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Abstract

Diffusion Tensor Imaging (DTI) is highly susceptible
to noise, which can significantly impact the reliability of
downstream analyses. In this project, we explore a range
of self-supervised denoising methods for DTI data and pro-
pose a novel, training-free algorithm based on graph signal
processing (GSP) in q-space. We integrate this approach
into the DDM2 framework by replacing the Noise2Noise
component with a graph-based estimator, forming GDDM2.
Our experiments on the Stanford HARDI dataset show that
GDDM2 significantly reduces inference time while main-
taining competitive denoising performance. We also inves-
tigate alternative noise schedules in the diffusion stage to
further improve efficiency. The results demonstrate that
lightweight, training-free methods like GSP can serve as
effective components in state-of-the-art diffusion denoising
pipelines.

1. Introduction
Diffusion Tensor Imaging (DTI) is a MRI technique that

captures the directional movement of water molecules in bi-
ological tissues, providing insights into the microstructural
integrity of white matter in the brain [1]. By modeling wa-
ter diffusion as a tensor, DTI enables the reconstruction of
fiber tracts and the quantification of tissue anisotropy, which
are essential for studying neural connectivity and diagnos-
ing neurological disorders [6]. However, DTI is highly sus-
ceptible to various sources of noise, including thermal fluc-
tuations, motion artifacts, and the inherently low signal-to-
noise ratio (SNR) of diffusion-weighted acquisitions. This
noise can significantly degrade the accuracy of the esti-
mated diffusion tensors and derived scalar metrics, such as
fractional anisotropy (FA) and mean diffusivity (MD), ul-
timately compromising the reliability of downstream anal-
yses, such as tractography. Therefore, effective denoising
is of paramount importance to enhance the quality of DTI
data, and ensure accurate interpretation in clinical applica-
tions. In this project, we explore a range of self-supervised

denoising techniques for DTI data and evaluate their effec-
tiveness on corresponding downstream tasks.

2. Background and Related Works
2.1. Denoising Problem

The general denoising problem can be formulated as:

y = x+ n (1)

where x,y ∈ Rd denote the ground-truth and noisy signals,
respectively. The noise term n ∈ Rd represents additive
white Gaussian noise (AWGN), i.e., n ∼ N (0, σ2I). Our
goal is to recover the clean signal x from the observed noisy
measurement y.

2.2. Related Work

Block matching and 3D filtering (BM3D) is a classical
denoising method that follows 3 main steps [4]. First, 2D
image patches are grouped into 3D tensors according to
similarity of content. Each group is processed via 2D di-
rect cosine transform (DCT) and 1D linear transform across
patches and the transform coefficients are thresholded to
suppress noise before inverting the transform. For over-
lapping patches, the estimates are averaged to give the de-
noised image. This method is robust and able to exploit
non-local self similarity in images. After the basic estimate
is obtained, a final step involving Wiener filtering can be
utilized to refine the results further. For this part, block
matching is done on the basic estimate image, both basic
estimate and noisy input image are grouped based on these
groups. Following 3D transform, collaborative Wiener fil-
tering is employed on the noisy group based on the energy
spectrum of the basic estimate group. Inverse transform and
average aggregation follows.

Another classical method is non-local means (NLM) [3].
Given a noisy image y with pixels indexed by i, the NLM
denoised image is a weighted average of all other pixels,
NL[y](i) =

∑
j w(i, j)y(j), where,

w(i, j) = c(i)e−
Ga∗||y(Ni)−y(Nj)||

2

h2 . (2)
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In this equation, c(i) is the normalization constant, Ga is a
Gaussian filter with standard deviation a to employ weight-
ing on the L2 distance on square neighborhoods Ni,Nj and
h acts as a degree of filtering.

Graph signal processing (GSP) is another method that
can be effective in denoising images efficiently [13]. GSP
leverages the natural graph structure of image data, where
each pixel or patch is treated as a node in a graph, and edges
encode similarities based on how the weights of edges are
defined. It enables filtering on spectral components of the
graph (e.g. the eigenvalues of the Laplacian matrix), denois-
ing the image while preserving the geometric and statistical
structure [13]. Key techniques include graph-based filter-
ing, Laplacian regularization, and spectral graph wavelets.
Motivated by [10], we view the message-passing operations
in Graph Neural Networks (GNNs) as implicit graph sig-
nal denoising processes that enforce smoothness across the
graph structure. This perspective allows us to reinterpret
GNN architectures as solutions to regularized optimization
problems that aim to recover clean signals from noisy graph
data.

When paired ground truth signals y are available, the de-
noising problem can be solved via a neural network trained
to approximate x through direct supervisions, however, this
is usually not the case. To relax the dependence on direct
supervision, it is claimed by Noise2Noise that

L = ||Φ(y′)− y||2 ≃ ||Φ(y′)− x||2 + c (3)

where y, y′ are two noisy signals, x is the ground truth and c
is a constant [9, 16]. This reveals that training the model to
denoise y′ to match y is statistically equivalent to supervised
training up to a constant, based on the assumption that noise
n is pixelwise independent.

Local Principal Component Analysis (local PCA)[11]
reduces random noise by exploiting the local redundancy in
the image. Local PCA operates by extracting small spatial
neighborhoods (typically 3D patches) around each voxel
and treating the diffusion signals within these patches as
samples from a low-rank subspace. PCA is then applied
locally to separate signal components (high variance, struc-
tured) from noise (low variance, random). The denoised
signal is reconstructed by projecting the data onto the sub-
space spanned by the dominant principal components, ef-
fectively suppressing noise while preserving anatomical and
diffusion-related detail.

Patch2Self is proposed as a self-supervised denoising
method for 4D diffusion-weighted MRI (DWI) data, and
learns locally linear relationships between different acqui-
sition volumes on small spatial patches [5]. This regression
framework is based on J -invariance, as described in [2],
which guarantees denoising performance under the assump-
tion that noise across different acquisition volumes is statis-
tically independent. Patch2Self formulates a linear regres-

sion estimator to predict a held-out volume from the remain-
ing ones, using information from local p-neighborhoods
in space. Unlike local PCA, which assumes a low-rank
signal model and relies on principal component selection,
Patch2Self does not require such assumptions and instead
leverages self-supervision directly from the data. As a re-
sult, Patch2Self has been shown to outperform local PCA in
preserving fine anatomical detail and reducing bias in down-
stream diffusion metrics (e.g., FA, MD), particularly in low
SNR regimes and clinical datasets. It also avoids the need
for manual tuning of the number of retained components,
making it more robust and easier to use in practice.

DDM2 is a diffusion network based method that ad-
dresses the limitations of Patch2Self which requires large
number of volumes for reliably denoising a single volume
by enabling efficiently denoising acquisitions with few dif-
fusion directions [16]. DDM2 consists of three stages:
training the denoiser Φ using self-supervision to estimate
the noise distribution, fitting a Gaussian model to the es-
timated distribution and matching the fitted noise variance
to the noise schedule level at a certain reverse process step
t, treating y as a sample from step t, lastly training another
denoising network F to map yt to y0. This method uses De-
noising diffusion probabilistic models (DDPM) as the dif-
fusion backbone [7].

3. Methods
Here, we give an overview of the methods we combine

with DDM2 to improve its performance and/or speed. As
mentioned in the previous section, DDM2 has several steps
before the final denoising that produces the output that incur
additional processing time [16]. We propose using a graph-
based approach for stage 1 (instead of a U-Net) to estimate
noise and do state matching (stage 2). This circumvents the
need for costly training of the denoiser and speeds up the
first two stages. We also report the performance of vanilla
GSP without any additional diffusion denoising, which we
get after stage 1.

3.1. Graph Signal Processing for Image Denoising

In this section, we briefly introduce the notation used in
graphs and graph signal processing (GSP) [13]. A graph is
denoted by G = (V, E), where V and E represent the sets
of nodes and edges, respectively. The graph G can also be
represented by its adjacency matrix A ∈ R|V|×|V|, where
|V| is the number of nodes. The graph Laplacian is defined
as L = D−A, where D is the degree matrix corresponding
to A. For undirected graphs, both the adjacency matrix A
and the Laplacian matrix L are symmetric. In addition to
the standard (unnormalized) Laplacian, a commonly used
variant is the normalized Laplacian, defined as LN = I −
D−1/2AD−1/2. This formulation ensures that the diagonal
elements of LN are equal to 1 [14].



A graph signal is defined as a function x : V → R that
assigns a scalar value to each node in the graph. Such a
signal can be represented as a vector x ∈ R|V|, where the
i-th entry corresponds to the signal value at node vi ∈ V .
The signal on the graph can also be extended to vectors and
matrices, such that a tensor is assigned to each node in the
graph and all of the following operations can be generalized.

To analyze signals defined on graphs, one commonly
employs the Graph Fourier Transform (GFT), which gener-
alizes the classical Fourier transform to irregular domains.
The GFT is based on the eigen-decomposition of the graph
Laplacian L = UΛU⊤, where U is the matrix of eigenvec-
tors and Λ is the diagonal matrix of corresponding eigenval-
ues. The eigenvectors U form an orthonormal basis known
as the graph Fourier basis. The GFT of a signal x is then
given by x̂ = U⊤x, and the inverse GFT is x = Ux̂. It is
worth noting that we can create other basis functions U by
using different matrix representations for the graph, such as
adjacency matrix or normalized Laplacian matrix.

This spectral representation enables graph filtering,
which is the process of modifying the frequency compo-
nents of a graph signal. A graph filter can be defined as
a function g(L) applied to the signal, where g(·) typically
operates on the eigenvalues of the Laplacian.

In the DTI setting, we begin by constructing a q-space
graph based on the diffusion gradient directions q. Specif-
ically, each direction is represented as a node in the graph,
and the adjacency coefficient between any two nodes i, j is
defined as:

aij = exp

(
−
(
1− qT

i qj

)2
2σ2

q

)
A = [aij ]

(4)

where qi,qj are the gradient directions w.r.t. the nodes i, j,
respectively, and σq is a hyperparameter defined by the user.
The graph Laplacian L is then constructed from A, and its
eigenvalues are subsequently used for image denoising.

We leverage graph filtering in two distinct ways:

• As a novel, training-free, graph-based denoising
method (GSP).

• By replacing Stage 1 of the DDM2 algorithm with this
denoising approach and performing state matching us-
ing graph-based similarity, Figure 1 (GDDM2).

Another way to improve sampling speed and reconstruc-
tion quality is through designing a custom noise schedule
for the denoising stage (stage 3), which we explain here.

3.2. Design of diffusion network process

DDPM noise schedule has the following form:

xt =
√
ᾱtx0 +

√
1− ᾱtz, (5)

where z ∼ N (0, I) is the additive Gaussian noise in the
forward process, and ᾱt = Πt

s=1(1− βs) with βt dictating
the noise variance schedule [7]. Empirically, the β-schedule
is usually chosen to be linear, or constant (called warm-up
phase) followed by linear [16].

Sampling from a pre-trained diffusion model often re-
quires lots of iterative denoising steps, slowing down de-
noising inference. Authors propose a different design pro-
cedure that utilizes efficient time-discretization to reduce
the number of sampling steps in [8]. The additive noise
is sampled from N (0, σ2

t I), with σt = t with nonlinearly
sampled time given by

t =

(
σmax

1/ρ +
i

N − 1
(σmin

1/ρ − σmax
1/ρ)

)1/ρ

, (6)

for i ∈ {0, · · · , N − 1}, N denoting the total number of
diffusion steps. Consequently, the forward process is

xt = x0 + σtz, (7)

with σt ranging from σmax to σmin with a curvature defined
by ρ. Some advantages of this approach involves direct con-
trol over the scheduling since in DDPM-based approach, t
is linear, β function is defined, which is used to get ᾱ, which
ultimately defines SNR at each step. EDM gives the flexi-
bility to control SNR directly. Note that EDM also allows
for curvature design while DDPM schedule is concave in ᾱ
space. The relation between σ and ᾱ is given by

σ =

√
1− ᾱ

ᾱ
(8)

ᾱ =
1

σ2 + 1
. (9)

The default schedule used for DDM2 converted to σ domain
is plotted in Fig. 2. Since the EDM schedule design de-
pends on only 3 parameters, we employ a grid-search over
σmax, σmin, ρ to denoise a subset of slices in a volume.
Note that σt has to be converted to ᾱ to get the time in-
stant in the Markov process to inform the pre-trained U-Net
denoiser, as it has been trained by DDPM procedure. To se-
lect an optimal noise schedule, we calculate SNR and pick
the schedule that leads to max SNR for a given number of
steps. Then, this schedule is chosen for denoising diffusion
network to run stage 3.

4. Dataset
In this project, we use the Stanford HARDI [12], a pub-

licly available diffusion MRI dataset collected at Stanford
University. It includes diffusion-weighted images acquired
with 160 gradient directions at a b-value of 2000 s/mm²,
along with corresponding b-values, b-vectors, and anatom-
ical reference scans. The image volume has dimensions of



Figure 1: GDDM2 Framework: the Noise2Noise neural network is replaced by the graph-based (GSP) approach

Figure 2: Default schedule of DDM2 converted to σ-
domain. It consists of two concave segments, caused by
piecewise constant and linear β choices.

81 × 106 × 76 voxels, comprising 76 axial slices. The first
10 volumes, acquired at b = 0 s/mm², serve as high-SNR
T1-weighted images, while the remaining 150 are noisier
T2-weighted diffusion volumes, and our goal is to denoise
these T2 low-SNR images.

As shown in Figure 3, all gradient vectors in the dataset
satisfy ∥bvec∥2 = 1. Additionally, volumes corresponding
to nearby bvec directions on the sphere tend to exhibit more
similar image content. This phenomenon is illustrated in
Figure 4, where we show the same axial slice from three dif-
ferent volumes with distinct bvec directions. Although vol-
umes 59 and 60 are next to each other in the dataset—and
DDM2 uses volume 59 to denoise volume 60—their image
content is quite different, especially in the central region. In
contrast, volume 34 appears much more similar to volume

60. In our modified version of DDM2 (GDDM2), we aim to
remove the Noise2Noise model (stage 1) and improve per-
formance in terms of speed and memory in both training
and inference.

Figure 3: Stanford HARDI’s bvec on unit sphere

vol=60 vol=59 vol=34

Figure 4: Axial slice at position 40 acquired using three
different gradient directions.



5. Experiments
For training the diffusion model in DDM2 algorithm, we

use a single NVIDIA A6000 GPU, which requires approx-
imately three days to complete training. For downstream
tasks such as FA map computation and tractogram genera-
tion, we use the DIPY library in Python. For both DDM2

and GDDM2, we trained denoising models with U-Net ar-
chitecture from scratch, and used the configurations from
[16]. Adam optimizer is used for 100000 training iterations
with a learning rate of 1e− 4.

In Figure 5a, we illustrate the distribution of the esti-
mated timestep t used in Stage 3 (DDPM) of DDM2. A
smaller timestep indicates that the sample is closer to the
data distribution and requires fewer denoising steps to re-
construct the final image. As shown, the distribution for
GDDM2 (red curve) is more left-skewed, suggesting that
it typically requires fewer denoising steps than DDM2, en-
abling faster inference. The mean number of steps required
for DDM2 is 71 compared to 28 steps for GDDM2. Note
that the first stage of GDDM2 can be completed in the
order or seconds. Figure 5b presents the training loss of
the DDPM component in both DDM2 and GDDM2. No-
tably, removing the Noise2Noise component does not im-
pair training performance. Furthermore, since the graph
signal processing (GSP) module is training-free, it elimi-
nates the need for additional GPU memory to load extra
models in inference, and avoids costly training of a de-
noiser network altogether. In our experiments, the total in-
ference times on the full HARDI dataset were 9782 seconds
for DDM2 and 6147 seconds for GDDM2, demonstrating a
substantial reduction in runtime.
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Figure 5: Comparison of DDM2 and GDDM2 in terms of
training loss and timestep distribution in stage 3

For EDM-based approach, we only run stage 3 for 20
steps to ensure fast inference. Denoising the whole vol-
ume takes ∼ 1 hour compared to ∼ 3 hours with DDM2.
The selected noise schedule parameters are σmin = 0.002,
σmax = 0.02, ρ = −3.

Figure 6 presents the qualitative results of different de-
noising algorithms, such as Fractional Anisotropy (FA),

Axial Diffusivity (AD), Mean Diffusivity (MD) and Ra-
dial Diffusivity (RD). As observed, GDDM2 and DDM2

have similar performances along FA, AD, MD, RD tasks,
and outperform all baselines. EDM has comparable visual
reconstruction performance, however suffers from over-
smoothing and thus performs worse on FA. The over-
smoothing effect is apparent on the residual plot, as some
structural patterns are apparent. Notably, it has competitive
performance on AD, MD and RD tasks.

We compare relative SNR values of denoised images
in Figure 8 with a bar plot. We fit masks to the central
brain volume to get the signal region and consider the back-
ground as the noise region. Note that relative SNR is given
by the SNR difference between denoised volumes and the
noisy ground truth volumes. Similarly, relative contrast-to-
noise-ratio (CNR) of all methods are plotted in Figure 9.
In both bar graphs, the best performance is achieved by
GDDM2, followed by DDM2 and EDM. Non-diffusion-
based approaches are not able to perform as well.

Figure 7 illustrates the generated fiber tracts using var-
ious denoising methods. The tractograms based on the
noisy ground truth images and the NLM method contain
numerous spurious and undesired fibers, whereas DDM2

and Patch2Self yield smoother and more coherent tracts.
For generating these tractograms, we use the so-called
constrained spherical deconvolution (CSD) algorithm [15],
which estimates the fiber orientation distribution function
(fODF) within each voxel by deconvolving the measured
signal with a known single-fiber response, while enforcing
non-negativity constraints to improve robustness and inter-
pretability in regions with crossing fibers.

6. Conclusion and Future Work

In this project, we explored various self-supervised
denoising algorithms for DTI data and proposed a new
training-free approach based on a q-space graph using graph
signal processing (GSP). Although the GSP-based method
does not outperform all baselines, it offers faster inference
while maintaining competitive performance on downstream
tasks. Furthermore, we demonstrated that the Noise2Noise
component in DDM2 can be removed and replaced with the
proposed graph-based approach (GDDM2) without degrad-
ing performance, resulting in significantly accelerated in-
ference. As future work, we plan to investigate alternative
graph representation matrices and graph filtering strategies
to further improve the GSP-based method. Additionally,
exploring different beta scheduling schemes in Stage 3 may
further enhance overall performance.

7. Contributions and Acknowledgements

In this project, we used the DIPY library in Python to
implement most of the denoising algorithms. Additionally,



we utilized the original GitHub repository of the DDM2 pa-
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Figure 6: Qualitative results for different denoising methods



Fib
er

 Tr
ac

to
gr

ap
hy

Noisy GT nlm bm3d localpca gsp patch2self ddm2 ROI

Figure 7: Tractogram generation using different denoising techniques for a specific region of interest, highlighted with a red
box.
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Figure 8: SNR comparison for different denoising algorithms. The bar plots show the relative SNR with respect to the SNR
of the noisy ground truth.
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Figure 9: CNR comparison for different denoising algorithms. The bar plots show the relative CNR with respect to the CNR
of the noisy ground truth.


