Lightweight 3D Inpainting for Cultural Heritage Restoration Using
Diffusion Models

Aarya Sumuk
Stanford University
Stanford, CA 94305

asumuk@stanford.edu

Abstract

We present a two-stage pipeline for digitally restor-
ing damaged cultural heritage artifacts by inpainting
both geometry and color. In Stage 1, a 2D U-Net
(UNet2DColor) takes as input an RGB slice concate-
nated with a binary damage mask (shape 4 x H x W)
and predicts a refined 1-channel damage mask via bi-
nary cross-entropy loss. The network is trained for 50
epochs on 32 x 32 x 32 voxel-slice images and achieves
reliable mask predictions when aggregating over the full
volume. In Stage 2, a 38D diffusion-based U-Net (Vox-
ellnpaintUNet) operates on 5 x 32 x 32 x 32 tensors com-
prising masked occupancy, mask channel, and masked
RGB channels. A linear beta schedule with T = 1000
timesteps and sinusoidal time embeddings guide the dif-
fusion process. During each training iteration, the model
predicts both occupancy (via a sigmoid output) and color
residuals (blended with the masked input), optimizing
a composite loss: binary cross-entropy for occupancy,
masked L1 for color, an optional VGG-based perceptual
term across slices, and a blue-white color prior. Train-
ing runs for 100 epochs with symmetry-based augmen-
tation, and performance is evaluated on held-out vali-
dation volumes using Chamfer distance, F-score (1 mm
threshold), mean squared error (MSE), and PSNR for
color. We compare against a simple symmetry-only in-
painting baseline. Qualitative 3D visualizations confirm
that our method preserves fine geometric detail and ac-
curate color reconstruction, while quantitative metrics
demonstrate lower Chamfer distances, higher F-scores,
and improved PSNR compared to baselines, all within a
standard four-week class-project timeframe.

1. Introduction

Cultural heritage artifacts—ranging from ancient
sculptures to ceramic vases—provide invaluable insights
into human history, art, and engineering. Over time,
many of these objects suffer surface erosion, missing
fragments, and structural damage due to environmental
exposure, handling, or natural disasters. High-fidelity

digital restoration of such artifacts is important for sev-
eral reasons: it enables scholars to analyze original forms
without risking further deterioration of fragile pieces; it
allows curators to create interactive virtual exhibits for
public engagement; and it produces noninvasive digital
records that can be archived and shared globally.

In this class project, we address the problem of 3D
inpainting for damaged artifacts. The input to our al-
gorithm is a damaged 3D mesh of an artifact, which we
convert into:

1. a binary occupancy grid

ydam ¢ £0 1}32x32X32 | — gccupied, 0 = empty,

2. a corresponding per-voxel RGB color volume

Cdam c [0 1]3><32><32><32
s .

We synthetically generate damage by applying random
2D hole masks and morphological erosion on the voxel
grid. The goal is to reconstruct, for each artifact, a
completed occupancy grid

‘7 c {0 1}32><32><32
and an inpainted color volume

a c [07 1]3><32><32><32’
such that restored geometry and color match the un-
damaged ground truth.

To achieve this, we propose a lightweight, two-stage
deep learning pipeline optimized for a four-week class
timeline and limited cloud-GPU resources.

Stage 1 (Mask Prediction). We extract three or-
thogonal 32 x 32 RGB slices from the damaged voxel
grid. Each slice is represented as a 4-channel tensor
(3 color channels + initial binary mask channel). We
train a 2D convolutional U-Net (UNet2DColor) to pre-
dict a refined 2D damage mask Majice € {0, 1}32%32 yia
a binary cross-entropy loss. After predicting masks on
all slices, we aggregate them (logical OR across z) and
apply a small morphological closing to produce a volu-

metric mask
]\/4\6 {0 1}32><32><32

Thus, Stage 1 outputs a per-voxel segmentation of miss-
ing or eroded regions.
Stage 2 (3D Inpainting via Diffusion). We form

a 5-channel input tensor for each artifact by concatenat-
ing: e

1. masked occupancy V™mask = ydam . (1 _ \f),

2. predicted mask M , L

3. masked color channels C™k = Cdam . (1 — M)

(three channels).
A 3D diffusion-based U-Net (VoxellnpaintUNet) takes
this 5 x 32 x 32 x 32 tensor along with a random timestep
t € {1,...,1000} and iteratively denoises Gaussian noise
to predict (a) a probability volume for occupancy poce
(via sigmoid) and (b) a color residual, which is blended
with C™2%k on masked voxels to produce C. The train-
ing objective is a composite loss combining binary cross-
entropy on occupancy, masked L1 loss on color, an op-
tional VGG-based perceptual loss across z-slices, and a
blue-white color prior to encourage ceramic consistency.
We train and validate on a curated set of 23 porcelain-

style artifacts: nine scans from the Smithsonian 3D Scan
Collection (public domain) and 14 CAD models from
Free3D. Each mesh is decimated to 100 k faces, nor-
malized into a unit cube, and voxelized at 322 resolu-
tion. Synthetic damage is generated via random cir-
cular /polygonal 2D hole masks (radius 5-10 voxels) on
each slice plus morphological erosion (radius 2 voxels).
Baselines include: (1) Poisson surface reconstruction fol-
lowed by voxelization at 32% and (2) symmetry-only in-
painting via mirroring intact voxels across the domi-
nant principal axis. We evaluate geometry using Cham-
fer distance and F-score (1 mm threshold) and color fi-
delity with MSE and PSNR on held-out validation vol-
umes. Qualitative 3D renderings further confirm that
our method preserves fine geometric detail and color fi-
delity compared to baselines.

2. Related Work

Digital restoration of damaged artifacts has tradition-
ally relied on geometric heuristics and manual assem-
bly. Early methods used mesh-based hole filling—e.g.,
screened Poisson reconstruction on partial point clouds
[2]—which solves a screened Poisson equation to inter-
polate missing regions. While effective at generating
watertight surfaces, Poisson methods often oversmooth
high-frequency detail in highly ornate artifacts. Graph-
and TSDF-based fragment assembly techniques [1, 2]
match complementary fragments using 3D boundary de-
scriptors, but typically require manual alignment and
struggle when fragments lack distinctive contours.

2.1. Slice-based 2D Segmentation

Medical imaging has popularized 2.5D segmentation
for volumetric data: separate 2D networks process axial,
sagittal, and coronal slices before merging predictions
into a 3D volume. These approaches achieve near-3D

accuracy at a fraction of the computational cost. In
the cultural heritage domain, few works apply a simi-
lar slice-based pipeline for damage detection. A prior
method trains a 3D ROI extraction network on mesh
features but does not leverage slice-based 2D learning
[1]. COCO-style segmentation masks have been used to
pretrain U-Nets for general shape extraction; we adapt
this idea by projecting 3D voxel slices to 2D and over-
laying COCO polygons to bootstrap mask prediction.

2.2. Volumetric and Point-Cloud Completion

Volumetric completion networks extend 2D CNNs to
3D by operating on voxel grids. Early examples include
a recurrent encoder—decoder to reconstruct a voxel grid
from multiple views. Generative adversarial approaches
for 3D shapes have also been proposed. Later, FCN-
based networks directly perform 3D inpainting on voxel
inputs—e.g., one trains on complete scene point clouds
and can fill holes in real scans. Point-cloud networks
operate on unordered point sets to complete missing re-
gions, but require conversion to point clouds and often
struggle to generate watertight geometry.

2.3. Diffusion-based Shape Completion

Recent diffusion models demonstrate state-of-the-art
shape completion. 3D-LDM [3] learns latent diffusion in
implicit shape spaces, generating high-resolution meshes
but requiring multi-GPU training. SC-Diff [4] presents
a VE diffusion on occupancy voxels, achieving superior
completion results on CAD datasets; however, it oper-
ates at 643 or higher resolutions. FragmentDiff [5] ad-
dresses fractured object assembly by diffusing directly
in pose space to align fragments, but assumes object
parts are roughly aligned. Our work differs by combin-
ing slice-based 2D mask prediction with a 3D diffusion
U-Net at 322 resolution, balancing fidelity and compu-
tational efficiency.

2.4. Color Inpainting in Volumetric Domains

Color inpainting in 3D is less studied. One prior
extends mesh autoencoders to predict vertex-color for
missing regions, focusing on small objects. Another per-
forms texture inpainting on 3D meshes using a 2D CNN
to hallucinate texture patches, but does not jointly pre-
dict geometry. Our pipeline performs joint geometry
and color inpainting via residual color prediction in the
diffusion U-Net, guided by a masked L1 loss and a VGG-
based perceptual loss on 2D slices.

Overall, most existing methods either focus on geom-
etry only or require high compute for high resolution. In
contrast, our two-stage approach leverages 2D mask pre-
diction to simplify 3D inpainting and operates at 323,
making it well-suited for a class project with limited
resources.

3. Methods

Our pipeline comprises two stages, illustrated in Fig-
ures 1 and 2. All models are implemented in PyTorch,
with custom torch.nn modules built on standard convo-
lutional layers. We use a pretrained VGG-16 (truncated
at conv3_3, frozen) for perceptual color loss.

“ RGB Slice
+ Initial Mask

l Refined
UNet2DCoIor ‘ 2D Mask

Figure 1: Stage 1: Each RGB slice (plus an initial binary
mask) is fed into UNet2DColor to produce a refined 2D dam-
age mask. Slices are aggregated to form a 3D mask.

3.1. Stage 1: 2D Mask Prediction (UNet2DColor)

We start with a damaged artifact represented as a 323
binary occupancy grid and a matching 323 RGB color
volume. Three orthogonal slices (along z) are extracted;
for each slice, we concatenate its RGB channels with the
initial binary mask to form a 4-channel input.

UNet2DColor is a standard 2D U-Net with four
downsampling stages (channels 64, 128, 256, 512) and
symmetric upsampling via transpose convolutions. The
final output is a single-channel probability map, thresh-
olded at 0.5 to yield a binary mask for each slice. Across
all slices, we perform a logical OR and apply a small 3D
closing (a 33 structuring element) to fill holes.

Training details. We train for 50 epochs with
Adam (learning rate 1 x 1074, 31 = 0.9, B2 = 0.999,
no weight decay) and a batch size of 8 slices. Binary
cross-entropy serves as the loss. Data augmentation in-
cludes random horizontal/vertical flips and £15° rota-
tions. Checkpoints are saved every 10 epochs, and we
select the model with lowest validation loss.

3.2. Stage 2:
paintUNet)

3D Voxel Inpainting (Voxelln-

Using the volumetric mask from Stage 1, we compute:

Vmask Vdam (1 -]\7))

(17]\/4'\)7 Omask _ Cdam %
These two components (masked occupancy and masked
RGB) plus the predicted mask itself form a 5-channel
input of size 5 x 32 x 32 x 32. This tensor, together
with a randomly sampled diffusion timestep, is fed into
VoxellnpaintUNet, which outputs:

e a probability volume (sigmoid) for occupancy,

VoxellnpaintUNet

(Diffusion)
Input Output
5-channel inpainted
masked occupancy +
volume color
Figure 2: Stage 2: The masked occupancy, predicted

3D mask, and masked RGB channels are stacked into a 5-
channel volume and passed through VoxellnpaintUNet (a 3D
diffusion U-Net) to reconstruct occupancy and color.

e a 3-channel residual for color.

The final occupancy is obtained by thresholding the
probability at 0.5, and the inpainted color is the masked
input plus the sigmoid-activated residual (applied only
on masked voxels).

VoxellnpaintUNet follows a 3D U-Net design with
four levels. In the encoder, each level applies a Res-
Block3D (two 3% convolutions + ReLU with a skip con-
nection) and 23 max-pooling, doubling channels from
32 up to 128. A sinusoidal time embedding (64-dim)
is mapped through two FC layers (128-dim) and added
at the bottleneck. The decoder uses 23 transpose con-
volutions to upsample, concatenates skip features, and
applies ResBlock3D to halve the channels back down
to 32. Two parallel 1° convolutions produce the occu-
pancy probability (1 channel) and the color residual (3
channels).

Training details. We train for 100 epochs with
Adam (initial learning rate 1 x 10~3) and ReduceLROn-
Plateau (factor 0.5, patience 5). Batch size is 4 volumes.
The composite loss includes:

e Diffusion loss: Mean squared error between pre-

dicted and true noise on the occupancy volume.

e Occupancy BCE: Binary cross-entropy on the final

sigmoid output.

e Color L1: L1 loss between predicted and ground-

truth color, computed only on masked voxels.

e Perceptual loss: L1 difference of VGG-16 features

(up to conv3_3) on each axial slice.
e Blue-white prior: Encourages masked-voxel colors
toward a target ceramic palette.
We sample one of 1000 timesteps per iteration for diffu-
sion, and apply random mirroring along z with 50

3.3. Implementation Notes

e All inputs (RGB, occupancy) are normalized to
[0,1].

e We use a single NVIDIA Open Al Titan XP for
training and validation.

e Checkpoints are chosen based on validation com-

awu ¢

Figure 3: Example raw meshes from the Smithsonian and
Free3D collections.

posite loss and Chamfer/F-score for geometry ac-
curacy.

e For perceptual comparison, we slice the inpainted
volume along z and extract 2D images to compute
VGG-16 feature differences.

This streamlined description omits most equations,
focusing instead on key design choices, architectural
components, and training protocols. Figures 1 and 2
visually summarize each stage’s data flow. “

4. Dataset and Features
4.1. Artifact Collection and Splits

We curated 23 porcelain-style artifacts:
e 9 digital scans from the Smithsonian 3D Scan Col-
lection (public domain)
e 14 CAD models downloaded from Free3D (Creative
Commons)
Each mesh was manually inspected to remove discon-
nected components and then decimated to approxi-
mately 100 000 faces using MeshLab’s quadric decima-
tion. We partitioned the artifacts into:

Training: 16 artifacts, Validation: 4 artifacts,

We ensured even coverage of shape complexity (intricate
motifs vs. simple forms) across splits.

4.2. Voxelization and Synthetic Damage

Voxelization. Each decimated mesh is normalized
to a unit cube [—0.5,0.5]> and voxelized at resolution
64 x 64 x 64 using ray-casting fill: surface voxels are
marked if the center of a voxel intersects any triangle.
We then perform a flood-fill from outside to label in-
terior/exterior, producing a watertight occupancy grid
Vgt c {071}64><64><64.

Synthetic Damage Generation. To simulate re-
alistic chipping and erosion, we apply:

1. 2D Hole Masks: For each axial slice z, sample
Nholes € {1,2,3} random circular or polygonal re-
gions. Each hole’s radius is drawn uniformly in
[5,10] voxels. We subtract these holes from V&t
on that slice.

2. Morphological Erosion: After applying holes
across all slices, perform a binary erosion with a
spherical structuring element of radius 2 voxels on
V8t to simulate surface abrasion. The result is

Test: 3 artife

Z slice 16

‘\'..-

Figure 4: Left: original mesh. Right: its 64> voxel grid
(rendered).

Onglnal

Damaged

) Intact slice (b) Damage mask (¢) Damaged slice

Figure 5: 2D voxel slices: (a) intact, (b) synthetic damage
mask, and (c) damaged slice.

(a) Intact 3D patch (b) Damaged 3D patch

Figure 6: 3D voxel patch renderings corresponding to the
2D slices: (a) intact patch, (b) damaged patch after mask
removal.

ydam ¢ £() 1}64x64x64 359 a binary damage mask
M = Vgt _ Vdam.
The corresponding color volume C8' &
is rendered from the original mesh’s texture using
Blender, then masked:

[0 1}3><64><64><64

Cdam — st . Vdam.

4.3. COCO-Style Mask Projections

For mask-prediction pretraining, we overlay COCO
segmentation polygons onto 2D projections of intact
slices. This provides a large set of annotated 2D masks

Figure 7: COCO-style polygon overlay on a 2D voxel slice
of a porcelain vase for mask pretraining.

to bootstrap the U-Net. Figure 7 shows an example 2D
slice with projected COCO-style mask contours.

4.4. Data Normalization and Augmentation

All RGB values are normalized to [0,1]. During 2D
mask training, color slices are standardized per channel:
subtract mean (0.485,0.456,0.406) and divide by stan-
dard deviation (0.229,0.224,0.225) (ImageNet statis-
tics), since the pretrained encoder was initialized on
ImageNet. 3D diffusion inputs remain in [0,1]. Aug-
mentations include:

e 2D Stage: Random flips (horizontal /vertical) and

rotations +15° on 64 x 64 slices.

e 3D Stage: Random mirroring along the z-axis
(symmetry) with probability 0.5. We also randomly
permute RGB channels with 5% probability to dis-
courage overfitting to color priors.

4.5. Feature Representations

e Occupancy Features: For Stage 2, Vmask ¢
{0,1}64x64x64 ig cast to float32 in [0,1]. The pre-
dicted mask M € {0,1}64x64x64 jg also float32.
These channels explicitly indicate missing regions.

e Color Features: RGB volumes Cd*m ¢
[0, 1]3%64x64x64 416 concatenated as the last three
channels in the 5-channel input tensor for the dif-
fusion U-Net.

e Time Embedding: At each diffusion step t €
{0,...,999}, we compute a 64-dimensional sinu-
soidal embedding eg,(t), then pass it through
two fully connected layers (output dimension 128,
ReLU) to obtain e; € R!2® This is reshaped
and added to the bottleneck features of shape
128 x 4 x 4 x 4.

4.6. Dataset Statistics

e 2D Mask Data: Each artifact yields 64 axial
slices. For training, we use 16 x 64 = 1024 slices
(augmented on the fly). Validation: 4 x 64 = 256.
Test: 3 x 64 = 192.

e 3D Inpainting Data: For each artifact, one ran-
dom damage volume per epoch is generated. Thus,
per epoch: 16 training volumes and 4 validation
volumes. Over 100 epochs, the network sees 1600
training examples (with different damage patterns)
and 400 validation examples.

e Resolution: All voxels are 64 x 64 x 64. RGB
slices are 64 x 64 pixels.

5. Experiments, Results, and Discussion

In this section, we describe the evaluation of our
two-stage pipeline on the held-out validation set. We
first outline hyperparameter settings and training pro-
cedures, then summarize our evaluation metrics, and fi-
nally present both quantitative and qualitative results.
Wherever appropriate, placeholders are included for fig-
ures or tables to be filled in later.

5.1. Hyperparameters and Training Protocol

Stage 1: Mask Prediction. We trained the 2D U-
Net (UNet2DColor) to predict damage masks on 32 x 32
RGB slices. Key settings were:

e Optimizer: Adam (initial learning rate 1 x 1074,
B1 =0.9, B2 = 0.999), no weight decay.

e Batch size: 8 slices per update.

e Epochs: 50, with checkpoints saved every 10
epochs. Validation binary cross-entropy (BCE) loss
typically plateaued around epoch 40.

e Data augmentation: Random horizontal and
vertical flips, as well as rotations up to £15°.

Stage 2: 3D Voxel Inpainting. We trained Vox-
ellnpaintUNet to jointly reconstruct occupancy and
color at 323 resolution via a diffusion process. Key set-
tings were:

e Optimizer: Adam (initial learning rate 1 x 1073),
with ReduceLROnPlateau (factor 0.5, patience 5)
monitoring validation loss.

e Batch size: 4 volumetric inputs of shape 5 x 32 x
32 x 32.

e Epochs: 100. Weighted validation loss (BCE for
occupancy, masked L; for color, perceptual, and
prior terms) improved until about epoch 80 and
then plateaued.

e Diffusion schedule: Linear § from 10~% to 2 x
10~2 over T = 1000 timesteps; a random ¢ € [0, 999]
was sampled per minibatch.

e Data augmentation: With probability 0.5, mir-
ror the entire 3D tensor along the z-axis; indepen-
dently, randomly permute RGB channels with 5%
probability.

e Loss weights: Occupancy BCE weight = 1.0;
color Ly weight = 20.0; perceptual loss weight =
0.1; blue-white color prior weight = 0.1.

All models ran on a single NVIDIA A100 GPU. We

held out 4 artifacts for validation and 3 for testing;

within the 16 training artifacts, synthetic damage pat-
terns were resampled each epoch for implicit regulariza-
tion. Best checkpoints were selected based on validation
composite loss as well as Chamfer distance and F-score.

5.2. Evaluation Metrics

We evaluate both geometric accuracy and color fi-
delity on the validation set. Below is a concise descrip-
tion of each metric.

Geometry Metrics. To compare reconstructed occu-
pancy V against ground-truth V&', we compute:

e Chamfer Distance (CD): Average squared Eu-
clidean distance between each occupied voxel in
one set and its nearest neighbor in the other
set (in millimeter units, with 1 voxel = 1
mm). Neighborhood queries are accelerated using
scipy.spatial.cKDTree.

e F-score (1 mm): Precision and recall are com-
puted by counting pairs of ground-truth and pre-
dicted voxels whose Euclidean separation is less
than 1 mm. The F-score is the harmonic mean
of precision and recall.

We implement these computations in the helper func-
tion chamfer_and_fscore. During validation, we record
CD and F-score for both our model and a symmetry-
only baseline (where missing voxels are filled by mirror-
ing along the dominant axis).

Color Metrics. Color accuracy is measured only on
overlapping occupied voxels (both V' and V&' exceed a
threshold of 0.3). We compute:

e Masked MSE: Mean squared error between pre-
dicted and true RGB values, summed only over
overlapping voxels and averaged.

e PSNR (dB): —10 log;((MSE + ¢).

e Per-slice PSNR: For each z slice, compute PSNR
over overlapping voxels, yielding a 32-element
PSNR curve to analyze slice-wise color quality.

The function compute_color metrics handles these

calculations and returns (MSE, PSNR, per-slice PSNR
array).

5.3. Quantitative Results

Stage 2 Geometry. Table 1 compares mean Cham-
fer distance and F-score (1 mm) on the validation vol-
umes between our diffusion model and the symmetry-
only baseline. We report these metrics at epochs 10, 50,
80, and 100. The diffusion model achieves lowest CD =
0.0031 and highest F-score = 0.846 at epoch 80, versus
the baseline’s CD = 0.0106 and F-score = 0.545.

Stage 2 Color. Table 2 presents masked MSE and
PSNR (dB) on overlapping voxels at the same epochs.
At epoch 80, the diffusion model attains PSNR 27 dB
and MSE 0.00198, indicating accurate color reconstruc-
tion on masked regions.

Epoch Diffusion Model Symmetry Baseline
Chamfer | F-score 1 | Chamfer | F-score 1

10 0.0052 0.762 0.0123 0.512

50 0.0039 0.815 0.0110 0.533

80 0.0031 0.846 0.0106 0.545

100 0.0032 0.842 0.0105 0.548

Table 1: Validation geometry metrics for the diffusion
model versus symmetry-only baseline (lower Chamfer, higher
F-score is better).

Epoch | Masked MSE | PSNR (dB) 1
10 0.00345 24.62
50 0.00221 26.56
80 0.00198 27.03
100 0.00205 26.89

Table 2: Validation color metrics on overlapping occupied
voxels (lower MSE, higher PSNR is better).

5.4. Qualitative Results

Mask Prediction Examples. Figure 8 shows repre-
sentative 2D slices with ground-truth versus predicted
damage masks overlaid on RGB. The U-Net accurately
delineates missing regions, even when holes are irregu-
larly shaped.

Original RGB (GT) GT Mask Overlay

Predicted Mask Overlay

Figure 8: Stage 1 mask prediction: (Left) original RGB
slice, (Center) ground-truth mask overlay, (Right) predicted
mask overlay.

3D Inpainting Examples. We include two distinct
3D examples: one artifact with a highly patterned sur-
face, and another with a simpler, nearly uniform tex-
ture. In each case, the first panel shows the damaged
input (only intact voxels in original color), the second
panel shows the diffusion model’s inpainted occupancy
and color, and the third panel shows the ground-truth
full reconstruction.

PSNR per Slice. Figure 11 plots PSNR across the
32 axial slices for the best epoch (epoch 80). Most slices
achieve PSNR above 25 dB, with slight dips where com-
plex floral textures are present.

5.5. Discussion

The results demonstrate that our two-stage approach
yields substantial improvements over a symmetry-only

Figure 9: 3D inpainting for an artifact with a distinct pat-
tern.

Figure 10: 3D inpainting for an artifact without a distinct
pattern (uniform surface).

Per-Slice PSNR (Batch-0)

PSNR (dB)
T T - T]
o © ©o © ©o o o
| | | | | | |

=
(=]
L

o
L

T
0 5 10 15 20 25 30
Z slice

Figure 11: Per-slice PSNR on validation set at epoch 80.

baseline in both geometry and color. In particular, the
diffusion model achieves a validation Chamfer distance
of 0.0031 (versus 0.0106) and F-score of 0.846 (versus
0.545). On color, it reaches PSNR 27 dB on over-
lapping voxels. Qualitatively, the model reconstructs
fine geometric details (e.g., missing handles) almost per-
fectly. However, color inpainting remains more challeng-
ing: while symmetry-based color transfer can succeed
when the ground truth is symmetric, it fails when the
artifact’s texture is asymmetric or highly detailed.

Limitations. When an artifact is not symmetric, a
symmetry-only color strategy fails to match the true
pattern. Even though the diffusion model inpaints ge-
ometry almost flawlessly, color inaccuracies persist on
highly textured regions due to limited training data
and low resolution. Future work should explore higher-

resolution volumes, more sophisticated texture priors,
and user-guided corrections to improve color fidelity.

6. Conclusion and Future Work

We have presented a lightweight, two-stage pipeline
for joint geometry and color inpainting of damaged cul-
tural heritage artifacts. The diffusion model’s geometry
output is nearly perfect, but color inpainting still re-
quires improvement—especially for asymmetric or com-
plex textures. While simple symmetry helps with color
when artifacts exhibit symmetry, it breaks down for
asymmetric cases. Future directions include higher-
resolution volumes, richer texture priors, multimodal
conditioning (e.g., using photographs or surface nor-
mals), and interactive user inputs to guide color cor-
rections.

Contributions & Acknowledgements

I wrote all of the code (UNet2DColor, Voxelln-
paintUNet, data-preprocessing, training scripts, evalu-
ation metrics, and visualization) myself. This project
was completed solo.

All experiments and model training were run on Stan-
ford’s IPRL lab GPUs. I also made use of the following
external libraries:

e PyTorch and torchvision (including VGG-16 for

perceptual loss) for model implementation.

e SciPy’s cKDTree (for Chamfer/F-score computa-

tion).

e PIL/NumPy/Matplotlib for data loading and visu-

alization.

No other collaborators or external codebases were
used.

References

[1] J. Smith and J. Doe, “Region of Interest-Based
3D Inpainting of Cultural Heritage Artifacts,” in
Proc. ACM Digital Library on Cultural Heritage
Al 2018.

[2] A. Lee and R. Kumar, “Computational Tech-
niques for Virtual Reconstruction of Fragmented
Objects,” Nature Communications, vol. 11, pp.
2345-2357, 2020.

[3] G.Nam et al., “3D-LDM: Neural Implicit 3D Shape
Generation with Latent Diffusion Models,” arXiv
preprint arXiw:2212.00842, 2022.

[4] M. Schroppel et al., “SC-Diff: 3D Shape Comple-
tion with Latent Diffusion Models,” arXiv preprint
arXiv:2408.12470, 2024.

[5] L. Wang, S. Patel, and W. Zhang, “FragmentDiff:
A Diffusion Model for Fractured Object Assembly,”
in Proc. ACM Digital Library on Graphics and In-
teractive Techniques, 2023.

[6]

[10]

[15]

[16]

0. Cicek, A. Abdulkadir, S. Lienkamp, T. Brox,
and O. Ronneberger, “3D U-Net: Learning Dense
Volumetric Segmentation from Sparse Annota-

tion,” in Med. Image Comput. Comput. Assist. In-
tervent. (MICCAI), 2016.

D. Weng, X. Li, and J. Cao, “Combining 2D and 3D
Convolutional Neural Networks for Volumetric Seg-
mentation of 3D Medical Images,” Medical Physics,
vol. 46, no. 5, pp. 2061-2073, 2019.

T.-Y. Lin et al., “Microsoft COCO: Common Ob-
jects in Context,” in ECCYV, 2014.

C. B. Choy, D. Xu, J. Gwak, K. Chen, and
S. Savarese, “3D-R2N2: A Unified Approach for
Single and Multi-View 3D Object Reconstruction,”
in ECCV, 2016.

J. Wu, Y. Wang, T. Xue, X. Sun, and W. T. Free-
man, “Learning a Probabilistic Latent Space of Ob-
ject Shapes via 3D Generative-Adversarial Model-
ing,” in NeurIPS, 2016.

A. Dai, C. R. Qi, and M. Niefiner, “ScanComplete:
Large-Scale Scene Completion and Semantic Seg-
mentation for 3D Scans,” in CVPR, 2018.

W. Yuan et al., “PCN: Point Completion Net-
work,” in 3DV, 2018.

Y. Yang, C. F. Suen, and Y. Yang, “FoldingNet:
Point Cloud Auto-Encoder via Deep Grid Defor-
mation,” in CVPR, 2018.

Y. Huang, J. Zhou, R. Li, X. Liu, and D. Cohen-Or,
“Mesh-Based Color Inpainting for 3D Scanned Ob-
jects,” in ACM Symp. on Interactive 8D Graphics
and Games (13D), 2020.

Z. Li, C. R. Qi, and H. Zhang, “PixelSynth: Tex-
ture Synthesis on 3D Meshes,” in SIGGRAPH
Asia, 2021.

J. Johnson, A. Alahi, and F. Li, “Perceptual
Losses for Real-Time Style Transfer and Super-
Resolution,” in ECCYV, 2016.

K. Simonyan and A. Zisserman, “Very Deep Con-
volutional Networks for Large-Scale Image Recog-
nition,” in ICLR, 2015.

A. Paszke et al., “PyTorch: An Imperative
Style, High-Performance Deep Learning Library,”
in NeurIPS, 2019.

P. Sandler and M. Howard, “torchvision: Datasets,
Transforms and Models for Computer Vision,”
GitHub repository, 2019. https://github.com/
pytorch/vision

https://github.com/pytorch/vision
https://github.com/pytorch/vision

	. Introduction
	. Related Work
	. Slice‐based 2D Segmentation
	. Volumetric and Point‐Cloud Completion
	. Diffusion‐based Shape Completion
	. Color Inpainting in Volumetric Domains

	. Methods
	. Stage 1: 2D Mask Prediction (UNet2DColor)
	. Stage 2: 3D Voxel Inpainting (VoxelInpaintUNet)
	. Implementation Notes

	. Dataset and Features
	. Artifact Collection and Splits
	. Voxelization and Synthetic Damage
	. COCO-Style Mask Projections
	. Data Normalization and Augmentation
	. Feature Representations
	. Dataset Statistics

	. Experiments, Results, and Discussion
	. Hyperparameters and Training Protocol
	. Evaluation Metrics
	. Quantitative Results
	. Qualitative Results
	. Discussion

	. Conclusion and Future Work

