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Abstract

We propose a real-time semantic segmentation frame-
work for robotic surgical scenes, enabling downstream
imitation learning for autonomous robotic assistance. Our
system is built on top of a custom-collected dataset from
the daVinci Surgical System performing object transfer
tasks. We leveraged the Segment Anything Model 2 (SAM?2)
to obtain high-quality masks and trained a lightweight
U-Net architecture on them, achieving near-equivalent
segmentation performance with 30Hz inference speed,
suitable for closed-loop robotic control.

The segmentation masks are intended as inputs to an imita-
tion learning policy for autonomous manipulation with the
third surgical arm. We present quantitative comparisons
of segmentation quality, model latency, and qualitative
outputs across different methods, highlighting our U-Net’s
balance between performance and efficiency. This work
contributes a deployable perception module tailored for
surgical robotics and paves the way toward real-time
learning-based automation in high-stakes environments.
Project Github Repo: https://bit.1ly/35Cxd5y

1. Introduction
1.1. Motivation & Problem Statement

In robot-assisted surgery, precise real-time perception
is essential for enabling closed-loop control and decision-
making. The da Vinci Surgical System, while powerful,
currently operates under full teleoperation, limiting its
scalability in tasks requiring coordination across multiple
robotic arms. Automating the third arm can significantly
enhance surgical dexterity, but this requires robust and
efficient perception of the scene [0], particularly, the ability
to segment robot arms and manipulated objects accurately
in real time.

Existing zero-shot segmentation methods like SAM?2
offer high-quality masks but are too slow for real-time
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robotic control, and text prompt-based segmentation using
CLIPSeg produce coarse outputs and struggle with surgical
scene complexity. Classical computer vision techniques are
fast but fail to generalize due to occlusions, lighting varia-
tion, and visual similarity between tools and background.

Our objective is to build a segmentation module that op-
erates at 30Hz, producing semantic masks from surgical
video frames that can serve as inputs to an imitation learn-
ing policy. This module must maintain segmentation quality
comparable to SAM?2 while achieving real-time inference
speeds suitable for robotic deployment.

1.2. Project Scope & Goals

The input to our system is a 30Hz RGB video stream
from surgical demonstrations. The output is a binary
segmentation mask for each frame that highlights the robot
arms and the manipulated object. These masks shall serve
as input features for training an imitation learning policy
that aims to automate the third surgical arm, enabling it to
act collaboratively with the two surgeon-controlled arms,
which will benefit from the real-time segmentation in the
future.

To achieve this, we explored and benchmarked multiple
segmentation approaches, including classical computer vi-
sion methods, prompt-based segmentation using CLIPSeg,
foundation model-based segmentation with SAM2 and
video propagation, and a lightweight U-Net trained on
SAM2-generated masks for fast inference.

Our ultimate goal is to bridge the gap between high-
quality but slow segmentation, and real-time deployment
needs, delivering a segmentation pipeline that enables low-
latency perception for closed-loop robotic control.

2. Related Work
2.1. Foundation Models for Segmentation

Recent advancements in foundation models have signif-
icantly improved segmentation performance across diverse
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domains. The Segment Anything Model (SAM) and
its successor SAM?2 represent a shift toward promptable,
general-purpose segmentation using large-scale pretraining.
SAM?2, in particular, extends segmentation to the video
domain by incorporating a video propagation module that
uses cross-frame attention to generate consistent masks
across frames [7].

While SAM2 provides high-quality masks with minimal
supervision, its inference speed is a major limitation.
Full video propagation on short surgical sequences can
take several minutes, making it infeasible for real-time
robotic applications. Additionally, SAM?2 requires manual
initialization via prompts such as points or bounding boxes,
which adds human-in-the-loop latency.

To address domain adaptation challenges, MedSAM
and MedSAM?2 have fine-tuned these models specifically
on medical imaging data. MedSAM?2 adapts SAM2’s
video segmentation pipeline for surgical scenes, offering
better robustness to domain-specific noise and structure
[10]. However, these models are still large, often require
GPU acceleration for inference, and do not satisfy the
low-latency constraints of robotic control.

In this work, we use SAM2’s high-quality outputs as
pseudo-labels to train a smaller U-Net model capable of
running in real time, thus combining the benefits of foun-
dation model supervision with lightweight deployment.

2.2. Robotic Manipulation Scene Segmentation

Accurate segmentation allows robots to perceive their
environment with spatial precision and supports higher-
level autonomy in complex tasks. Among deep learning
architectures, U-Net has become a widely used model
for dense prediction tasks due to its encoder-decoder
structure and skip connections that preserve fine-grained
details. Variants such as U-Net++ and Attention U-Net
have improved performance in limited-data regimes and
structured environments [8].

In the domain of robotic manipulation, segmenta-
tion models often face challenges such as occlusions,
background clutter, dynamic lighting, and tool-object
interactions. While datasets like EndoVis [1] have driven
progress in segmentation for surgical tools, similar chal-
lenges persist across manipulation domains where tools,
hands, or arms may blend visually with the background.

Traditional segmentation models must often be trained
from scratch for each environment or task, which limits
scalability and deployment. To overcome this, our work
leverages pseudo-labels generated by a powerful foundation

model (SAM2) to train a compact U-Net, enabling real-
time and generalizable segmentation in robotic manipula-
tion scenes.

2.3. Real-time Semantic Segmentation

In robotics applications, including manipulation and
control, real-time perception is essential to ensure low-
latency feedback and safe operation. This has motivated
the development of lightweight segmentation models
optimized for both speed and accuracy.

ENet [4] introduced one of the earliest real-time seg-
mentation networks, achieving high inference speed with
significantly fewer parameters than traditional models like
DeepLab. BiSeNet [9] improves on this by decoupling
spatial and contextual feature extraction, enabling high-
resolution output at low latency. Fast-SCNN [5] follows a
similar philosophy by using a two-branch encoder and a
lightweight decoder for mobile and embedded use cases.

Although such models are appealing for their speed and
low hardware demands, they often trade off segmentation
accuracy for speed. Our approach builds upon this insight
by training a compact U-Net on high-quality labels gener-
ated by SAM2, thereby retaining accuracy while achieving
real-time performance.

3. Dataset

We collected the data using the daVinci Surgical Robot
at the Stanford Robotics Center for two manipulation tasks.
The details about the two datasets are given in table 1. The
ultimate objective of the imitation learning objective is to
achieve collaboration between the human controlled arms
and and the AI controlled arms. Therefore, in the data col-
lection phase, two humans are included who collaboratively
manipulate the arms. The tasks are described below.

* Object Transfer Task: One arm (controlled by per-
son A) picks up an object and passes it to a second arm
(controlled by person B), which must receive it accord-

ingly.

* Object Shifting Task: Three arms synchronously pick
up three objects and place them into a bowl. Two arms
are controlled by person A, and the third arm is con-
trolled by person B.

3.1. Processing the Video Data

Both the kinematic and vision data are recorded at 30
Hz but we focus on the vision data for this work. The
resolution of the recorded RGB frames is 576x324. The
video data is available from two cameras as shown in
figure 1. For the UNet model, the resolution is reduced to



Table 1: Details about the Tasks in the Dataset

Properties Object Transfer Object Shifting
Number of Robotic Arms 2 3
Frequency of Collected Datapoints 30 Hz 30 Hz
Duration per Demonstration 15s 20s
Number of Frames per Demonstration 450 600
Number of Demonstrations 100 70
256x256 while the original resolution is retained for the 4. Methods
SAM?2 model. Further, we resampled the recorded videos -
4.1. Pipeline

to 10 Hz reducing the number of frames per demonstration
from 600 to 200.

We did not perform extensive data augmentation, as our
goal is to develop a lightweight model tailored specifically
to the tasks described above. The combined number of
frames from all demonstrations is sufficiently large to train
the model effectively without overfitting.

(a) Left Camera

(b) Right Camera

Figure 1: Initial Video Frame for the Object Shifting Task

To build a lightweight real-time segmentation module
for surgical manipulation scenes, which can operate at
30Hz and serve as a perception front-end for an imitation
learning policy, we designed a two-stage pipeline that
leverages the segmentation capabilities of SAM2, and the
speed and efficiency of a U-Net for deployment. This is
depicted in Figure

The input to our pipeline is a video stream from the
scene recorded using the camera on the robot. We use
SAM2 in the offline phase to generate the segmentation
masks for surgical arms and the manipulation object across
each video. These masks then serve as pseudo-ground-truth
labels to train a compact U-Net architecture on downsam-
pled 256x256 RGB frames.

Once trained, the U-Net model is capable of segmenting
new video frames in real time, achieving inference speeds
of up to 30Hz.

4.2. Baseline Methods

Before settling on a learning-based segmentation ap-
proach, we explored two baseline methods: a classical com-
puter vision pipeline and a zero-shot prompt-based segmen-
tation model (CLIPSeg). These served both as sanity checks
and to understand the performance gap between traditional
techniques and modern vision models.

4.2.1 Classical CV Baseline:

We attempted segmentation using HSV thresholding to de-
tect the object and robotic arms. This was a largely unsuc-
cessful attempt, as the arms often blended with the envi-
ronment due to similar texture and color profiles, and the
masks were noisy and inconsistent across frames (as seen
in 4. Additionally, the approach lacked temporal consis-
tency, making it unsuitable for downstream tasks like video
segmentation or control.
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Figure 4: Classical CV Masking Output

4.2.2 CLIPSeg:

We also evaluated CLIPSeg, that performs zero-shot seg-
mentation based on natural language prompts [3]. While
CLIPSeg provided some semantically meaningful outputs,
they resulted in coarser masks in comparison to the masked
outputs from SAM2. Furthermore, prompt tuning was not
reliable in surgical scenes where classes like "robotic
arm” or "small cylindrical object” are under-
represented in CLIPSeg’s training corpus, the inconsistency
of which can be seen in fig 5.

robotic arm
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small cylindrical object

Figure 5: CLIPSeg Output

4.3. U-Net Architecture & Real-Time Inference

We implemented a lightweight U-Net architecture tai-
lored for binary mask prediction of robot arms and objects
in the scene. The architecture follows the standard U-Net
encoder-decoder design with skip connections to preserve
spatial information across layers.

4.3.1 Architecture Design

The encoder comprises two convolutional blocks, each con-
taining two sequential 3x3 convolutions followed by ReLU
activations. MaxPooling is applied after each block to
downsample spatial dimensions. The bottleneck layer con-
tains two 3x3 convolutions with 256 channels. The de-
coder mirrors the encoder with two transposed convolutions



for upsampling, each followed by concatenation with the
corresponding encoder features and a pair of 3x3 convo-
lutions. A final 1x1 convolution projects the output to a
single-channel binary mask, and a sigmoid activation con-
verts logits into probabilities. All input images are resized
to 256x256 for training and inference. An exponent of 2
was chosen for consistent halved downsampling over mul-
tiple blocks.

4.3.2 Real-Time Segmentation Deployment

We deployed the trained model that accepts the live feed
from the camera mounted on the bot. Each frame is re-
sized and passed through the trained U-Net, which pro-
duces a binary mask in under 30 ms per frame, achiev-
ing ~30Hz throughput on GPU. The segmentation mask is
postprocessed to match the original input resolution and is
displayed side-by-side with the raw video in real time.

5. Experiments & Results

5.1. Pseudo-Ground-Truth Mask Generation using
SAM2

The mask generation was carried out in two stages -
manual annotation on the raw-images obtained from the
bot to provide the region of interests that the model must
segment, and propagation of these masks across the video
to generate masks for 600 frames of a 20s video object
shifting task (as shown by initial video frames in 1). The
model employs cross-frame memory attention to iteratively
refine masks and maintain consistency across frames.

A predictor module is first built which loads the SAM?2
model using the corresponding model configuration and
checkpoint. Here, we have used a small model config-
uration (sam2.1_hiera_small.pt) to understand
propagation time for a 20s video. We then initialize the
predictor and obtain the inference state, and run it over all
our frames. This initialization process takes ~30s on a
GPU.

We then register clicks on one frame from the video and
obtain the mask logits by providing the selected region to
the add_new_points_or_box module of the model, as
can be seen in 6.

The inference state is then passed to the
propagate_in_video module of the predictor to
obtain mask logits for all the frames. This produces seg-
mented binary masks (as shown in 9a) after a computation
time of ~23 minutes on a GPU.

Figure 6: Annotated input to SAM?2 for segmentation

5.2. Training Procedure

The model is trained on the binary masks generated by
SAM?2. Input frames are normalized, resized, and Binary
Cross-Entropy (BCE) loss is used for training, optimized
using Adam. Training was performed on a single GPU
(RTX 4060). The training runs were logged on Weights
and Biases [2] for efficient hyperparameter tuning and
visualizations.

The model demonstrated reliable convergence, with
training and validation Dice scores stabilizing after roughly
60 epochs. Visual inspection of predicted masks showed
that the UNet model was able to accurately segment object
boundaries.

We performed a series of hyperparameter tuning ex-
periments to balance training stability and segmentation
performance. We experimented with batch sizes of 2, 4,
and 8 and found that a batch size of 4 offered the best
trade-off between convergence speed and generalization.
The learning rate was tuned manually from le-3 to le-5,
with le-4 yielding the most stable training without gra-
dient explosion or vanishing. Dice score was chosen as
the main evaluation metric due to the class imbalance in
the foreground-background segmentation task. While the
model was trained using a default classification threshold
of 0.5, further tuning of this threshold during inference may
help prioritize high-precision predictions, especially when
false positives could lead to incorrect robotic manipulation
behavior.

5.3. Evaluation Metrics

To assess the segmentation models quantitatively, we use
two primary metrics:

* Inference Time:
It is measured in milliseconds and captures the pro-
cessing time of the model during a forward pass. It is
a critical metric for the evaluation of our task-specific



train_loss train_dice
Best Config Best Config

0.5 0.8
0.4
06

0.3
0.4
0.2

0.2
0.1

Step Step

0 20 40 60 80 100 0 20 40 60 80 100

(a) Training Loss and Training Dice Score

val_loss val_dice
Best Config Best Config

0.05

0.92
0.04
0.9

0.03
0.88

0:02 0.86

Step Step

20 40 60 80 100 20 40 60 80 100

(b) Validation Loss and Validation Dice Score

Figure 7: Training and validation metrics over epochs.

outputs, where frames must be processed at or above
30Hz.

* Dice Score:
We use the Dice coefficient as a primary metric for
evaluating segmentation performance. It is a statistical
measure used to evaluate the similarity between two
binary masks, commonly used in image segmentation
tasks.

_ 2|PNG|
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— P: predicted binary mask
— G: ground truth mask

— |P N G|: number of overlapping foreground pix-
els

- |P|, |G|: number of foreground pixels in the pre-
diction and ground truth, respectively.

5.4. Quantitative Measures

5.4.1 Inference Time Comparison

As seen in Table 2, although SAM2 produces high-quality
masks, it has a runtime of approximately 600 ms per frame,
limiting its throughput to around 1.6 frames per second. In
contrast, our U-Net model achieves 80 ms per frame on
CPU (12.5 FPS) and 10 ms per frame on GPU (100 FPS),
demonstrating a 60x speedup over SAM2 when deployed
on GPU. This substantial runtime advantage enables our
model to operate comfortably at the target rate of 30Hz for
real-time robotic control.
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Figure 8: Inference Time Comparison

Table 2: Segmentation performance and runtime compari-
son across models

Model Dice (%) Inference Time (ms) FPS
SAM?2 100 600 1.6
U-Net (GPU) 95.6 10 100
U-Net (CPU) 95.6 80 12.5
CLIPSeg 81.3 150 6.6
Classical CV 63.2 5 200

5.4.2 Dice Coefficient Comparison

As shown in Table 2, SAM2 has been assigned at 100%, as
it serves as the pseudo-ground-truth.



(a) SAM2 Segmentation Output
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(b) U-Net Segmentation Output

Figure 9: Qualitative comparison of segmentation outputs
from SAM2 and U-Net.

5.5. Qualitative Outputs

The output of the U-Net based segmentation is shown in
fig. 9b, alongside the output of SAM2 segmentation. It can
be seen that the segmentation output of U-Net is identical
to that of SAM?2, which is also verified by the quantitative
measures above.

The obtained video output of the U-Net also proved to
be satisfactorily well to run in real-time alongside the live
camera feed. The video outputs can be viewed on the project
GitHub Repository .

6. Conclusion & Future Work

In this work, we presented a real-time semantic seg-
mentation pipeline tailored to our use case employing the
daVinci Surgical Robot, leveraging the strengths of foun-
dation models to generate supervised data while ensuring
low-latency inference for deployment. By using SAM2
to generate segmentation masks, we avoided the need for
costly manual annotation. These masks were then used
to train a lightweight U-Net, enabling accurate and fast

https://github.com/chetanreddyn/
Video-Segmentation-for-Autonomous—-Manipulation.
git

mask prediction at 30Hz, which is a critical requirement
for closed-loop control in robotic manipulation in surgical
scenarios. Our approach demonstrated that task-specific
real-time models can closely approximate the performance
of large-scale segmentation models when trained with
high-quality supervision, without incurring the runtime
costs of those models.

Our future work is targeted at integrating the segmenta-
tion output into an imitation learning framework, where the
masks shall serve as inputs to policy networks controlling
the third robotic arm. Additionally, we plan to explore
the estimation of depth from our RGB input sequences,
in order to provide more specified data for the imitation
learning framework.

From a sequence of video frames, it is also possible to
predict the specific subtask being performed. This infor-
mation can be valuable for enabling the automated arm to
assist the teleoperated arms more intelligently. The problem
can be framed as a video classification task with predefined
labels, which is also something we plan to execute next.
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