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Abstract

The transition to green energy demands efficient discov-
ery of critical minerals, yet traditional prospection meth-
ods remain costly and time-intensive. We present a novel
deep learning approach for automated mineral detection
from hyperspectral remote sensing data that accelerates
this discovery process. QOur method introduces two key
innovations: (1) a spectral attention mechanism using
squeeze-and-excitation blocks to learn inter-band depen-
dencies in hyperspectral data, and (2) the first differentiable
Hapke layer that embeds radiative transfer physics directly
within a neural segmentation network. Unlike prior work
that uses Hapke theory only for offline data augmentation,
our physics-infused layer jointly optimizes mineral-specific
scattering parameters with spatial features. We evaluate
our approach on the Tinto dataset, achieving significant im-
provements over baseline methods. Our Hapke-enhanced
U-Net attains 0.7811, 0.8014, and 0.7275 mloU on LWIR,
SWIR, and VNIR data respectively, representing on average
a 4 percent gain over standard architectures. Additionally,
we demonstrate spectral masked autoencoders for leverag-
ing unlabeled hyperspectral data. This work establishes
that coupling physics-based constraints with deep learning
can substantially improve mineral segmentation accuracy,
offering a scalable solution for accelerating critical min-
eral discovery essential to the green energy transition.

1. Introduction

As technology advances, the importance of efficiency
and cost-effectiveness in mineral prospection cannot be
overstated. Minerals such as rare earths are highly limited
in supply, yet strictly essential for manufacturing high-tech
products that have become indisposable in various applica-
tions. For example, minerals used in batteries are essential
for the development of green energy, a crucial tool in the
fight against climate change. Current methods of prospect-
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ing for new mineral deposits are tedious and costly, involv-
ing extensive geological surveys, drilling, and laboratory
analysis. [5] first demonstrated the promise of a data-driven
approach by introducing hyperspectral remote sensing in
1985. Hyperspectral images consist of hundreds of con-
tiguous spectral bands for each ground pixel instead of the
three bands for RGB images, ranging from the visible spec-
trum to NIR (near-infrared), SWIR (short-wave-infrared),
and LWIR (long-wave-infrared). Moreover, hyperspectral
data can easily be captured from airborne and spacecraft
sensors. [14] showed that remote sensing data is immensely
valuable in mineral prospection, and has already been used
for the mapping of many minerals, such as certain types of
clay, sulfate, and carbonate.

Our project uses various segmentation methods to auto-
mate the process of mineral prospection from hyperspectral
images. Our input is a hyperspectral cube of shape H x W
x B, where B is the number of bands, and we will output
a label map of shape H x W that contains the geological
class label for each pixel. Our main dataset is the Tinto
dataset[1], a large hyperspectral scene with field-verified
ground truth labels for geological classes. Our baseline
models are an MLP and a U-Net, classic deep learning
models used in segmentation. On top of these baselines,
we experiment with several architectural modifications, in-
cluding a spectral attention layer that learns associations
between hyperspectral bands and a physics-infused layer
based on the Hapke equations. These models utilize the
VNIR, LWIR, and SWIR bands from the Tinto dataset to
predict pixel-level labels. In addition, we also experiment
with spectral masked autoencoders, a pretraining frame-
work that makes use of unlabeled data, to address the dif-
ficulty of obtaining geologically labeled data. We use the
Cuprite dataset, a classic benchmark hyperspectral dataset,
for pretraining, and finetune on the Tinto dataset.

Our hope is to show through these methods that deep
learning, paired with the increasing availability of hy-
perspectral data, can be an effective solution for mineral
prospection.



2. Related Work
2.1. U-Nets with Squeeze-and-Excitation Blocks

AeroRIT [9] benchmarks several CNN segmentation ar-
chitectures, including SegNet, U-Net, and Res-U-Net, on
AeroRIT, a large-scale airborne hyperspectral dataset. The
authors found that deeper backbones perform better on
AeroRIT, and propose the use of squeeze-and-excitation
blocks in the encoder. Adding squeeze-and-excitation
blocks resulted in a 1-2% increase in mloU, demonstrat-
ing the viability of squeeze-and-excitation blocks for hy-
perspectral segmentation. These results were promising
to us because the AeroRIT dataset is similar to our Tinto
dataset in that it contains detailed pixel-level annotations
of complex classes (AeroRIT classes include cars, roads,
and buildings, rather than simple land-cover classes). For
our spectral U-Net, we implement a similar architecture that
makes use of squeeze-and-excitation blocks. FuSENet [12]
extends standard squeeze-and-excitation by proposing the
use of dual squeeze operations, where both global average
pooling and global max pooling are used in the squeeze op-
eration, rather than global average pooling alone.

2.2. Physics-Infused (Hapke) Methods

The Hapke model [2] is a radiative-transfer formulation
that describes how incident light is scattered by a particu-
late surface. It introduces physical parameters such as the
single-scattering albedo w, the phase-function asymmetry
g, grain-size—dependent attenuation d, and an opposition-
surge term (By, h) that captures enhanced retro-reflection
at small phase angles. Originally developed for lunar and
planetary spectroscopy, Hapke’s theory has become a stan-
dard tool for interpreting laboratory reflectance spectra of
minerals and regoliths.

Existing hyperspectral-learning papers exploit Hapke
only as an offline data-augmentation engine: spectra are
synthetically perturbed under plausible illumination geome-
tries to enlarge the training set. No prior work has em-
bedded a differentiable Hapke module directly inside a
neural segmentation network. We therefore propose the
first Hapke Layer: a learnable, end-to-end component
that injects the governing physics into the feature pipeline.
By coupling mineral-specific Hapke parameters with abun-
dance estimates produced by the network, we enable joint
optimisation of radiative-transfer physics and spatial con-
text—an approach that is novel in both remote-sensing and
computer-vision literature.

2.3. Spectral Masked Autoencoders

Spectral-MAE [4] introduces a self-supervised pretrain-
ing framework for hyperspectral image classification. The
training involves randomly masking a subset of bands in
unlabeled hyperspectral images, enabling the encoder to

learn features from unlabeled data. Once the encoder is
trained using this framework, it can then be finetuned using
a lightweight classifier head. This self-supervised approach
is especially valuable for limited-data applications, making
it perfect for mineral segmentation tasks. We attempted to
implement a similar self-supervised training framework to
demonstrate how it can be applied to mineral segmentation.
LO-SST [&] builds on the idea from Spectral-MAE, reduc-
ing computational overhead by pruning the layers that are
contributing the least through the use of learned importance
scores.

3. Data

Figure 1. RGB images of the three views in the Tinto dataset. The
three views are the same scene from different viewpoints.

N .

Figure 2. Ground-truth labels for view 2 of the Tinto dataset. In
the label map, each color represents a different geological class.

Our main dataset is the Tinto dataset, a public dataset
consisting of several 2D hyperspectral views of a real-world
scene in Corta Atalaya, an open-pit mine in Andalusia,
Spain. The dataset contains three views of the scene from
different angles containing the same points. Our models are
trained on the second view, a vertical landscape perspective,
because it has the largest proportion of non-background pix-
els. Each pixel in the scene is labeled as vegetation or one
of 10 geological classes, which include saprolite, chert, and
sulphide. According to the original Tinto paper, the la-
bels are laboratory-tested and expert-verified, and can be
regarded as mostly reliable [1].

The dataset includes readings from LWIR, SWIR, and
VNIR hyperspectral ranges, with 126, 141, and 51 bands



respectively. The second view, which we used to train our
models, has three hyperspectral cubes of dimensions 512 x
1024 x B, where B = 126, 141, and 51 for LWIR, SWIR,
and VNIR. The total number of pixels is 524,288. Due to
the facts that mineral detection applications of deep learning
are relatively new and obtaining labeled data is difficult, we
were not able to find a larger public dataset even after ex-
tensive research. However, due to the wide range of models
tested in the original Tinto paper [1] (on 3D point cloud data
derived from the 2D rasters), including transformer-based
models, we are confident that the dataset is sufficiently large
for our models.

In addition to the Tinto dataset, we also utilize the
Cuprite hyperspectral dataset for our self-supervised pre-
training tests. This dataset consists of a single hyperspectral
cube with 224 bands obtained by the NASA Jet Propulsion
Laboratory, using SWIR and LWIR sensors to map out an
area in Cuprite, Nevada. The dataset is unlabeled and con-
tains 512 x 614 = 314,368 pixels at a resolution of 20 m per
pixel.

For preprocessing, we apply the vegetation mask given
in the dataset to exclude vegetation pixels from our data. We
divide the data into an 80/10/10 split for train/val/test, keep-
ing the ratios of each class the same. We also experiment
with normalizing the data by spectral channel. In addition,
we augment both datasets with random flips, rotations, and
Gaussian jitter on sampled patches.

’ Class \ Train \ Val \ Test \ Total ‘
2 (saprolite) 11,856 | 1,482 1,482 14,824
3 (chert) 8,164 1,020 1,021 10,206
4 (sulphide) 15,168 | 1,896 1,896 18,963
5 (shale) 92,348 | 11,543 | 11,544 | 115,634
6 (purple shale) | 3,194 399 400 3,993
7 (MaficA) 19,524 | 2,440 2,441 24,405
8 (MaficB) 18,505 | 2,313 2,314 23,132
9 (FelsicA) 66,904 | 8,363 8,364 83,634
10 (FelsicB) 36,522 | 4,565 4,566 45,654
11 (FelsicC) 72,568 | 9,071 9,071 90,710

Table 1. Number of pixels per class in our training, validation,
and test sets. Class 0 (vegetation) and class 1 (background) are
removed from the train, val, and test sets during preprocessing.

4. Methods

For our baselines, we implement an MLP and a U-Net
pixel classifier. In addition, we experiment with a novel
Spectral U-Net architecture, which makes use of squeeze-
and-excitation blocks to improve the representational power
of our U-Net by modeling interdependencies between hy-
perspectral bands [6]. Finally, we also test out a self-
supervised pretraining model that utilizes spectral masked

autoencoders to derive hyperspectral image features. Since
there is no standard number of bands for hyperspectral
datasets, all of our models are trained from scratch.

4.1. Baselines: MLP and U-Net

Our first baseline is a vanilla MLP that takes in flattened
data and outputs class scores for each pixel. We chose an
MLP as our first baseline because it was one of the baseline
models included in the original Tinto paper [!], indicating
that it is a viable option for hyperspectral image segmenta-
tion.

Our second baseline is a U-Net, a classic architecture for
semantic segmentation [11]. We chose it for its versatil-
ity in various applications and its proven effectiveness on
limited data. As in the classic architecture, our baseline
U-Net has a symmetric encoder-decoder architecture with
skip connections. The convolutional and max-pooling lay-
ers in the encoder allow the model to learn image features
using spatial context, which is crucial for predicting mineral
classes. Skip connections preserve high-resolution details
and feed them into the decoder, ensuring that these details
are not thrown away by the model after downsampling. We
utilize a 1x1 convolutional layer as the prediction head to
generate pixel-level labels in our U-Net.

4.2. Spectral U-Net

We modify our baseline U-Net with spectral atten-
tion, a block specialized for hyperspectral data based on
the ”squeeze-and-excitation” mechanism proposed in [6].
Whereas regular convolutional layers treat all channels
equally, squeeze-and-excitation blocks allow for channel re-
calibration by learning weights for each channel. They con-
sist of two components: the ”squeeze” and “excitation.”
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Figure 3. A squeeze-and-excitation block [6]

First, the ’squeeze” layer takes in an H x W x C input
u (usually from a convolutional layer), then applies global
average pooling for each channel, producing a vector z of
shape (C,), where
1 w
Zc:mzzuc(laﬁ (L
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for each class c. This operation effectively condenses the
global “importance” of channel c into a single number z..
Next, z is fed into the “excitation” layer, which consists
of two fully connected layers with a ReL.U nonlinearity, and
an elementwise sigmoid applied to the output. The first



fully connected layer reduces the input dimension C' to a
smaller "bottleneck” dimension, and the second layer ex-
pands it back to dimension C' Finally, the output from the
excitation layer is a vector e = [31 So sc} used
as the “excitation weights,” and each element w..(, j) from
channel C in the original input is multiplied by its corre-
sponding excitation weight s...

Squeeze-and-excitation style blocks are lightweight and
can be added to convolution-based models to improve per-
formance with minimal overhead [3][6]. We experiment
with adding squeeze-and-excitation blocks in our U-Net to
improve its representational power in modeling associations
between bands. These blocks are called “’spectral attention”
blocks because they are learning to ’pay attention” to differ-
ent spectral bands. We believe the use of spectral attention
blocks will enable our model to learn the relative impor-
tance of different bands for predicting different geological
classes.

4.3. Hapke Layer

We augment our U-Net with a physics-informed Hapke
layer that explicitly models bidirectional reflectance by way
of radiative-transfer theory. To our knowledge this is the
first instance of the full Hapke formalism embedded as
a differentiable module in any deep-learning architecture;
earlier work used Hapke only to create synthetic spectra off-
line for data-augmentation. [2].
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Figure 4. Our novel Hapke layer architecture

Learnable physical parameters. For each mineral class m
the layer optimisms five sets of parameters:

e Single-scattering albedo w,, € RB — the fraction of
incident photons scattered (rather than absorbed) at
each wavelength;

* Grain-size term d,,, > 0 — larger grains lengthen opti-
cal paths and deepen absorptions;

* Phase-function asymmetry g,, € [—1,1] — positive
values bias forward scattering, negative values bias

backward scattering in the Henyey—Greenstein func-
tion;

* Opposition-surge amplitude By ,,, and width h,, — to-
gether describe the non-linear brightening that occurs
when illumination and viewing directions coincide.

Abundance estimation. A 1x1 convolution followed by
a soft-max produces mineral abundances A € R#*WxM
with >~ A, (i,j) = 1. Each A,, (i, j) can be interpreted
as the probability that pixel (7,j) is dominated by min-
eral m; these weights will mix the mineral prototypes that
the Hapke equations generate (full implementation details
provided in Appendix 8).

Differentiable bidirectional reflectance factor. For min-
eral m the bidirectional reflectance factor (BRF) is

win (A)
Tm(A) = ———— m) (1 + B(gm
N = i 1y Pom) (14 Blgm)
where 1o = cos? and i = cose are the incidence and

emergence cosines. The term p(g,, ) is the single-parameter
Henyey—Greenstein phase function, B(g,,) models the
opposition peak, and H is the Chandrasekhar H-function
that approximates multiple scattering. Closed-form ap-
proximations are used so that gradients propagate. (full
formulas and derivations provided in Appendix 8).

Physics mixing and residual fuse. Mineral contributions
combine linearly—weighted by abundances and attenuated
by grain size—into

M
Xnapke (1,5, X) = Y A (i, §) X (6,5, X) 1 (A) e,

m=1
(3)
The tensor [X, Xpapke] i compressed by a 1x1 enhance-
ment conv and merged residually:

Kow =X +a fenh([X7 Xhapke])a

Interaction with the Spectral-Attention U-Net. Plac-
ing the Hapke layer before the encoder ensures that every
convolution and squeeze-and-excitation block operates on
spectra already regularized by physical law. Spatial fil-
ters therefore learn where minerals change while the Hapke
layer constrains how spectra may vary, yielding comple-
mentary supervision. This coupling helped us improve gen-
eralization whenever illuminations or grain sizes shift be-
tween train and test scenes, a common scenario in airborne
surveys of geological areas.

Mathematical intuition. Equation (3) resembles a soft dic-
tionary lookup: abundances A,, pick mineral prototypes



while the BRF r,,, warps them according to viewing geom-
etry and multiple scattering. Because w, d, g, By, and h re-
main trainable, the network can refine prototypes to sensor-
specific calibration yet is discouraged from drifting into
non-physical regions of spectrum space. Gradients through
A,,, sharpen class assignment; gradients through the Hapke
parameters adapt the prototypes themselves. The small gat-
ing factor a keeps the residual numerically stable during
early epochs.

Geological intuition. Constraining the Hapke parameters
to physically plausible ranges (0 < w < 1, |g| < 1) steers
the network toward mineral-realistic spectra and away from
over-fitting to noise in narrow bands. Subtle absorption
shoulders—such as those that distinguish saprolite from
shale or separate felsic subclasses—are preserved because
the Hapke formulation enforces energy balance and scatter-
ing symmetry across the full band shape rather than allow-
ing the model to exploit spurious pixel-level artefacts. Thus,
projecting the raw cube onto this "Hapke manifold” sharp-
ens class boundaries in spectrally ambiguous regions and
improves cross-scene transfer. On the Tinto benchmark we
obtain a reproducible 4-5pt gain in mean-IoU with few ad-
ditional parameters, confirming that radiative-transfer pri-
ors complement attention-based hyperspectral segmenta-
tion.

4.4. Segmentation Loss Functions

Our MLP baseline utilizes cross-entropy loss, which is
given by the equation
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where N is the number of pixels, s,, is the score of the
correct class for pixel 4, and s; is the score for the jth class.
Our U-Net models, including the U-Nets modified with
spectral attention and the Hapke layer, use Dice loss [7],
defined in terms of the Dice coefficient for each class c,

2T P.
2TP. + FP, + FN,’

Dice. = 5
where T' P, is the number of true positives (pixels correctly
predicted as class c¢), F'P, is the number of false positives
(pixels incorrectly predicted as class c¢), and F'N, is the
number of false negatives (pixels labeled class c that were
not correctly predicted). Dice loss is then calculated as

1 C
L=1- o ;Dicec. (6)

Dice loss seeks to maximize Dice coefficients by maximiz-
ing TP, and minimizing F'P, and F'N, for each class. It
aims to increase the overlap between predicted and ground-
truth masks for each class while decreasing the rate of false

positives and false negatives. We chose Dice loss over
cross-entropy loss for our deeper models to minimize false
positives and false negatives while addressing class imbal-
ances in our data [7]. Also, Dice loss is closely related to
the IoU accuracy metric that we use for evaluation, optimiz-
ing for overlap between predicted and ground-truth labels
instead of per-pixel accuracy.

4.5. Model Architectures

Hapke Layer

Input Y N U-Net encoder +
hyperspectral cube decoder
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_—
m |

\ 4
g
Spectral
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Figure 5. Overall architecture of the Hapke U-Net, including the
Hapke layer and the spectral attention block.

Our vanilla U-Net is built from a typical 3-layer U-
Net architecture. It first applies a 1x1 convolution layer
to project the input to have the desired number of bands,
then passes the projected input through an input convolution
block, a DoubleConv layer (two convolution layers with
batchnorm and ReLLU), to extract initial features. Next, the
features are passed through the encoder, consisting of three
downsampling blocks, each applying a max pooling and a
DoubleConv layer. Finally, the encoded features are pro-
cessed by a decoder consisting of three symmetric upsam-
pling blocks. The decoded features are then fed into a 1x1
convolution layer to predict class labels for each pixel. Due
to the limited size of our dataset, we decided not to use a
deeper network so that we could mitigate overfitting.

Our spectral U-Net uses a similar backbone as the vanilla
U-Net, with the same projection, input convolution, down-
sampling, and upsampling layers. In addition, it uses a
“squeeze-and-excitation”—style spectral attention block at
the bottleneck to recalibrate channel-wise features. In order
to prevent overfitting and make our model easier to train,
we decided to add only a single spectral attention block. In-
serting a squeeze-and-excitation block after a DoubleConv
layer is consistent with [6], and putting it in the final en-
coder layer allows it to recalibrate the deepest, most mean-
ingful features.

Our Hapke U-Net extends the spectral U-Net by insert-
ing a lightweight Hapke layer immediately after the ini-
tial 1x1 projection. The Hapke layer takes the raw hyper-
spectral cube X € RIXWXB a4 jts input and outputs a
physics-regularized cube X € RT*W>B via pixel-wise



abundance estimation, per-mineral reflectance computation,
grain-size attenuation, and a gated residual fusion. Specif-
ically, a 1x1 convolution + softmax produces abundances
A € RHXWXM_ the Hapke reflectance formulas com-
pute Xhapke, and a small 1x1 enhancement conv merges
[X, Xhapke] before adding back to X. The resulting Xout
replaces the original input to the first DoubleConv block of
the encoder. Beyond this insertion, the downsampling, up-
sampling, and squeeze-and-excitation attention blocks re-
main unchanged, enabling spatial filters to operate on spec-
tra already constrained by radiative-transfer physics without
adding significant parameter overhead.

4.6. Spectral Masked Autoencoders

To address the problem of data scarcity in mineral-
related machine learning tasks, we experiment with spectral
masked autoencoders, a self-supervised training framework
for hyperspectral images proposed in [4], similar to masked
autoencoders for normal images. Our algorithm samples
3D spatial patches from the dataset (with all hyperspectral
bands), randomly masking out a subset of bands in the patch
and training the encoder to reconstruct masked bands. We
use our spectral U-Net as an encoder, using mean-squared
error (MSE) to train it to reconstruct masked bands. MSE
loss is given by the equation

1
L= wi— ) @)
i=1
where N is the number of masked voxels in a 3D patch
(spatial dimensions and hyperspectral bands), y; is the true
value of a masked voxel, and v; is the reconstructed value
of the voxel.

By training the encoder to perform this band reconstruc-
tion task, we aim to produce features that incorporate both
spatial and spectral context. Predicting missing bands en-
courages the model to learn associations between spectral
bands, as well as associations between pixels that are spa-
tially close to each other. We pretrained our spectral U-
Net encoder on the Cuprite dataset, before finetuning a
lightweight 1x1 convolution layer as a classification head
to assess segmentation performance on the Tinto dataset.

5. Experiments

5.1. Evaluation Methods

To evaluate our models, we use the intersection over
union (IoU) and mean intersection over union (mloU) met-
rics, which are standard metrics for semantic segmentation
[10]. For each class ¢, IoU is given by the equation

B TP,
" TP.+ FP.+ FN,’

IoU,. ®)

where T P,, F'P. and F'N, are defined as in equation (2).
The numerator is the number of predicted pixels for class c,
while the denominator is the number of pixels in the union
of the predicted and ground-truth masks for class c. IoU
score ranges from O to 1, with a higher score indicating
more overlap between the predicted and ground-truth masks
for a class.

The mloU is the average of the IoUs for each class, cal-
culated as

C
1
mloU = ~ ; ToU,. )

We chose mloU as our main metric for overall accuracy
over simple pixel-wise accuracy to handle class imbalances
and to detect false positives and false negatives [10]. Since
the proportions of each class in our data differ significantly,
using pixel-wise accuracy would inflate performance while
allowing models to neglect classes with fewer examples.

Additionally, we also keep track of IoU scores for each
class to check whether our models are better at predicting
certain classes than others. Taking both mIoU and IoU per
class into account gives us a general idea of the holistic per-
formance of each model as well as specific strengths and
weaknesses.

5.2. Training
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Figure 6. Validation mIoU over 100 epochs for U-Net based mod-
els trained on LWIR data.

Validation Loss over Epochs

0.7
—— UNet

Baseline SEUNet
—— Hapke Unet

o o
o =3

Cross-Entropy Loss
o
=

0.3

Epoch

Figure 7. Validation loss over 100 epochs for U-Net based models
trained on LWIR data.

We trained an MLP, a vanilla U-Net, a spectral U-Net
(with a squeeze-and-excitation “spectral attention” layer),



and a spectral U-Net with an additional Hapke layer. In ad-
dition, we pretrained a spectral U-Net using masked spec-
tral autoencoders. All supervised models were trained on
the view 2 Tinto data, which consist of 512 x 1024 x B hy-
perspectral cubes, where B = 126, 141, and 51 for LWIR,
SWIR, and VNIR respectively. We used the Adam opti-
mizer with a learning rate of 0.001, and train all U-Net
based models for 100 epochs. To prevent overfitting, we
use L2 regularization, and only train the MLP for 10 epochs.
For U-Net based models, we use a cosine annealing learning
rate scheduler over 100 epochs reaching a minimum learn-
ing rate of le-6, which was empirically found to offer the
most stable convergence.

For self-supervised pretraining using spectral masked
autoencoders, we use our spectral U-Net as an encoder, and
train it to reconstruct masked bands in the Cuprite dataset.
The learned weights were then transferred to a segmenta-
tion model, which was then finetuned on the view 2 Tinto
data.

To train all of our models, we sample batches of 64 pixel
x 64 pixel patches from our dataset, where the center of each
patch is in the train split. Using patches allows the model
to incorporate spatial context into its pixel-wise predictions,
while reducing the time needed for training. For validation
and testing, we similarly sample patches centered at pixels
in the validation and test splits.

5.3. Results
[ Model | LWIR | SWIR [ VNIR |
MLP 0.2947 ] 0.5583 [ 0.3428
U-Net 0.6899 | 0.7595 | 0.7432
Spectral U-Net | 0.6648 | 0.7518 | 0.7053
Hapke U-Net | 0.7811 [ 0.8014 | 0.7275

Table 2. mloU for all models trained on LWIR, SWIR, and VNIR
view 2 Tinto data.

Table 2 gives results for our MLP baseline, and the
three U-Net based models. All U-Net based models per-
form significantly better than the MLP baseline, illustrat-
ing the importance of spatial context in mineral segmen-
tation. The Hapke U-Net outperformed other U-Net mod-
els by large margins on the LWIR and SWIR data, indi-
cating that the physics-informed context provided by the
Hapke layer is useful in predicting geological class. The
spectral U-Net performed worse than we expected, produc-
ing a lower mloU than even the vanilla U-Net on all three
hyperspectral ranges. However, looking at the validation
mloU and loss curves in Figure 6 and Figure 7, we see that
the spectral U-Net has slightly faster convergence than the
vanilla U-Net, which may indicate the ability of the spectral
attention block to help the model learn associations between
bands.

Notably, the vanilla U-Net outperformed both enhanced
U-Net models on the VNIR data, which we suspect is due
to the relatively small size of the VNIR dataset compared
to LWIR and SWIR (only 51 bands vs. 126 and 141). The
additional complexity of the enhanced models likely means
that these models require a larger amount of training data,
which is why they perform better on the data with more
bands.

For our self-supervised learning framework, we did not
observe any nonnegligible increases in performance after
finetuning our pretrained model, so results are omitted here.
We believe that one of the main factors behind the failure
of our pretrained weights to generalize was the numerous
disparities between our pretraining dataset, Cuprite, and the
Tinto dataset. Differences in sensor angle, scale (Cuprite
covers a much larger area), and units used to store data were
all obstacles when we were implementing our framework,
which mostly likely made it difficult for pretrained weights
to generalize. In a future project, we would like to attempt
this pretraining framework with two datasets that are more
similar to these respects.

5.4. Discussion

Spectral U-Net

Ground Truth

P

Figure 8. Labels predicted by our models trained on LWIR data
vs. ground-truth labels for view 2 of the Tinto dataset.

More detailed IoU per class for each of our models is
given in Table 3 below. These results reveal that the IoU per
class often varies for different geological classes. For exam-
ple, while the mloU of the spectral U-Net is lower than that
of the vanilla U-Net for LWIR and SWIR data, it offers an
increase in IoU for classes 4 and 10. Further investigation is
required to determine the causes of these variations, but we
suspect they relate to the properties of the geological classes
in our dataset and the properties of the hyperspectral ranges
included in our data.

One instance of this phenomenon we investigated is the
clear failure of the Spectral U-Net trained on LWIR data to
detect class 7 (represented as pink in Figure 8 above). Class
7 is MaficA, a geological class of mafic volcanic litholo-
gies rich in iron- and magnesium-bearing silicates [16]. In



] [Model | 2 [ 3 [ 4 [ 5 | | 7 | 8 | 9 | 10 | 11 [ mloU |
U 07442 ]0.8517 | 0.7300 | 0.7778 | 0.6722 | 0.4111 | 0.6626 | 0.6711 | 0.4673 | 0.6044 | 0.6899
LWIR [ S [ 0.7123 [ 0.8012 | 0.7545 | 0.7207 | 0.6046 | 0.3631 | 0.6326 | 0.6551 | 0.5138 | 0.5578 | 0.6648
H | 0.8793 | 0.9087 | 0.8078 | 0.8877 | 0.8372 | 0.5310 | 0.7429 | 0.7282 | 0.5922 | 0.6801 | 0.7811
U ] 0.8046 | 0.9321 | 0.6824 | 0.8597 | 0.7730 | 0.4127 | 0.7511 | 0.7740 | 0.6463 | 0.7364 | 0.7595
SWIR | S [ 0.7198 | 0.8903 | 0.6926 | 0.8462 | 0.8008 | 0.4334 | 0.7519 | 0.7703 | 0.6480 | 0.7323 | 0.7518
H | 0.8248 | 0.8911 | 0.7941 | 0.9147 | 0.8347 | 0.5381 | 0.7814 | 0.8002 | 0.6789 | 0.7665 | 0.8014
U [0.7807 [ 0.8849 [ 0.7749 | 0.8912 | 0.8110 | 0.4708 | 0.7100 | 0.6943 | 0.5406 | 0.6275 | 0.7432
VNIR [ S [0.7930 | 0.8133 | 0.6554 | 0.8615 | 0.8065 | 0.4537 | 0.6128 | 0.6966 | 0.4975 | 0.5743 | 0.7053
H | 0.8142 | 0.8751 | 0.6935 | 0.8660 | 0.8145 | 0.4498 | 0.6747 | 0.6979 | 0.5427 | 0.5814 | 0.7275

Table 3. IoU per class and mIoU for U-Net based models. ”U” is the vanilla U-Net, ’S” is the Spectral U-Net, and "H” is the Hapke U-Net.
Column labels correspond to class labels in the Tinto dataset. LWIR, SWIR, VNIR have 126, 141, 51 bands respectively.

the LWIR range, this geological class exhibits diagnostic
absorption features that are often subtle and easily con-
founded by illumination [15]. The Spectral U-Net relies on
a squeeze-and-excitation block that pools spatial informa-
tion into global channel weights, which consistently dilutes
MaficA’s subtle LWIR troughs when pixels are mixed or un-
der differing angles, causing misclassification. This shows
why the Spectral U-Net performed poorly on class 7.

In contrast, the vanilla U-Net doesn’t have the squeeze-
and-excitation block and the Hapke U-Net incorporates a
physics-informed layer that enforces per-mineral bidirec-
tional reflectance constraints. Those factors enables these
models to preserve and sharpen MaficA’s LWIR signatures,
so they detect the pink regions well.

Another noticeable trend in Figure 8, and in the predicted
labels for models trained on SWIR and VNIR data (see Ap-
pendices), is the difference in the shapes of class bound-
aries. We see that the class boundaries predicted by the U-
Net are more regular and rounded compare to the more com-
plicated models, especially the Hapke U-Net. This would
make it difficult for the vanilla U-Net to capture nuances in
more complicated data, although in our dataset it does not
seem to penalize the mIoU too harshly. The ground-truth la-
bels in the Tinto dataset have relatively simple class bound-
aries, but in a future extension of our project we would be
interested in comparing the vanilla U-Net to our other U-
Net models on a dataset with more complex class bound-
aries. In contrast to the vanilla U-Net, the Hapke U-Net pro-
duces much more nuanced class boundaries, which would
most likely give it better performance on a dataset with
more fine-grained class boundaries. As seen in the left half
of the Hapke U-Net predicted label map in Figure 8, these
nuanced boundaries closely match the ground truth labels
and are completely overlooked by the vanilla U-Net and
the spectral U-Net. This provides strong evidence that our
Hapke layer provides valuable context for geological class
prediction.

6. Conclusion

Deep learning on hyperspectral images holds significant
promise in mineral prospection. The large quantity of infor-
mation encoded in hyperspectral images holds key insights
into mineral mapping, and segmentation is uses hyperspec-
tral data to produce accurate mineral maps at minimal cost.

We built several segmentation models to produce pixel-
wise labels on the Tinto dataset based on LWIR (long-wave
infrared), SWIR (short-wave infrared), and VNIR (visible
and near-infrared) hyperspectral data. In addition to an
MLP, we implemented a U-Net baseline that provided the
architectural backbone for several enhancements, including
a spectral U-Net with a squeeze-and-excitation style spec-
tral attention block, a physics-informed Hapke layer, and an
attempt at spectral masked autoencoders, a self-supervised
pretraining framework. The Hapke U-Net significantly out-
performed the other U-Net models, providing strong evi-
dence that incorporating a layer a models bidirectional re-
flectance improves segmentation of minerals.

In a possible extension of our project, we would like
to investigate and compare our models on a hyperspectral
dataset that is larger and has higher complexity in class
boundaries. We believe this would more clearly show
the strengths and weaknesses of our models and point to-
wards possible paths to improving them. In addition, we
would like to continue experimenting with a self-supervised
framework to train a mineral segmentation model, as the
scarcity of data remains a key obstacle in the deployment of
deep learning in mineral prospection.
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8. Appendices
8.1. Chandrasekhar H-Function

The Chandrasekhar H-function appears in the Hapke
model as an approximation of multiple scattering. We used
the following common analytic approximation:

14+2p

1+2puv/1—-wHe

H(p,w) = (10)

where:

* i is the cosine of the viewing or illumination angle (i.e.
[4 = COS € Of COS 7).

* w is the single-scattering albedo at that band: 0 < w <
1.

* ¢ is a small positive constant (e.g. ¢ = 107°) to avoid
division by zero.

In more exact form, the true Chandrasekhar H -function
is defined via the integral equation

1
H(p,w) = exp <2LL/O H(p' w) G(u,u’)du'),
(11)

but we used the above rational approximation for computa-
tional efficiency and differentiability.

8.2. Henyey Greenstein Phase Function p(g)

The Henyey—Greenstein phase function models the an-
gular scattering distribution as:
1—g°%
p(g7 0) = 3/2 )
(1+2gcosb + g?)

g € [717 ]-L

(12)
where:

* g is the asymmetry parameter: g > 0 biases forward
scattering, g < 0 biases backward scattering.

* @ is the scattering angle between incident and emergent
directions.

In our implementation, we use the single-term
Henyey—Greenstein approximation, evaluated at the phase-
angle 6 = 0, yielding:

(g) = 1_—92
P9y = (14+2g+g2)3/2

8.3. Backscatter Function B(g)
The opposition-effect (backscatter) function is given by:

By
1—1—%tang7

B(g) = 13)

where:

* By is the peak amplitude at exact opposition (phase
angle approaching zero).

* h is the half-width parameter controlling how rapidly
the surge decays with increasing phase angle.

¢ @ is the phase angle (§ = i + e for narrow-angle ap-
proximations).

Since most airborne imagery uses a small phase-angle,
we approximated it as tan(6/2) ~ 6/2 in radians.

8.4. Grain-Size Attenuation

Grain-size modulation enters the Hapke mixture as an
exponential attenuation:

e dmA (14)
where:

* d,, > 01is a learnable grain-size parameter for min-
eral m. Larger d,,, yields stronger attenuation (deeper
absorption features).

* )\ is the normalized wavelength (e.g. A € [0, 1] after
rescaling).

8.5. Mineral Abundance A,, (i, j)

The pixel-wise mineral abundances A, (i,j) are esti-
mated by a 1 x 1 convolution followed by a soft-max over
the M minerals:

AnL i, ] = eXP(ZTn(ZM])) 9
(i,7) Zf\le eXp(Zn(iaj))

where z,, (i, j) is the raw score (logit) for mineral m at pixel
(4,7). This enforces ) =~ A, (i,j) = 1, making A,, (4, j)
interpretable as mixing fractions.

8.6. Additional Validation mIoU and Loss Curves
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