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Abstract

Posterior sampling methods offer a powerful framework
for solving inverse problems such as High Dynamic Range
(HDR) image reconstruction by leveraging pre-trained dif-
fusion models as expressive priors. In this setting, recon-
struction is guided by a single distorted measurement, and
the task is framed as a nonlinear Bayesian inverse prob-
lem, bypassing the limitations of traditional multi-exposure
or CNN-based approaches. However, prior diffusion-based
sampling methods rely on denoising steps that primarily
correct local errors, which limits their effectiveness for
complex, nonlinear problems like HDR reconstruction.

Diffusion Annealing Posterior Sampling (DAPS) ad-
dresses this limitation by decoupling steps in the sampling
trajectory and gradually annealing noise to draw samples
from the true posterior, thereby enabling global error cor-
rection. We evaluate DAPS with both pixel-space and latent
pre-trained diffusion models across three HDR reconstruc-
tion tasks—symmetric distortion, overexposure, and under-
exposure—on FFHQ and ImageNet datasets. Our results
demonstrate that posterior sampling with diffusion models
enables the generation of diverse, high-fidelity HDR im-
ages, showcasing its potential for realistic and training-free
image reconstruction.

1. Introduction

When solving inverse problems, the goal is to recover the
unknown true signal x0 ∈ Rn from observed measurements
y ∈ Rm:

y = A(x0) + n (1)

where A represents some forward model or measurement
operator (linear or nonlinear) and n ∈ Rm is typically
Gaussian noise [14, 19], however other noise models like
Poisson noise are also common. We are typically interested
in the case where m < n, which leads to an ill-posed inverse
problem where we must constrain the solution space to find
a meaningful solution because the measurement process is
noisy and many-to-one [23].

Because the inverse problem is ill-posed, it is critical to
define what the objective of solving the problem is. For
many objectives, the Bayesian inverse problem framework
is relevant, where the solution space is characterized by the
posterior distribution p(x0|y) ∝ p(y|x0)p(x0) [23]. Even
so, it is possible for example that we focus on maximizing
the posterior distribution p(x0|y), which leads to the maxi-
mum a posteriori (MAP) estimation [4]. However, we will
focus on sampling approximately from the posterior distri-
bution.

One nonlinear inverse problem where deep learning has
been recently popularized is High Dynamic Range (HDR)
imaging. HDR is important in image processing, computer
graphics, and photography, and its general aim is to cap-
ture a wider range of intensity levels compared to Low Dy-
namic Range (LDR) images, creating more realistic visuals
and improving contrast and detail [22]. Additionally, LDR
limits downstream applications like image-based lighting
and depth of field rendering, and an increasing number of
consumer displays support HDR [21]. However, capturing
HDR with special HDR cameras is currently prohibitively
expensive for the general public. As a result, much of exist-
ing images are LDR, so one major goal of HDR imaging is
to expand the dynamic range of images captured with LDR
cameras.

There are two main paradigms of doing LDR-to-HDR
conversion: multi-exposure and single-exposure. In multi-
exposure, a set of LDR images of different exposures are
combined to achieve HDR. However, multi-exposure suf-
fers from difficulties in aligning reference images due to
scene motion or requires specialized optical systems [22].
On the other hand, single-exposure HDR image reconstruc-
tion avoids these limitations, resulting in the potential to
recover the full dynamic range of images from standard or
legacy LDR cameras.

HDR reconstruction falls in the paradigm of generative
modeling, from which there have been recent efforts to use
posterior sampling in combination with diffusion or flow-
based methods.

Furthermore, generative modeling in latent space has
been demonstrated to perform better than pixel-based meth-
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Figure 1. Comparison between DAPS sampling methods and baseline on the symmetric HDR reconstruction task. The first two rows are
from FFHQ, and the bottom two rows are from ImageNet.

ods, exemplified by latent diffusion models (LDMs) [17].
Working in latent space attempts to improve flexibility, ef-
ficiency, scalability, and inference time and involves encod-
ing and decoding samples between pixel and latent spaces.

1.1. Problem Statement

In this work, we will focus on single-exposure HDR re-
construction, or expanding the dynamic range given a single
noisy and degraded measurement. The reconstruction will
not be true HDR, but rather an LDR image with higher dy-
namic range than the input measurement. Using posterior
sampling in conjunction with pre-trained diffusion mod-
els, we can perform reconstruction with inference only with
needing further model training or fine tuning, thereby lever-
aging pre-trained models as powerful priors.

2. Background and Related Work
2.1. Classical HDR Methods

Before using diffusion models, many classical HDR
methods were proposed for solving the inverse problem of
single image HDR reconstruction. HDRCNN [7, 22] was an
important approach in this domain, which utilized a hybrid
LDR encoder and HDR decoder with deep convolutional

neural networks (CNNs). Santos et al. [18] similarly used a
CNN-based model, with a unique idea of masking saturated
pixels, therefore achieving better performance on areas of
the image with information loss due to overexposure. How-
ever, more recently CNNs have been phased out in favor of
diffusion models.

2.2. Diffusion and Flow-based Models and Methods

Diffusion and flow models are similar paradigms of gen-
erative models that involve simulating stochastic differen-
tial equations (SDEs) and ordinary differential equations
(ODEs) [10], which are similar except for SDEs being non-
deterministic due to stochasticity. Despite being based on
differential equations, they can be trained using neural net-
works [1] using score matching or flow matching.

In training these diffusion and flow models, various
backbone architectures are used, although transformer-
based architectures have demonstrated to be a superior
backbone compared to convolution-based U-Nets. One
well-known example is Stable Diffusion (SD). SD v1.5 [17]
uses an autoencoder and U-Net backbone; SD 3 [8] replaces
the U-Net with a transformer-based architecture [16] and
uses flow-based sampling.

One recent approach LEDiff [21] utilizes the powerful
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Figure 2. Sample trajectory of DAPS for an FFHQ image. The first row represents x0|y , the second row x̂0(xt), and the third row xt.
From left to right, the noise level goes from σ = σT to σ = σ0 = 0, which is the noise annealing process. Row 3 to 2 is reverse diffusion
with the ODE solver. Row 2 to 1 is Langevin dynamics. Row 1 to 3 is forward diffusion. Reconstruction was done with Pixel-4k on the
symmetric task.

variational autoencoder (VAE) and latent space of SD 3,
merging exposure brackets in the latent space and fine-
tuning a VAE to decode into a final HDR image. SD 3
and other pre-trained models are trained on a large amount
of LDR samples and are especially useful in tasks such as
inverse problems where re-training a full model is not effi-
cient. Typically, only fine-tuning is needed at most.

2.3. Formulation of Diffusion Models

Diffusion models are typically score-based [20], and
they generally work by using a stochastic differential equa-
tion (SDE) to smoothly and gradually transform a complex
data distribution into a into a known, simple distribution like
a Gaussian by slowly injecting noise, then using the corre-
sponding reverse-time SDE to slowly remove the noise and
recover the data distribution. The training process, known
as score matching, learns the score function ∇xt log pt(xt).
The continuous time SDE that models the corruption pro-
cess is [4, 9]

dxt = f(xt, t)dt+ g(t)dWt (2)

with t = 0 corresponding to the data distribution, x0 ∼ p0,
the first term representing a deterministic drift function, and
the second term representing a Wiener process responsible
for the stochasticity. Following the SDE, possibly taking
discrete steps in practice, we transform the data distribution
into Gaussian noise. Denote with pt the distribution at time
t, so that pT approximates a Gaussian or other simple dis-
tribution. Then, we can follow the reverse SDE [4] running
backwards in time to sample from the data distribution, ini-
tialized with xT ∼ pT :

dxt =
(
f(xt, t)− g2(t)∇xt log pt(xt)

)
dt+ g(t)dWt (3)

where we can see the score function ∇xt log pt(xt) that can
be learned with a neural network [10]. The remarkable re-

sult is that we can initalize the process at t = T and then
sample from the data distribution p(x0).

The drift coefficient f(xt, t), diffusion coefficient g(t),
and noise schedule are design choices. Two popular vari-
ants of the SDE are variance exploding (VE) and variance
preserving (VP) [4, 11]. In particular, VE sets f(xt, t) = 0

and g(t) =

√
dσ2

t

dt =
√
2σ̇tσt for a noise/variance schedule

σt [4, 11, 23]. Following the VE formulation, we can de-
rive that the marginal distribution at time t of the forward
process is

Xt = X0 + σtZ,X0 ∼ p(X0),Z ∼ N (0, I), (4)

which can be interpreted as adding Gaussian noise with
standard deviation σt to the data. Note that marginal dis-
tribution Xt refers to the distribution over all possible xt

at time t. To sample from the data distribution p(x0), we
draw a sample from N (0, σ2

T I), then use the approximate
score function obtained by training a diffusion model and
the reverse SDE.

2.4. Bayesian Framework for Posterior Sampling

Diffusion models serve as powerful, expressive priors
for p(x0), enabling sampling from the posterior distribu-
tion p(x0|y) given a measurement without further training
or fine-tuning. Recall that for an inverse problem, we have
a forward model given by (1) as y = A(x0) + n. Assum-
ing n ∼ N (0, β2

yI), in the Bayesian framework, we have
p(y|x0) = N (A(x0), β

2
yI).

By applying Bayes’ theorem [4], we notice that

∇x log p(x|y) = ∇x log p(x) +∇x log p(y|x) (5)

Now we can modify the reverse SDE to approximately
sample from the posterior distribution [23], plugging in the
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assumptions from the VE formulation:

dxt = −2σ̇tσt∇xt
log pt(xt)dt

− 2σ̇tσt∇xt log pt(y|xt)dt+
√
2σ̇tσtdWt

(6)

We have a diffusion model to approximate the score
∇xt

log pt(xt), so then the goal is estimate the intractable
∇xt

log pt(y|xt), which can be interpreted as the noisy
likelihood.

One notable approach is termed Diffusion Posterior
Sampling (DPS) [3], which estimates

p(y|xt) ≈ p(y|E[x0|xt]),where
E[x0|xt] = Ex0∼p(x0|xt)[x0]

(7)

is the posterior mean [3]. DPS proves to successfully solve
general noisy inverse problems, however as it involves ac-
curately solving the reverse SDE and therefore taking small
time steps ∆t, each reverse step only results in a local error
correction in xt, so global errors are difficult to correct.

Other methods of posterior sampling have been tested
with varying goals and success. Flow-Driven Posterior
Sampling (FlowDPS) [14] uses flow matching and flow-
based models instead of score-matching with diffusion
models. FlowDPS can be seamlessly integrated into latent
flow models, but it has mostly been tested on linear inverse
problems so far, not nonlinear. Another notable method
thats extends on DPS is BlindDPS [2], which seeks to solve
blind inverse problems, where the forward measurement op-
erator is unknown. BlindDPS jointly estimates the unknown
image and the unknown operator, which is computationally
intensive.

We would like to emphasize that all of these posterior
sampling methods only involve sampling, and no additional
training or fine-tuning is needed because we leverage pow-
erful pre-trained models.

3. Methods
In our experiments, we focus on the Decoupled Anneal-

ing Posterior Sampling (DAPS) [23], which resolves the
lack of global error correction that DPS [3] was unable to
address. The restriction to local error corrections is primar-
ily caused by restricting to solving the reverse SDE. There-
fore, DAPS uses a noise annealing process instead of solv-
ing the reverse SDE, gradually reducing noise until x0 is
sampled. The key proposition, proved in [23], is that we
can sample from p(xt2 |y) with noise level σt2 given any
sample xt1 at another noise level σt1 . Therefore we can
start from t = T and iteratively sample from p(xt|y) with
the noise level annealing down from σT to 0. An illustration
of the DAPS process is in 2.

The first step is sampling x0|y ∼ p(x0|xt,y), where
xt and y are known. Analyzing a probabilistic graph in [3],

we notice that y and xt are conditionally independent given
x0. Hence we use Bayes’ theorem to get

p(x0|xt,y) ∝ p(x0|xt)p(y|x0) (8)

p(x0|xt) turns out to be intractable, so [23, 3] propose to
approximate it with a Gaussian as follows:

p(x0|xt) ≈ N (x0; x̂0(xt), r
2
t I) (9)

where x̂0(xt) = E[x0|xt] is an estimator of x0 given
xt which can be interpreted as a unique posterior mean
[3]. The variance r2t is specified heuristically. To com-
pute the posterior mean x̂0(xt), DAPS employs an Euler
ODE solver that solves the probability flow ODE for the for-
ward diffusion SDE given by dxt =

√
2σ̇tσtdWt, which as

demonstrated in [11, 20] is

dxt = −σ̇tσt∇xt
log p(xt)dt (10)

Notice that the score ∇xt
log p(xt) is exactly what the pre-

trained diffusion model was trained to predict, so follow-
ing [12], we use the pre-trained diffusion model to solve
the ODE given xt and t as initial values, thereby comput-
ing x̂0(xt). DAPS uses an Euler solver [11, 23] with noise
schedule σt = t and discretized steps from time t to 0. The
exact number of ODE steps is a hyperparameter that can be
tuned, as is the number of noise annealing steps from above.

Now using the Gaussian approximation for p(x0|xt), as-
suming that the measurement noise is a Gaussian with vari-
ance β2

y , and continuing from the application of Bayes’ the-
orem in (8), we sample from x0|y using Langevin dynamics
[23], which has update rule

x
(j+1)
0 = x

(j)
0 + η∇

x
(j)
0

log p(x
(j)
0 |xt)

+ η∇
x

(j)
0

log p(y|x(j)
0 ) +

√
2ηϵj

= x
(j)
0 − η∇

x
(j)
0

∥∥∥x(j)
0 − x̂0(xt)

∥∥∥2
2r2t

− η∇
x

(j)
0

∥∥∥A(x
(j)
0 )− y

∥∥∥2
2β2

y

+
√
2ηϵj

(11)

where η is the step size and ϵj is drawn from the unit Gaus-
sian.

Now that we’ve sampled x0|y , we can sample xt ∼
N (x0|y, σ

2
t I). We repeat this process for a number of noise

annealing steps until x0 is sampled. In this process, xt and
xt+∆t are conditionally independent given x0, hence the
decoupled in decoupled noise annealing.

For the latent version of DAPS, LatentDAPS, the only
main difference is that we apply an encoder at the beginning
and apply a corresponding decoder to recover x0.
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Figure 3. Comparison between DAPS sampling methods and baseline on the overexposed HDR reconstruction task. The first two rows are
from FFHQ, and the bottom two rows are from ImageNet.

Code was adapted from the DAPS GitHub repository.
We added new forward measurement operators, created a
baseline method, and wrote scripts to generate figures and
conduct the experiments. The method is written in PyTorch
[15].

4. Dataset

Datasets for deep HDR imaging are particularly diffi-
cult to obtain, especially those that have paired LDR-HDR
data, which is necessary for supervised training. Available
datasets differ in exposure levels, size, resolution, and scene
diversity. Also, some datasets only have HDR images,
while others simulate a camera response function (CRF) to
obtain LDR images or contain real-world LDR images with
ground-truth HDR images.

On the other hand, in this study we focus on expanding
the dynamic range of regular LDR images that are corrupted
by a known forward measurement operator. We evaluate the
DAPS method on the FFHQ 256 × 256 [12] and ImageNet
256 × 256 [5] datasets. We use 10 images from the each
of the test datasets for sampling. Note that we do not need
the training images, since we are using pre-trained models.
For each test image, we apply a forward operator, which

decreases the dynamic range of the image, and then apply
DAPS to sample a reconstructed image.

5. Results
5.1. Pre-trained models

For the pre-trained diffusion models, we use both pixel-
space and latent diffusion models [23]. For pixel-space, we
use pre-trained models trained by [3] on the FFHQ dataset
and [6] on the ImageNet dataset. For latent, we use the
unconditional LDM-VQ4 trained on FFHQ and ImageNet
by [17]. In addition, we use Stable Diffusion (SD) v1.5 [17],
which is a state-of-the-art text-conditioned latent diffusion
model (LDM), but we do not use text conditioning in our
experiments, which means it functions as an unconditional
model. Unlike the other models, SD v1.5 was not trained
on FFHQ or ImageNet.

5.2. Posterior sampling

During sampling/inference, the time step discretization
and noise schedule is from EDM [11]. The posterior sam-
pling algorithm follows DAPS for pixel models and Latent-
DAPS for latent models [23], where the latent version is
similar but performs sampling in the latent space of VAEs.
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Figure 4. Comparison between DAPS sampling methods and baseline on the underexposed HDR reconstruction task. The first two rows
are from FFHQ, and the bottom two rows are from ImageNet.

DAPS uses an Euler ODE solver during the sampling
process to compute x̂0(xt).

5.3. Forward operators

Our experiments are focused on expanding dynamic
range from a low dynamic range image to a higher dynamic
ranger one, which we term as HDR reconstruction. We fo-
cus on scaling the dynamic range by a factor of 2, but in
principle any factor greater than 1 could be experimented
with, although higher factors are more difficult to achieve
due to more limited information that must be hallucinated.
We explore three different ways of framing the expanding
dynamic range problem and propose three corresponding
simple forward operators to produce simulated measure-
ments, which create three nonlinear inverse problems/tasks
for the methods to solve. All measurements are subject to
white Gaussian noise with standard deviation βy = 0.05
for the pixel and latent models and βy = 0.01 for the Stable
Diffusion model [23] to simulate noisy measurements. Note
that in this case, the forward operator is known, whereas
methods such as BlindDPS [2] are ”blind” to the forward
model, which is unknown.

Let α represent the scale factor controlling distortion
strength, defaulted to 2. First, consider symmetrical dis-

tortion, modeled as

y ∼ N
(
clip (αx0,−1, 1) , β2

yI
)

(12)

where we assume that input image and measurement are
normalized to [−1, 1]. We similarly define two asymmetri-
cal distortions as follows, with

y ∼ N
(

clip
(
α · x0 + 1

2
, 0, 1

)
· 2− 1, β2

yI

)
(13)

representing an overexposed image and

y ∼ N
(

clip
(
α · x0 − 1

2
,−1, 0

)
· 2 + 1, β2

yI

)
(14)

representing an underexposed image.
We can interpret the symmetric case (12) as a poor qual-

ity camera that tends to overexpose highlights and underex-
pose shadows. In this case, assuming α = 2, pixels with
value in the middle 50% of the linear intensity range are
not distorted but rather simply stretched to fit [−1, 1], while
values outside that range are clipped to the extreme tail val-
ues, resulting in lost information. Similarly, (13) represents
an overexposed image with significant highlight clipping
where pixels with value in the lower 50% are not distorted,
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and (14) represents an underexposed image with significant
shadow clipping where pixels with value in the upper 50%
are not distorted. Practically, the overexposed and under-
exposed operators can represent realistic camera captures
with too long or short exposure times or other improperly
calibrated settings like aperture and ISO.

5.4. Baseline

For all experiments, we compare the posterior sampling
methods with a different generalized naive baseline inverse
operator depending on the forward operator. Each corre-
sponds to attempting to reconstruct all pixels that were not
clipped by the forward operators while attempting a uni-
versal guess at the clipped pixels. The naive baselines cor-
responding to symmetric, overexposed, and underexposed,
respectively, are

x̂ =
1

α
y (15)

x̂ =
1

α
(y − (α− 1)) (16)

x̂ =
1

α
(y + (α− 1)) (17)

For symmetric, overexposed, and underexposed, the range
of pixel intensities of the input images that are not distorted
by the application of the forward operator and thus per-
fectly reconstructed by the inverse operator up to a differ-
ence in injected Gaussian noise are

[
− 1

α ,
1
α

]
,
[
−1, 2−α

α

]
,

and
[
α−2
α , 1

]
. We can reason the range for the symmetric

case by noting that clipping is prevented when a pixel z sat-
isfies

|αz| ≤ 1 =⇒ |z| ≤ 1

α
. (18)

For overexposed, the clipping is prevented when

0 ≤ α · z + 1

2
≤ 1 =⇒ −1 ≤ z ≤ 2− α

α
. (19)

The reasoning for underexposed is similar. Note that the
naive baseline cannot deal with the injected Gaussian mea-
surement noise, so the non-distortion is exact up to this
noise.

5.5. Hyperparameters and Setup

We use most of the default hyperparameters from DAPS
[23] with some modifications. In particular, we experi-
ment with different numbers of neural function evaluations
(NFE), which is the product of the number of Euler ODE
solver steps and the number of noise annealing steps, rang-
ing from 50 to 4k. The choice of NFE is a direct tradeoff
between cost and quality. We use 100 and 50 Langevin steps
per denoising iteration for pixel and latent, respectively.

All sampling was done on Google Compute Engine us-
ing one NVIDIA L4 GPU with 24 GB of memory. Given

Figure 5. Ablation study on NFE of DAPS. The x-axis is the
NFE. The evaluation uses 10 FFHQ images using pixel-space
DAPS.

the hardware constraints, we opted for a batch size of 2
throughout, testing on 10 images from each of FFHQ and
ImageNet.

5.6. Metrics

To evaluate the posterior sampling combined with the
pre-trained models, we use the 10 images from the test
datasets of FFHQ and ImageNet. Quantitative metrics in-
clude peak signal-to-noise-ratio (PSNR), structural similar-
ity index measure (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS) score [24]. PSNR measures pixel-
wise fidelity (distortion/signal degradation), SSIM mea-
sures structural fidelity (visual perception), and LPIPS mea-
sures perceptual similarity, forming a comprehensive and
complementary view of the reconstruction quality. These
metrics are implemented in the piq [13] package with all
images normalized to the range [0, 1].

5.7. Main Results

We demonstrate qualitative results for all methods in
symmetric, overexposed, and underexposed tasks with se-
lected FFHQ and ImageNet images in 1, 3, 4. A table of
average metrics for each configuration of task, method, and
dataset is in 6.

5.8. Ablation Study

In 5, we run pixel-space DAPS on varying number of
function evaluations (NFE) of the diffusion models ranging
from 50 to 4k, with the number of ODE and annealing steps
for each NFE setting following [23]. Larger NFE results
in longer run time but better quality of reconstruction, as
measured by LPIPS and SSIM, but there are diminishing
returns as the NFE increases.
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Figure 6. Quantitative evaluation on FFHQ and ImageNet on 3 HDR tasks using 5 different methods. We report the mean metric
over 10 samples. For PSNR and SSIM, higher is better; for LPIPS, lower is better. Pixel refers to DAPS in pixel-space with the appropriate
pre-trained model, LDM refers to LatentDAPS with pre-trained latent models, and SD1.5 refers to Stable Diffusion v1.5. Baseline is the
naive inverse operator. The number after each method indicates the NFE. Pixel-space DAPS with 4k NFE shows the best results for the
most tasks. All models tended to struggle more with overexposed and underexposed.

5.9. Discussion

Forward operators All sampling methods struggled
more with the asymmetrical dynamic range distortions
compared to the symmetrical distortion operator, which
suggests that strong clipping on either tail of the intensity
distribution is more difficult to reconstruct than an equiva-
lent amount of total clipping on both tails.

Comparison of methods All sampling methods per-
formed better than the naive baseline significantly, however
generally the pixel-space DAPS performed better than La-
tentDAPS, including the LDM and SD v1.5. Because SD
v1.5 was not trained directly on the FFHQ or ImageNet and
was designed primarily to use text conditioning, we expect
it to perform worse. Pixel-space DAPS also sampled sig-
nifcantly faster than LatentDAPS, which can be attributed
to the latent-space Langevin dynamics being more compu-
tationally intensive [23],

6. Conclusion and Future Work

In this study, we investigated the posterior sampling
method DAPS on various HDR tasks, including increas-
ing dynamic range by a factor of 2 in three different ways.
We chose the forward measurement operators, but in prin-
ciple any operator can be chosen depending on what dis-
tortion we want to model, and DAPS incorporates it in the
sampling process. Posterior sampling using pre-trained dif-
fusion models leverages powerful priors and does not re-
quire additional training, making it flexible and applicable
to many linear and nonlinear inverse problems like HDR
reconstruction.

Future work on this topic could include investigating ex-
panding the dynamic range of LDR images to more extreme
levels, which might require paired LDR-HDR data. Pois-
son noise could also be explored in conjuction with Gaus-
sian noise, since Poisson noise is more prevalent in under-
exposed scenes.
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