NIGnets and Neural ODEs for Representing Non-Self-Intersecting Geometry

Atharva Aalok
Stanford University
Stanford, California

atharval@stanford.edu

Abstract

We develop a new shape representation scheme that

gives us a hard guarantee on representing only non-self-
intersecting geometry. We achieve this by representing our
shape as the solution of an Initial Value Problem Ordinary
Differential Equation. We start with an initial shape, a cir-
cle, which is modified by a NeuralODE to represent a final
target shape. In particular this is a diffeomorphic flow and
therefore preserves the non-self-intersecting property.
We discuss how the need for such a representation scheme
guaranteeing non-self-intersection arises quite naturally in
many engineering domains especially in shape optimiza-
tion. We then discuss another geometry representation,
NIGnets, we developed that also gives such a guarantee.
Next, a through discussion of the NeuralODE based shape
representation is provided and compared with NIGnets. We
perform a wide range of experiments comparing the perfor-
mance of NeuralODE and NIGnets based on training time,
inference speed, accuracy of representation and ability to
work with a variety of different geometric loss functions.
We perform these experiments on a small dataset that we
curated consisting of 2D shapes. Finally, ideas to further
increase the representation power of these methods are dis-
cussed.

1. Introduction

Shape optimization is the study of designing shapes that
minimize or maximize some quantity of interest. An exam-
ple would be designing the wing of an airplane that max-
imizes the lift-to-drag ratio. A typical shape optimization
process loop consists of three steps:

Shape Representation Using a parameterization method
to represent the shape. The parameters ¢ are the de-
sign variables. E.g. splines with their control points as
parameters.

Shape Evaluation Evaluating some characteristic of the

4321

shape that is to be minimized or maximized. E.g. lift-
to-drag ratio of a wing.

Shape Improvement Changing the parameters ¢ to design
shapes that achieve better characteristics. E.g. gradient
descent to optimize ¢.

We will focus on shape representation.

In a large class of shape optimization problems the
shapes of interest are simple closed curves. Simple closed
curves, also called Jordan curves are curves that are closed,
i.e. they form loops and are simple, i.e. they do not self-
intersect.

To understand why an optimization problem might be
concerned only with simple closed curves consider the fol-
lowing problem: Imagine that there is a flow going left
— right around the body shown in Figure [} and consider
the lift-to-drag ratio of this shape. The flow only sees the
boundary of this shape, the complicated internal represen-
tation does not have any effect whatsoever on the properties
of the body. All the representation used to describe the inner
curves is wasteful.

Figure 1. An incoming flow would only interact with the boundary.
The complicated internal mess is wasteful representation.

This is especially crucial when doing optimization.
Shape representation methods that can potentially represent
self-intersecting shapes would cause the optimization algo-
rithm to search a bigger design space than needed. Also,
self-intersecting shapes might be physically undesirable or
problematic to deal with in downstream tasks such as shape
evaluation. Thus, such a shape parameterization would re-
quire manual tuning during optimization. As an e.g. con-

sider the optimization happening in Figure 2] We represent
the shape using 12 spline control points which are then fed
into a neural network that predicts the shape’s lift-to-drag
ratio. Essentially, we have trained a surrogate model to
mimic a Computational Fluid Dynamics (CFD) solver. Dur-
ing training we used non-self-intersecting shapes as they are
the ones of interest, but during optimization, if after a gradi-
ent step the spline starts intersecting the network struggles
to predict its lift-to-drag ratio and steers the optimization in
an even worse direction. This is the classical distributional
shift problem.

Figure 2. Optimization starts from the dashed red initial airfoil
shape which is iteratively modified. We see that the optimization
process suffers from distributional shift. Once a self-intersecting
shape is reached it is iteratively made even worse.

When using shape parameterization that can represent
self-intersecting shapes the optimization algorithm’s search
has to be made limited, or someone has to sit and manually
tune and check for self-intersection. Sometimes additional
losses are added to the objective to prevent self-intersection.
This is a hassle. In effect prevents an automated and aggres-
sive shape space exploration. In an ideal setting, one would
like to leave gradient descent running and go to sleep and
wake up to find the optimal shape. Thus we need a shape pa-
rameterization that has the quality of non-self-intersection
in-built and obeys this constraint for any set of parameters.

We are in the process of developing a new neural archi-
tecture for shape parameterization, Neural Injective Geom-
etry or NIGnets [2]], that can describe general simple closed
curves. This method ensures that only non-self-intersecting
curves are generated for any combination of the parameters.

Until now the Neural Injective Geometry network archi-
tecture has the following components that give it a lot of
representation power:

* Injective Networks (The core)
¢ Monotonic Networks
* Pre and Post Auxilliary Networks

The exact details can be found on the NIGnets website
https://atharvaaalok.github.i0/NIGnets/.

The shape fitting procedure consists of defining a target
shape through a point cloud as shown in Figure[3] Points on
the curve that our network represents are also obtained as a
point cloud, we call this the candidate curve. Then we train
our network with an appropriate geometric loss function to
measure the dissimilarity between the candidate curve and
the target shape. Using this loss we can then tune the pa-
rameters ¢ of our network to try and fit the target curve. An
example fit is shown in Figure]

4322

%
0O
o

2 &
%o o 0000 00 00000

Figure 3. Point cloud representation of the target shape.

0.00 A

—0.25 -

—0.50 A

—0.75 A

—1.00 -

-1.0 -0.5 0.0 0.5 1.0 15

Figure 4. Fitting a target curve using NIGnets

In this study we design and compare another very pow-
erful technique that can either be used independently or add
a lot of representational power to the existing NIGnet archi-
tecture. It transforms shape representation into the solution
of an Initial Value Problem (IVP) for an Ordinary Differ-
ential Equation (ODE). We will derive a form of the repre-
sentation that will make use of Neural Ordinary Differen-
tial Equations, allowing us to make use of existing autograd
based ODE solvers that use adjoint for backpropagating [6].

2. Related Work

Neural geometry representation has attracted a lot of at-
tention in recent years [[11} [10, 7, [15]. Several approaches
to deep geometry representations have been studied in-
cluding point clouds [12], voxel based representations [14]]
and implicit neural geometry representation using level-sets
[11) [10]. Work on mesh deformation based methods has
also been done [7]] but these methods essentially patch to-
gether different meshes, each individually transformed to
represent their final geometry. Recent work on represent-
ing highly detailed geometry using Lagrangian approaches
has produced great results but these methods use regular-

https://atharvaaalok.github.io/NIGnets/

ization to represent non-self-intersecting, making it a soft
constraint [8]. Cheng et al. [4] have developed a new ap-
proach to representing geometry by using text prompts and
transforming them to a set of valid CAD commands. But
there is no guarantee on the resulting CAD commands being
valid and may not compile. Also, another problem with this
approach is that the resulting CAD commands are a non-
differentiable result in the pipeline. This makes it hard to
use them in optimization. Work on representing only non-
self-intersecting geometry, especially fitting shapes based
on only a boundary point cloud is quite new. One recent
method was developed by us, NIGnets [2]. NIGnets are
an explicit geometry representation method. That trans-
forms the unit interval [0, 1] to the boundary of a simple
closed curve, also called a Jordan curve. While NIGnets
are very stable during training and extremely fast at infer-
ence, these advantages are only well realised when working
in 2D. In 3D they start to suffer from the curse of dimen-
sionality and require not only a lot of manual training to
fit target shapes but also become very compute and memory
intensive. Another method is to use diffeomorphic flows. In
this type of representation we start with a simple initial non-
self-intersecting shape that is transformed in time according
to an ordinary differential equation to produce a final shape.
The time interval of integration is kept fixed in [0, 1] and dif-
ferent shapes correspond to different ODEs that the initial
shape is evolved according to. This has been taken advan-
tage of in [16], but there the authors focussed on a latent
space representation and not on capturing the fine-grained
details of the geometry. They also did not use only bound-
ary point clouds for shape fitting. Also, Yang et al. [16]
considered only 3D point clouds and the performance of
NeuralODEs in 2D in terms of representation power, train-
ing stability and inference speed has not been studied be-
fore. We work on a similar method of using NeuralODEs
to fit single target shapes where our focus and performance
criteria will be the ability to fit a single shape in great detail.
We focus on all the performance criteria and also perform a
thorough comparison with NIGnets.

3. Methods

We look at two representation methods that make use of
Neural ODEs for shape representation by continuous defor-
mation of an initial shape.

¢ Bump and Rotate Strategy: It’s a constrained Neu-
ralODE representation that adds deformations (bumps)
while continuously rotating our shape. We first formu-
late it in a finite deformation setting and then take the
limit as the number of deformations got to oo to obtain
the continuous deformation formulation. This formu-
lation produces only non-self-intersecting geometry in
both the finite deformation and continuous deforma-

4323

tion settings.

Unconstrained NeuralODE: We then describe how
any Neural ODE flow is diffeomorphic and will guar-
antee only non-self-intersecting geometry provided
that our neural network describing the evolution func-
tion of the ODE is Lipschitz continuous. This is
the full general setting and encompasses the previous
bump and rotate strategy. This formulation only works
in the continuous deformations setting and does not
provide a hard guarantee when using finite number of
deformations.

3.1. Bump and Rotate Neural ODE

This shape representation works by adding bumps to an
initial simple closed curve. The basic idea is to add the same
Ay to the curve points at the same x that ensures non-self-
intersection and keep rotating the shape continuously to add
deviations in different directions.

The procedure is roughly as follows:

1. Start with an initial simple closed curve which is the

circle.

Feed that into a neural network that given an input x
value outputs y that is how much the points at the curve
points at x should be moved in y.

Rotate the shape by some angle Af and feed it back
into the neural network.

4. Repeat for 6 till 2.

Mathematically, Consider X = [z, y]. Say we transform
X from X (0) repeatedly and we are currently at some 6
with X (0). Then our operations will transform X (6) to
X (0 + A0) as follows:

X(0+ Af) = R(A) [X(0) + NN(X(0),0)A0]
where the following conditions have to apply:

* the x coordinate is not changed, the equation makes
changes only to the y value.

* NN(X(0),0) takes in as input only the = coordinate
and 6 and does not make use of y.

R is a rotation matrix that rotates A@. It is given by:

cos 6

sinf cos6

R(0) — [—sin@}

X0+ Af) = R(AG)X(0) + R(AO)NN(X(8),0)Ad
subtract X (6) from both sides,

X (0+A60)—X (0) = R(AO)X(0)—X (0)+R(AG)NN (X

(6),0)A0

divide by A8,

X(0+A0)— X(0) (R(AG) —1I)
Af A9

take limag_,o on both sides, and also note that R(0) = I,
hence
R(AG) -1
Af

R(A9) — R(0)
A9

R(0)

we get the final equation:

X(0) = R(0)X(0) + NN(X(9),0)

we see that this fits the form of a Neural ODE [5]]. We will

use pre-existing Neural ODE frameworks to perform the in-

tegration. In particular, we will make use of torchdiffeq [6].
In integration form we have, X (2r) X(0) +

|

o X(0)do
Also we have,

We see that this formulation has non-self-intersection in-
built both for the finite deformation setting as well as the
continuous deformation setting. The downside is that we
have a constraint on the

—sin 6
cos

R(0) =

—sin@

— Cos 9}

3.2. Unconstrained Neural ODE deformations

We discussed how we can produce continuous deforma-
tions on top of an initial shape to produce a final shape. We
now discuss a complete generalization of the Neural ODE
framework for producing deformations that preserve simple
closedness of our curves. In particular we use the following
theorem 3.1}

Theorem 3.1 (Picard-Lindel6f Existence—Uniqueness)
Let D C RxR™ be a closed rectangle with (tg, yo) € int D.
Let f : D — R™ be a function that is continuous in ¢
and Lipschitz-continuous in y (with Lipschitz constant
independent of t). Then there exists some € > 0 such that
the initial-value problem

y'(t) = f(t, y(t)),

has a unique solution y(t) on the interval [ty — e, to + €.

y(to) = yo

The Picard-Lindelof theorem tells us that any Neural
ODE flow where the driving function is Lipschitz contin-
uous (globally) produces globally unique evolutions of dif-
ferent initial conditions. The Lipschitz continuity arises if
neural network has finite weights and uses Lipshitz nonlin-
earities, such as tanh or relu. In our subsequent formulations
therefore, we make use of tanh as our non-linearity.

4324

In total, we have the same setup as before where we start
from X (0) and evolve it according to a 2/3 dimensional or-

X (0)+R(AONN(X(6) gi)nary differential equation of the form:

X(0) = NN(X(6),6)

where, now we no longer have any restriction on the neural
network input and outputs as we had in the bump and rotate
formulation. We can use any neural network architecture as
long as we use non-linearities that are Lipschitz continuous.
It is worth noting not just the unconstrained nature of
this representation but also the inherently dimension free
nature. In particular, § no longer represents an angle. It
can be any arbitrary variable that is integrated over in an
arbitrary interval. In particular, to make these things explicit
we replace 6 with ¢ and we integrate over ¢ in the interval
[0,1]. We will use the torchdiffeq [6] package to integrate
our Neural ODEs using a 5* order Runge-Kutta method.

3.3. Bump and Rotate vs Unconstrained Neural
ODE

As we discovered that the Unconstrained Neural ODE
method encompasses the Bump and Rotate method and its
performance is strictly superior (as shown in Figure [5| we
will in this study compare NIGnets only with unconstrained
Neural ODE representation scheme. Henceforth, references
to Neural ODE will mean the unconstrained Neural ODE
representation method as described above.

4. Dataset and Features

We have developed a dataset of target shapes [2] that
we would like to test our representation method against.
The dataset consists of the following breakdown in terms
of shape complexity:

* Low complexity: like circle, airfoil, heart etc. to test
our implementation and check that things work.

* Intermediate complexity: like puzzle piece, aircraft,
stanford bunny etc.

* High complexity: fractal shapes like Minkowski frac-
tal, star fractal, snowflake fractal etc.

A few sample target shapes are shown in Figure[6]

In particular the shapes are created as SVG im-
ages, which can be sampled at an arbitrary number
of points. For more precise fitting of the shapes we
can sample more points while trading off training
time due to more compute. The shapes are available
here: https://github.com/atharvaaalok/
NIGnets/tree/main/docs/assets/shape_svg
and a preview for fitting using NIGnets to these shapes is
available here: |https://atharvaaalok.github.
i0/NIGnets/showcasel

https://github.com/atharvaaalok/NIGnets/tree/main/docs/assets/shape_svg
https://github.com/atharvaaalok/NIGnets/tree/main/docs/assets/shape_svg
https://atharvaaalok.github.io/NIGnets/showcase
https://atharvaaalok.github.io/NIGnets/showcase

Target Curve
Candidate Curve

-15

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

1.00 A
Target Curve

0.75 4 Candidate Curve

0.50 1

0.25

0.00 -

—0.25 1

—0.50 1

—0.75 1

—1.00 1

-1.0 -0.5 0.0 0.5 1.0 1.5

Figure 5. a) Top figure shows Bump and Rotate struggles with
even a simple shape. b) Bottom figure shows Neural ODE’s strong
performance on a higher complexity target shape the the stanford

O =—
A
"y ¢ o

Figure 6. Sample target shapes from the dataset arranged to show
low, intermediate and high complexity shapes.

In terms of data-preprocessing we perform centering and
uniform scaling in each dimension of the point cloud gener-
ated from our images. In particular after we sample a given
number of discrete points from our SVG we move its cen-
troid to the origin and scale the image to lie between the
unit hypercube, i.e. [—1,1] in the longest dimension. We
perform the same scaling in each dimension so as to not
change the aspect ratio of the shape. This is because the
goal of our shape networks is to fit the shapes in their unde-
formed form and be able to handle different length scales in
different dimensions.

In this study we compare the performance of NIGnets
and Neural ODEs on low and intermediate complexity
shapes. Our experiments show that the methods need archi-
tectural improvements better they are able to meaningfully
tackle the high complexity shapes.

5. Experiments and Results

We perform a wide range of experiments comparing the
performance of NeuralODE and NIGnets based on:

* Accuracy of Representation
* Training Time
¢ Inference Speed

 Ability to work with different Geometric Loss func-
tions.

In particular, we perform experiments on shapes subsam-
pled from our dataset. We discuss each of these perfor-
mance metric in thorough detail next.

Code for all our experiments is provided here:
https://github.com/atharvaaalok/neural_
ode_shape_representation.

Throughout our training we use Adam as our optimizer
with a learning rate of 0.1 for NIGnets and 0.01 for Neural
ODEs. We perform training for 10000 epochs for NIGnets
and 1000 epochs for Neural ODEs. This is because as
we show later NIGnets are roughly 10x faster than Neu-
ral ODEs and therefore allows us to get through training
epochs faster.

5.1. Accuracy of Representation

The accuracy of representation is a direct metric that tells
us how well a particular representation scheme is able to
capture the fine-grained details of a target shape. To have
a fair comparison, we use the same total number of param-
eters in our NIGnet and Neural ODE representations and
allow them a large enough training time to fit to their max-
imum capacity. In particular we use a total of 2800 param-
eters in each of NIGnet and Neural ODE networks. Note
that in this comparison we do not consider the same total

https://github.com/atharvaaalok/neural_ode_shape_representation
https://github.com/atharvaaalok/neural_ode_shape_representation

Shape NIGnet Neural ODE
circle 1.41e-5 1.51e-5
square 4.55e-5 5.2e-5
airfoil 4.60e-6 2.17e-5
heart 5.07e-5 2.61e-5
stanford bunny 3.69e-4 5.35e-4
hand 2.23e-3 1.1e-2
puzzle piece 6.87e-4 3.59%¢-4
airplane 1.38e-3 1.13e-3

Table 1. A comparison of NIGnets and Neural ODEs based on
accuracy of representation measured by the final Chamfer Loss
after training.

epochs but rather the total time of training that it takes for
the network to fit the target shape. In particular, we perform
training for 10000 epochs for NIGnets and 1000 epochs for
Neural ODEs. This is because as we show later NIGnets
are roughly 10x faster than Neural ODEs and therefore al-
lows us to get through training epochs faster. Since train-
ing stability is a major factor in accuracy of representation,
we also consider that as a factor in our comparison of rep-
resentation accuracy. We do this as follows: we initialize
randomly each of NIGnets and Neural ODE nets 10 times
and fit them to our target shapes and average out the per-
formance when reporting. Also, it must be noted that the
reported performance is on Chamfer Loss. Since, Neural
ODE:s fail to work with MSE Loss (a disadvantage of the
approach) we use Chamfer Loss to fit shapes and report that.
Results are shown in Table[T}

We observe that NIGnets work better for simpler shapes
but the performance on more complex shapes is split. On
some of the intermediate complexity shapes like the stan-
ford bunny and hand, NIGnets perform better while on the
puzzle piece and airplane Neural ODEs have better accu-
racy.

Example fits to the stanford bunny by NIGnet and Neural
ODE is shown in Figure[7]

5.2. Training Time

To make more sense of the accuracy of representation we
provide below the total training time to fit each target shape
once in Table 2l

We observe that NIGnets are extremely consistent in
their training times, this is because they are an explicity
representation method which directly transform an input to
an output using an analytically defined function. Whereas,
Neural ODEs show a high variance in training time. This
is because of the adaptive step size used in numerical inte-
gration. The integration time depends on the exact function
represented by the ODE network. We observe higher train-
ing times for more complex shapes, which aligns with the
intuition that these would require more complex ODE net-

1.00
Target Curve

0.75 4 Candidate Curve

0.50 4

—0.75 1

—1.00 1

T T T

-1.0 -0.5 0.0 0.5 1.0

1.00
Target Curve

Candidate Curve

0.75 A

0.50 A

0.25 4

0.00 A

—0.25 1

—0.50 1

—0.75 1

—-1.00 4

-1.0 -0.5 0.0 0.5 1.0 1.5

Figure 7. a) Top figure shows NIGnet fit to the stanford bunny b)
Bottom figure shows Neural ODEs fit to the stanford bunny. Both
networks used the same number of parameters 2800.

Shape NIGnet Neural ODE
circle 102.5 40.1s
square 99.2s 57.5s
airfoil 100.3s 130.2s
heart 100.9s 52.3s
stanford bunny ~ 105.5s 88.1s
hand 108.3s 125.0s
puzzle piece 105.6s 99.4s
airplane 105.1s 127.2s

Table 2. A comparison of NIGnets and Neural ODEs based on
training time.

works that need smaller steps during integration to achieve
low integration error.

5.3. Inference Time

Inference time is the time taken to transform an input
to the shape represented by our geometry representation
method. Since the inference time depends on the discretiza-
tion resolution (a finer discretization requires more compute

Num Points on Shape NIGnet = Neural ODE
10 0.00085s 0.01552s
100 0.00142s 0.02059s
1000 0.00336s 0.03674s
10000 0.01705s 0.13668s
100000 0.11853s 0.78579s
1000000 1.13743s 10.23218s

Table 3. A comparison of NIGnets and Neural ODEs based on
inference time averaged over 100 runs.

and time) we compare how the inference time compares and
scales for both NIGnets and Neural ODEs. This comparison
is shown in Table[3l

These results were obtained by first fitting the same sized
(2800 parameter) NIGnet and Neural ODE models to the
stanford bunny as the target shape. Then the model was
queried 100 times on different discretization resolutions and
the total time reported is the average time over these 100
runs. We observed empirically that at 100 runs the variance
of the average time was low enough to provide a reasonable
estimate.

We observe that both NIGnets and Neural ODEs scale
almost linearly with the discretization resolution though the
variation for NIGnets is more regular. We also observe that
NIGnets consistently offer a 10x speed boost compared to
Neural ODEs making them superior for optimization tasks.

An important consideration for this comparison for Neu-
ral ODEs is the integration scheme used. We use an adap-
tive 5" order Runge-Kutta method. A different integration
scheme would lead to a different set of step sizes being used
and consequently different inference times and also differ-
ent final representations. Since NIGnets are an explicit rep-
resentation defined analytically, they do not suffer this issue.

5.4. Ability to work with different Geometric Loss
functions

The quality of a shape representation scheme can also be
judged based on its ability to work with different geomet-
ric loss functions. We study the robustness of NIGnets and
Neural ODEs by analysing their ability to work with differ-
ent geometric losses. In particular we use the geometric loss
functions from geosimilarity [[1l]. If the geometry represen-
tation captures the shape features we say that it works and
show that with a v’and an inability to drive down the loss is
shown with a X. Results of our experiments are shown in
Table @

We observe that NIGnets work with 6 out of 9 geomet-
ric loss functions while Neural ODEs only work with 3 out
of 9 available loss functions. NIGnets are therefore a more
robust representation scheme w.r.t. the metric used for mea-
suring shape similarity/dissimilarity.

4327

Geometric Loss Function NIGnet Neural ODE

MSELoss

ChamferLoss

USDFLoss

MAELoss

MaxAbsErrorLoss
MaxSquaredErrorLoss
SmoothHausdorffLoss
SmoothMaxSquaredErrorLoss
HausdorffLoss

NN NN NN
> X N X X X N\ X%

Table 4. A comparison of NIGnets and Neural ODEs based on
their ability to work with different loss functions.

6. Conclusion and Future Work
The following are lucrative research directions:

¢ Invertible Residual Networks: Using iResNets [3]] to
perform the discrete deformation version of Neural
ODEs. This will allow consistent compute times in
training and also speed up inference times.

Extend the comparison to 3D. To compare how the
curse of dimensionality affects NIGnets and Neu-
ralODEs. In particular, theoretical predictions for
NIGnets predict that compute would grow by a fac-
tor of 9/4 as all the 2 x 2 matrices will now become
3 x 3. Since matrix multiplication is O(N?) we ex-
pect a factor of increase of (3/2)?. For Neural ODEs
the factor of increase is (3/2) as the only thing chang-
ing is the dimension of the data tensors from (IV,2)
to (N, 3). Therefore, Neural ODEs should be able to
close the gap in terms of compute times when moving
to 3D.

Compare performance of NIGnets and Neural ODEs
on real world shape optimization tasks such as aero-
dynamic shape optimization to compare their perfor-
mance in terms of their ability to morph shapes quickly
and stably while maintaining the guarantee on non-
self-intersection.

7. Acknowledgements

We thank Patrick Kidger for pointing out the crucial
detail that any NeuralODE would describe a non-self-
intersecting geometry. We also thank Ricky T. Chen for
his torchdiffeq https://github.com/rtgichen/
torchdiffeq library that allowed a seamless execution
from idea to code. We also thank Prof. David Duvenaud for
pointing us to the Pointflow paper [16]].

References
[1] A. Aalok. Geosimilarity, 2025.

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

[2] A. Aalok. Nignets, 2025.

[3] J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and
J.-H. Jacobsen. Invertible residual networks. In International
conference on machine learning, pages 573-582. PMLR,
2019.

[4] C. Chen, J. Wei, T. Chen, C. Zhang, X. Yang, S. Zhang,
B. Yang, C.-S. Foo, G. Lin, Q. Huang, et al. Cadcrafter: Gen-
erating computer-aided design models from unconstrained
images. arXiv preprint arXiv:2504.04753, 2025.

[5] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duve-
naud. Neural ordinary differential equations. Advances in
neural information processing systems, 31, 2018.

[6] R.T. Q. Chen. torchdiffeq, 2018.

[7] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and
M. Aubry. A papier-maché approach to learning 3d surface
generation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 216-224, 2018.

[8] M. Guo, B. Wang, K. He, and W. Matusik. Tetsphere splat-
ting: Representing high-quality geometry with lagrangian
volumetric meshes. arXiv preprint arXiv:2405.20283, 2024.

[9] C. Igel. Smooth min-max monotonic networks. arXiv
preprint arXiv:2306.01147, 2023.

[10] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and
A. Geiger. Occupancy networks: Learning 3d reconstruc-
tion in function space. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
4460-4470, 2019.

[11] J. J. Park, P. Florence, J. Straub, R. Newcombe, and
S. Lovegrove. Deepsdf: Learning continuous signed dis-
tance functions for shape representation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 165-174, 2019.

[12] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652-660, 2017.

[13] J. Sill. Monotonic networks. Advances in neural information
processing systems, 10, 1997.

[14] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912-1920, 2015.

[15] Y.-P. Xiao, Y.-K. Lai, F.-L. Zhang, C. Li, and L. Gao. A sur-
vey on deep geometry learning: From a representation per-
spective. Computational Visual Media, 6(2):113-133, 2020.

[16] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and
B. Hariharan. Pointflow: 3d point cloud generation with con-
tinuous normalizing flows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 4541—
4550, 2019.

4328

