consists of selected frames taken laparoscopic chole-
cystectomy videos. A total of 201 videos were obtained
from surgeries performed at a single hospital in France
from 2015 to 2019. These videos were then temporally
segmented according to the phase of surgery, and frames
from the dissection phase of the operation were sampled and
annotated by surgeons. Specifically, the frames were an-
notated with bounding boxes around anatomical structures
(gallbladder, cystic artery, cystic duct, hepatocystic triangle,
cystic plate) and surgical tools. Segmentation masks were
also manually annotated. These images were then divided
by the dataset authors into an 80%-20% train-test split. The
training set was then further split 75%-15% into training
and validation splits.

Unfortunately, upon reviewing the available annotations,
the provided segmentation masks were not usable. The an-
notations are provided in COCO format, which specifies
that segmentation masks can either be encoded as polygon
coordinates or as run-length encoding. However, it appears
as if the segmentation masks are in some kind of binary for-
mat that is not described in any of the associated dataset
publications or documentation [7].



3.1. Dataset Pre-processing

This project focuses on single-class case of identifica-
tion of the gallbladder within surgical images. However, the
dataset also includes images that do not contain a gallblad-
der. Because I was not sure how negative examples would
affect model training and evaluation, I made the decision to
remove all images that did not contain a gallbladder from
the dataset.

Due to the aforementioned issues with utilizing the pro-
vided segmentation masks, I needed to generate my own
segmentation masks to utilize as ground truth labels for
model training and evaluation. Given the time constraints
of the course and significant effort that would have been in-
volved, I decided not to manually annotate the images in
the dataset. Instead, I attempted to generate segmentation
masks by utilizing the Segment Anything Model 2 (SAM2)
[9]. Initially, I was concerned that the SAM2 model would
perform poorly because surgical images may be out of dis-
tribution for these off-the-shelf models. However, after ap-
plying SAM2 to a test image (Fig. [Ta), the resulting seg-
mentation appeared to be reasonable.

Having reassurance that the SAM2 segmentations would
be usable, I proceeded to generate masks for the remainder
of the dataset. Fortunately, the model was able to accept
prompts in the form of bounding boxes, in which case it
would identify one type of object located within the given
box prompt. Using this feature, I used the dataset’s bound-
ing box annotations as prompts to the model. The result-
ing segmentation masks largely appeared very reasonable
(Fig. [Tb). However, I noticed that there were a few im-
ages where the mask was incorrect (eg. the model created a
mask corresponding to an instrument or the blank letterbox
instead of identifying the pertinent anatomy). As a result, I
manually reviewed all of the generated masks and discarded
the clearly incorrect segmentation masks as well as a few
subjectively low-quality masks.

The original data set consisted of a total of 1933 images,
divided into 1212 (62.7%) training images, 409 (21.2%)
validation images, and 312 (16.1%) test images. After re-
moval of the images without a gallbladder, there were 1174
(64.6%) training images, 357 (19.7%) validation images,
and 285 (15.7%) test images. Finally, after removing im-
ages which had erroneous segmentation masks, the dataset
consisted of 1098 training images (65.0%), 335 validation
images (19.8%), and 256 test images (15.2%).

4. Methods

As mentioned in section 2, the goal of this project is to
assess whether transfer learning is applicable to a surgical
context, given the possibility that surgical images are out-
of-distribution when compared to the standard images used
to train computer vision models. In order to answer this

question, I implement a modified U-Net model [[10], train it
only on labeled data, evaluate its performance, and compare
this model’s performance to the performance of the pub-
lished model that utilizes transfer learning.

The U-Net model has become ubiquitous in solving se-
mantic segmentation problems in biomedical contexts be-
cause it effectively and efficiently learns from relatively
small datasets [10]. Because of how effectively it learns
from small datasets, the architecture has found broad ap-
plication to problems in radiology and pathology [13] 5].
However, it has not yet been applied to surgical images.

I started my evaluation by implementing the U-Net
model. I made a few modifications to the published U-
Net architecture. First, I included padding with each of the
convolutional layers so that the image dimensions remained
the same throughout the convolutions. Next, I added batch
normalization between the convolutional layers to make the
training process less sensitive to initialization [§]]. I also de-
viated from the original U-Net paper with respect to train-
ing. Instead of utilizing stochastic gradient descent (SGD),
I utilized the Adam optimizer due to prior experiences in
the assignments which suggested that Adam may converge
faster than SGD. Similar to the original description, I uti-
lized binary cross-entropy loss as the loss function.

The U-Net paper also described data augmentation as
a way to improve performance with limited data. Conse-
quently, I also performed data augmentation by adding ran-
dom transformations of the original data (rotations and flip-
ping) to the training dataset. I selected these augmentations
as I felt that they would capture the majority of the frame-
to-frame variation of the gallbladder appearance that would
naturally occur during the course of surgery. I then normal-
ized the input dataset prior to training. For validation and
testing, normalization without augmentation was applied to
the images.

For quantitative model evaluation, the main metric [ used
was Intersection Over Union (IOU) to compare the simi-
larity between the predicted and ground-truth segmentation
maps. The IOU serves as a more realistic representation of
segmentation performance as opposed to pixel-level predic-
tion accuracy, as some of the input images may have class
imbalances which can lead to situations where the objective
metric is very good while the qualitative alignment of the
predicted segmentation is poor.

Having established the code base needed for model train-
ing and evaluation, I then turned my attention to hyperpa-
rameter tuning. The main hyperparameters I sought to op-
timize were the learning rate, batch size, and number of
epochs. I assessed the effects of various hyperparameter
changes by observing the changes to training and valida-
tion set losses. Upon discovering the set of hyperparameters
that produced the lowest validation set loss, I then saved the
model and applied it to the test set.
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Figure 2: Evaluating Relationship between Batch Size and Learning Rate. Hyperparameters along with the minimum vali-
dation set loss for each trial are listed above the graph. Overall, batch size of 16 vs 32 does not appear to have a significant

effect on the minimum validation loss.

5. Experiments

Due to literature suggesting a relationship between learn-
ing rate and training batch size in terms of model perfor-
mance [11}[3L 4]}, I began hyperparameter tuning by training
the model with selected combinations of learning rates and
batch sizes. After investigating this relationship, I then ran
trials to determine the best learning rate. Finally, I evaluated
the effect of various batch sizes while holding the learning
rate constant.

5.1. Evaluating the Interplay between Batch Size
and Learning Rate

I started hyperparameter tuning by running training trials
with selected combinations of learning rates and batch sizes
Fig. 2} I found that batch sizes of 16 and 32 did not make
a significant difference in terms of the minimum validation
loss achieved throughout the trial. However, I noticed that
with the learning rates < 5e—4 (Figs. 2blj2d| and 2f{2h)), the
training loss appears to be continuing to decrease at the 50th
epoch, which suggested that more training epochs could po-
tentially lead to greater performance. In all of the trials, it
appears as if overfitting starts to become apparent around
the 30th epoch. Additionally, I noticed that trials with larger
batch sizes may be overfitting less than trials with smaller
batch sizes, although if this effect is truly present, it is small.

Validation Loss by Batch Size
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Figure 3: Effect of Batch Size.

5.2. Searching for the Optimal Learning Rate

Using the insights from the experiment in section 5.1,
I increased the number of epochs per trial from 50 to
75. Also from previous experiments (not shown), I
knew that the optimal learning rate was somewhere in the
range between le—3 and le—5. Thus, I held the batch
size constant at 16, and searched through learning rates
within this range. Specifically, I tried learning rates of
3e—4,2e—4,1e—4,9e—5,8¢e—5,7e—5 in one experiment,



(a) Input Image
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(d) Input Image

(b) U-Net Segmentation Mask

(e) U-Net Segmentation Mask

(c) Bounding box-based Segmentation Mask

(f) Bounding box-based Segmentation Mask

Figure 4: Qualitative Segmentation Evaluation. Figures represent examples of qualitatively good segmentations,
whereas Figures fdif] represent examples of qualitatively poor segmentations

and 2.5e—4,2.25e—4,2e—4,1.75e—5 in the next experi-
ment. The learning rate with the lowest validation set loss
was 2.25e—4.

5.3. Assessing the Effect of Batch Size

While the experiments in section 5.1 suggested that
batch size has a negligible effect on model performance, I
hypothesized that I was coming to this conclusion because
I did not test a broad enough range of batch sizes. Conse-
quently, I decided to revisit this question by training models
with batch sizes of 8, 16, 32, and 64. I held the learning rate
fixed at 2.25e—4, and I trained the model for 75 epochs. As
can be seen in Figure [3| I still was not able to observe an
effect of batch size on model performance.

6. Conclusion and Discussion

In this project, I implemented a modified U-Net model,
trained it to perform semantic segmentation on laparoscopic
surgical images, and compared its performance with an un-
supervised edge detection-based method as well as a pre-
trained/fine-tuned DeepLabv3+ model. The performance
of each of the approaches, as assessed by the average IOU
across the test set, is shown in Table [T}

From these results, it is apparent that the unsupervised
edge detection-based approach performs poorly. While
analysis of the unsupervised method is outside the scope
of this project, it is insightful at suggesting that the super-
vised learning architectures (such as the U-Net architecture

explored in this project) are capturing more general features
and emergent properties rather than just being simple edge
detectors. Also, the failure of this approach also demon-
strates that effective semantic segmentation relies on under-
standing these higher level features.

On the other hand, while the U-Net architecture is ca-
pable of delivering impressive classification performance
in selected examples (Fig. @b), training a model from
scratch is still unable to match the performance of the pre-
trained/fine-tuned model as presented by Mascagni et al.
[6]. There are several possible reasons this may be the case.

With this project specifically, as described in section 3, I
was unable to utilize the true ground truth labels provided
by the dataset authors. Consequently, I was required to gen-
erate my own ground truth segmentation maps. While the
segmentation masks generated by SAM2 were mostly rea-
sonable (Fig. [I), this was not the case for all input images
(Fig. [Ac). Additionally, in some cases (eg. Fig.[4ad), the U-
Net segmentation mask appears qualitatively more accurate
than the generated ground truth label. The key here is that
perhaps the average IOU obtained by the U-Net model as
seen in Tab. [T]is an underestimate due to faulty ground truth
labels.

The U-Net architecture crucially relies on data augmen-
tation to make efficient use of small datasets. In my im-
plementation, I only implemented fairly minimal data aug-
mentation strategies and was unable to revisit this aspect
of the implementation due to time constraints. However,



Method Average IOU
Edge Detection 0.358
U-Net 0.661
DeepLabv3+ 0.885

Table 1: Average IOU.

in reviewing images in the dataset, it seems apparent that
many of the depictions of gallbladders are fairly similar
to one another, and differ mostly as a result of the ways
that the surgeon’s instruments are manipulating the organ
and by parts of the organ that have been altered during
the course of the surgery. While simple shape and color
transformations/augmentations likely won’t be able to cre-
ate new data mimicking dissected tissue, I believe stretch-
ing and rotational transformations could reasonably mimic
different appearances of the organ resulting from surgeon
retraction. Thus, including these transformations as part of
the augmentation strategy could potentially further increase
the performance of the U-Net classifier.

Another possible reason why the modified U-Net imple-
mentation performs worse is that the DeepLabv3+ model
utilizes transfer learning and model fine tuning instead of
training from scratch. While I initially hypothesized that
transfer learning would not work well for surgical im-
ages, given the difference in distribution that I thought was
present between surgical images and standard computer vi-
sion dataset images, it seems that transfer learning may ac-
tually prove to be quite useful in solving problems related
to surgery and biomedicine.

With respect to other take-aways and learning points
from this project, I learned that hardware limitations are a
significant barrier to taking on even a simple project such
as this one. When attempting to investigate the effect of
batch sizes on model performance, as suggested by Hoffer
et al. and Keskar et al. [3,14], I ran into GPU out-of-memory
(OOM) errors I could not work around. The largest batch
size I could run trials on was 64, and as seen in Figure E],
there was no obvious difference in the model performance
at these batch sizes. The batch sizes that Hoffer et al. and
Keskar et al. work with in their papers are on the order of
500-2000. Granted, they utilized the CIFAR and MNIST
datasets, which are tiny images compared to the images
I work with in this project, but the point still stands that
hardware is a significant barrier to creating robust and high-
performing models. Perhaps another reason why the U-Net
model has poorer performance than the DeepLabv3+ model
is that I simply did not have the computing resources to train
a higher performing model.
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