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Abstract

Even though modern image classification models
achieve high accuracy on standard datasets, they are vul-
nerable to adversarial attacks, typically involving small,
human-unperceivable perturbations to the input image. On
the other hand, humans are robust to a wide variety of visual
perturbations naturally occuring in our interactions with
the world, indicating an important gap between human and
machine visual intelligence that needs to be bridged on the
way to human-level AI. In the field of neuroscience, recent
advances in neurotechnology have enabled the simultane-
ous recording of neural activity from large populations of
neurons in the brain. In an attempt to harness the computa-
tional strategy used by the brain, we explore the hypothesis
that computational models trained on neural data can cap-
ture mechanisms underlying adversarial robustness in the
brain. In particular, we explore transfer learning methods
to improve adversarial robustness of image classification
models. We first pretrain a model to predict neural activ-
ity from natural movie stimuli, and then finetune the model
on standard image classification datasets. We evaluate the
adversarial robustness of our model using the RobustBench
library and its AutoAttack method. While we do not find
positive evidence supporting this hypothesis, we analyze the
information contained in successive layers of the neural en-
coding model and its usefulness in downstream classifica-
tion.

1. Introduction

Deep neural networks have achieved remarkable suc-
cess in image classification tasks, often matching or ex-
ceeding human performance on benchmark datasets such as
ImageNet [6, 9]. However, these models exhibit a critical
vulnerability not shared by the human visual system: sus-
ceptibility to adversarial attacks. Originally discovered by
Szegedy et al. [19], these attacks involve carefully crafted,

imperceptible perturbations to input images that cause mod-
els to produce dramatically incorrect predictions with high
confidence. This vulnerability reveals a fundamental dis-
connect between human and machine visual processing,
suggesting that current neural networks, despite their im-
pressive performance, fail to capture essential characteris-
tics of biological visual systems [13].

Adversarial robustness has become a significant focus in
machine learning research, with numerous defense strate-
gies proposed over the past decade. The dominant approach
has been adversarial training, which incorporates adver-
sarially perturbed examples into the training process [14].
While effective, this approach incurs substantial computa-
tional costs, often requiring 3-10 times more training time
than standard training. There have been many recent meth-
ods that seek to improve the efficiency and effectiveness of
adversarial defenses, leading to sizable advancements of the
state-of-the-art (SOTA) [4, 7, 20].

Methods for evaluating adversarial robustness are di-
verse and lack consensus, but the RobustBench library [3]
has emerged as a standard benchmark for evaluating adver-
sarial robustness of image classification models. It pro-
vides a suite of white- and black-box adversarial attacks
and a leaderboard for comparing model performance across
various datasets and attack methods. In particular, for
CIFAR-10 [11], they use the standard l∞ perturbations with
ϵ∞ = 8/255. This means that the perturbation is bounded
by 8/255 in the l∞ norm, which corresponds to a maximum
pixel value change of approximately 3.1% of the pixel value
range (0-255). Under this benchmark, as of June 2025, the
top-performing models achieve raw accuracies of over 90%
on CIFAR-10, with adversarial accuracies of over 70%. For
ImageNet and ϵ∞ = 4/255, the top-performing models
achieve raw accuracies of over 80% with adversarial accu-
racies of nearly 60%.

Another line of work seeks to leverage the inductive bias
of biological visual systems to improve the robustness of
artificial neural networks (ANNs). Ref. [12] uses an ad-
ditional regularization term to align the learned representa-
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tions of an ANN to a model trained to predict neural activity
in mice viewing natural images. Ref. [5] uses a biologically
constrained linear-nonlinear-Poisson model as a front end to
a deep image classification network. Ref. [16, 17, 8] train
an ANN with two heads to predict both the neural activity of
a biological system and the class label of an image. These
approaches all yield sizable improvements in adversarial ro-
bustness over raw models. They are not evaluated in a stan-
dard way, but as an example, Ref. [16] slightly outperforms
the SOTA at the time of publication (2020) on ImageNet-C,
which is an adversarial benchmark based on ImageNet but
including 75 common visual corruptions [10]. However, it
very much remains an open question what the best way to
transfer the inductive bias of biological systems to ANNs is.

In this work, we explore a novel approach. Instead
of partially incorporating a biologically constrained model
into the classification network via additional loss terms, co-
training, or a minimalistic front end, we propose to use a
substantial part (or entirety) of a neural encoding model
as the front end to a classification network. We hypothe-
size that pretraining an entire neural encoding model before
finetuning the classification network will ensure the neural
representations remain as intact as possible, thus preserving
the inductive bias of the biological system.

1.1. Problem Statement

Concretely, supposed we have a neural encoding model
G pretrained to predict neural activity s from input visual
stimuli x. We want to train a classification backend F that
takes as input some intermediate representation of the neu-
ral encoding model G̃(x) and computes the class scores c.
So, the whole network is

c = F (G̃(x)). (1)

We vary the following hyperparameters and explore what
works best:

• The layer in G that we take the feature map from and
feed into F .

• What architecture of G to use to best facilitate transfer
learning to image classification.

• Whether we use a residual connection from the input
to the beginning of G to preserve information.

2. Dataset

2.1. Neural Data

We use a dataset from the Baccus Lab [1] of neural
recordings from the mouse visual cortex viewing movies of
natural scenes, which contain rich features of ethological

relevance that thus may elicit adversarially robust mech-
anisms. Previous work [15] shows that similar record-
ings from salamander retinas have been used to success-
fully train convolutional neural networks (CNNs) that cap-
ture a variety of known biological phenomenology in the
retina [15]. The experimental setup is shown in Fig. 1,
which is adapted from Ref. [2].

Figure 1: Experimental setup. A. Schematic of experimen-
tal setup. B. Eye tracking image showing pupil center and
reference LEDs. C. Example spike recordings. D. Example
clusters for narrow and wide spike waveforms. E. Brain sec-
tion with fluorescently labeled probe track. Caption adopted
from Ref. [2].

For recordings of the visual cortex, eye tracking was em-
ployed so that the stimuli were correctly shifted to account
for eye movements. The stimulus is a long (∼hours) natural
movie of size 68x102 and the output is the binned spike rate
at 50 Hz for 32 cells. Recording was done using NeuroPixel
1, a thin probe with high density electrodes along its shaft
that is inserted into the mouse visual cortex after a surgery
and a habituation period. The recorded traces were pro-
cessed through a spike-sorting algorithm to isolate individ-
ual neurons. Further quality control criteria were applied,
such as selecting cells with clear receptive fields and/or cells
with good reliability over repeated stimuli and predictabil-
ity from simple models. 32 cells were selected after this
procedure. In preprocessing, the movie is grayscaled and
each sample consists of 25 frames before and 5 frames after
the current spike bin. The model is trained to predict the
binned spike rate at each time point from its corresponding
window. Data collection and preprocessing was done by the
Baccus Lab, and we adapt a model pretrained on the cortical
dataset to our use case.

2.2. Image Classification Dataset

We use the CIFAR-10 dataset as a proof of concept,
which consists of 50000 training and 10000 test images of
size 32x32 in color, each labeled as one of 10 classes [11].
We do not use the test images. We separate the training set
into 49000 images used to train the network and 1000 used
for validation.
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3. Technical Approach
3.1. Neural Encoding Model

We use a model pretrained on the cortical dataset de-
scribed above as our neural encoding model that we hypoth-
esize contains robust visual computation strategies that we
wish to transfer to downstream image classification. The
model is a CNN with 6 layers, each with 24 channels and
a kernel size of 7 with no padding. After the convolutional
layers, a fully connected layer with softplus nonlinearity is
used to read out the predicted spike rates for each of the 32
neurons. The model was trained with a thorough hyperpa-
rameter search by Baccus Lab members, and the final model
achieves 0.3 average correlation with the true binned spike
rates. Because of eye movements, there are no true repeated
trials, as the animal’s retina receives projections of different
parts of the same stimulus, so it is challenging to compare
this correlation to a noise ceiling. However, this number is
in line with other SOTA models of the visual cortex (from
discussion). Model predictions for an example neuron are
shown in Fig. 2.

Figure 2: Predictions from the neural encoding model for an
example neuron. The blue and green lines are the azimuth
of eye position and running speed, respectively. Predictions
for this neuron has 0.33 correlation with the ground truth
firing rates.

3.2. Image Classification Model

We use a VGGNet-inspired [18] CNN as the image clas-
sification backend. The general approach is that we freeze
the pretrained neural encoding model and just train the
backend, on CIFAR-10. However, we do attempt modifi-
cations to this pipeline to get the optimal results. In partic-
ular, we change which layer of the neural encoding model
we read out from and whether we use a residual connection

from the input to the beginning of the image classification
backend. As we will see in the results, not using the resid-
ual connection hurts the clean accuracy as useful informa-
tion about image class is lost in neural encoding. There-
fore, using a residual connection gives the image classifi-
cation backend the full information in the input while also
preserving access to the potentially robust representations
learned by the neural encoding model. The architecture of
the image classification backend is as follows:

Input
->BN(32)->ReLU
->Conv3x3(32,32)->BN(32)->ReLU
->MaxPool2x2->Conv3x3(32,64)->BN(64)
->ReLU->Conv3x3(64,64)->BN(64)->ReLU
->MaxPool2x2->Conv3x3(64,128)->BN(128)
->ReLU->Conv3x3(128,128)->BN(128)->ReLU
->MaxPool2x2->Flatten
->Linear(2048,512)->ReLU
->Linear(512,10)

Because the modality of the video stimulus (grayscale
time series) and CIFAR-10 images (colored images) are dif-
ferent, we need to add transition layers to make the neural
encoding model compatible with the image classification
backend:

• The input size of the neural encoding model is 30
frames of size 68x102, while the input size of CIFAR-
10 is 3 channels of size 32x32. In order to feed
CIFAR-10 images to the neural encoding front end, we
grayscale the input, pad, and resize it to 68x102, and
then expand its channel dimension to 30 to mimic a
video consisting of 30 frames of the same image.

• The activation size of the neural encoding model just
before the linear readout to the recorded cells is 24
channels of size 32x66, and the activation size of pre-
vious layers is larger. For uniformity, we pad and re-
size the activation to 32x32. If we are using the resid-
ual connection, we concatenate the input image to this
activation in the channel dimension. Then, we use a
transition conv layer to convert 24 (or 27 with residual
connection) channels into 32 to feed into the backend.
We have computed the mean and standard deviation of
the natural movie stimuli and found that they are very
close to those of CIFAR-10, so we do not need to do
any additional normalization.

3.3. Baseline

We refer to the leaderboard provided by RobustBench [3]
for the SOTA of adversarial robustness. For the baseline, we
use a vanilla CNN (without the front end) with the same ar-
chitecture as the image classification backend except an ad-
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ditional conv layer at the beginning to take the 3 color chan-
nels to 32 channels. We will use the AutoAttack method
offered by RobustBench to evaluate adversarial robustness.

Furthermore, an interesting question is how much infor-
mation about image classification is contained in the neu-
ral representation in the first place. Therefore, as another
baseline, we replace the full backend with a linear readout
layer and repeat the experiments where we attach this read-
out layer to each of the hidden layer of the neural encoding
model before training on CIFAR-10.

4. Results
4.1. Model Training

We train all models with the following hyperparameters:
Batch size of 64, 10 epochs, learning rate of 10−3, Adam
optimizer, cross entropy loss, learning rate scheduler which
halves the learning rate after 5 epochs of non-improvement,
and weight decay of 10−4. We varied the learning rate and
weight decay to find their optimal values, but we did not
perform a full grid search on the hyperparameters due to
time and compute constraints. While 10 epochs may not
lead to full convergence, empirically all models converge to
a satisfactory degree. As a reminder, we train three types
of models in addition to the CNN baseline without the neu-
ral encoding front end, where for each type we attach the
backend to a different hidden layer of the neural encoding
model:

• The backend is a simple linear readout without a resid-
ual connection from the input to the backend.

• The backend is a CNN without a residual connection
from the input to the backend.

• The backend is a CNN with a residual connection from
the input to the backend.

Figures 3 to 6 show the training loss and validation accu-
racy for models with CNN backends and models with linear
backends. We see that all training runs converge reasonably
well, although the validation accuracy of models with a lin-
ear backend tend to fluctuate a significant amount.

4.2. Adversarial Robustness

Fig. 7 compares the adversarial robustness of the SOTA
robust ResNet-18 model, our baseline vanilla CNN model,
and our most robust hybrid model as evaluated by Robust-
Bench. The choice of the SOTA model is somewhat ar-
bitrary, since we do not see comparable robustness in our
models to warrant the use of a similarly complex model
for a rigorous comparison. Unfortunately, our model does
not show signs of improvement of robustness over the base-
line CNN model. All but one of our hybrid models (shown
here) has exactly zero adversarial robustness as evaluated

Figure 3: The training loss of all models with a linear back-
end.

Figure 4: The training loss of all models with a CNN back-
end.

Figure 5: The validation accuracy of all models with a linear
backend.
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Figure 6: The validation accuracy of all models with a CNN
backend.

Figure 7: Comparison between the adversarial robustness
of the SOTA robust ResNet-18 model, our baseline vanilla
CNN model, and our most robust hybrid model.

by RobuseBench. This best model turns out to be a linear
readout attached to the second layer of the neural encoding
model, which is surprising because it has one of the lowest
clean accuracies. The failure of our models could be due
to a few reasons. First, because our CNN backend is fairly
small, it may not have learned clean decision boundaries,
which may make it more susceptible to adversarial attacks.
Second, the grayscale nature of the neural encoding model
as well as the two padding and resizing steps make the
model lose a lot of information about the input in the case
of models without a residual connection. In models with a
residual connection, the model may not be incentivized to
utilize the neural representation as opposed to the raw input
sent through the residual. Third, the neural encoding model
may simply not contain features that are useful for robust
image classification. This is reasonable, since we only have
32 cells from the visual cortex to begin with. It is reasonable

to suspect that robust computation requires some form of
redundancy, which may require population coding by large
numbers of neurons working together. Furthermore, it is
unclear that our neural encoding model captures the full in-
formation even for just those 32 cells. The correlation, as
stated before, is only 0.3, which means other variables such
as behavioral state may explain a similar amount of variance
as the visual computation itself. Therefore, the model likely
has not learned fine-grained visual computational strategies
that may be required for robust processing. It could even
be that higher brain areas initiate top-down processing that
maintains stable representations or coordinates active sens-
ing which may make vision robust.

4.3. Decoding Performance

Even though we do not show positive results regard-
ing improving adversarial robustness by trasnfer learning
from neural encoding models, we show results pertaining to
the useful information contained in successive layers of the
neural encoding model.

Figure 8: Clean accuracy as a function of which layer to de-
code from the neural encoding model, in the linear backend
case.

In Figure 8, we observe an interesting phenomenon that
the clean accuracy first increases then decreases as you
decode deeper and deeper layers of the neural encoding
model. The accuracy peaks in the middle, for layers 3 and 4
roughly. We suspect that this is because earlier representa-
tions have not gone through sufficient processing to yield a
feature map with advantageous structure for linear decoding
of the target class. The deepest layers, while having gone
through the most processing, are highly optimized for de-
coding spike rates, which is a very different objective from
image classification. Even though in principle all informa-
tion about the image class is contained in the population of
neurons in the visual cortex, we have only used 32 neurons,
and thus they may contain very little information about the
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Figure 9: Clean accuracy as a function of which layer to de-
code from the neural encoding model, in the CNN backend
with residual case.

Figure 10: Clean accuracy as a function of which layer to
decode from the neural encoding model, in the CNN back-
end without residual case.

image class.
In Figure 9, we see that the clean accuracy does not vary

much as a function of decoding depth, and they are all con-
sistent with the vanilla CNN’s accuracy (84%). We think
this is because the residual connection allows the CNN
backend to utilize all information in the input. But this ob-
servation does imply that the neural representation fed into
the backend does not provide additional benefits to image
classification. It also does not improve robustness, as ex-
plained in the previous section. We think that this is again
due to the neural encoding model not having learned fine-
grained robust visual computation, either due to the limited
number of cells we have or the limitation of the encoding
model.

In Figure 10, we observe that the accuracy decreases as
a function of decoding depth. Comparing this figure to Fig-

ure 8, we draw the interpretation that the more sophisti-
cated CNN backend is able to take up the further nonlin-
ear processing needed to go from a premature representa-
tion in an early layer to the final classification. This dis-
tinction enables the model to still achieve relatively high
accuracy when decoding from layer 1 even though the im-
age is grayscaled and therefore color information is lost, in
contrast to the residual and vanilla CNN cases. This shows
that color information only accounts for less than 10% of
classification accuracy. Furthermore, we see that as depth
increases, accuracy drops consistently, yet still significantly
higher than the linear decoder. This corroborates the earlier
interpretation that the deepest layers are more optimized for
decoding spike rates, and therefore useful information about
image class is lost.

5. Conclusion
In this work, we explored the hypothesis that transfer

learning from neural encoding models can improve adver-
sarial robustness of image classification models. We pre-
trained a neural encoding model on neural data from the
mouse visual cortex viewing natural movie stimuli, and
then finetuned a classification backend on CIFAR-10. We
evaluated the adversarial robustness of our model using the
RobustBench library and its AutoAttack method. Unfor-
tunately, we did not find any positive results, but we ana-
lyzed the classification performance when decoding from
different layers of the neural encoding model and using dif-
ferent backends and drew conclusions on the information
contained in the neural representation.

We explored three types of models: a linear readout, a
CNN backend without a residual connection from the input
to the backend, and a CNN backend with a residual connec-
tion. We found that only the linear readout achieves nonzero
adversarial robustness, but it has the lowest clean accuracy.
The model with a CNN backend with or without a resid-
ual connection did not improve adversarial robustness over
a vanilla CNN having essentially the same architecture as
the backend. However, we found that the clean accuracy
of the linear readout peaks at the middle layers of the neu-
ral encoding model, while the CNN backend with a resid-
ual connection achieves a consistent accuracy across all lay-
ers. The CNN backend without a residual connection sees a
steady decrease of accuracy as a function of decoding depth.
This shows that early layers of the neural encoding model
has undergone premature processing, yet still contains use-
ful information about the image class, which was able to
be utilized by the more complex, nonlinear CNN backend
in contrast to the linear readout. The deepest layers of the
neural encoding model, while having undergone the most
processing, are optimized for decoding spike rates and thus
do not contain as much information about the image class.
Furthermore, comparing the CNN backend without a resid-
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ual connection to the one with a residual connection, we see
that the residual connection allows the backend to utilize all
information in the input, which crucially includes the color
information that is lost in the neural encoding model be-
cause it is grayscaled. This difference accounts for roughly
10% of the classification accuracy.

While we do not find positive results regarding adversar-
ial robustness, there are future steps we can take to improve
the technique. First, we can try to use a larger neural en-
coding model pretrained on more cells, which may capture
more robust visual computation strategies. Second, we can
try to use a larger image classification backend, which may
be able to learn more complex decision boundaries and thus
be more robust. Third, we can try to use a different dataset
for pretraining the neural encoding model, such as record-
ings from the retina, which are known to be more reliable
across trials and contain more cells, and thus may yield a
better pretrained model. Finally, we can try to combine our
method with many of the existing techniques, whether along
the lines of adversarial training or other brain-inspired tech-
niques, to see if we can achieve a better result. We hope that
this work will inspire future research in the area of adver-
sarial robustness and transfer learning from neural data.
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