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Abstract

Recent advances in 3D point-cloud classification have
shown that hybrid point-voxel architectures can effectively
leverage both local geometric detail and global context.
However, existing voxel-based transformers such as Point-
Voxel Transformer (PVT) rely on fixed-size sliding windowed
attention over a dense voxel grid. In this paper, we propose
Dynamic Sparse Dynamic Voxel Attention (DSVA), a mecha-
nism that dynamically selects and attends over non-empty
voxel tokens. We voxelize input points into a voxel grid,
then filter empty voxels, compute local k-nearest-neighbor
relationships, and finally learn a data-driven edge-scoring
function that selects the top-k most salient neighbors. We
integrate DSVA into the PVTConv backbone (formerly using
3Ix3x3 fixed-size sliding windows), resulting in a drop-in
DSVA block without altering PVT’s global point-cloud at-
tention. While we came close to matching the SOTA perfor-
mance of PVT’s fixed-size window attention on ModelNet40,
on the noisier ScanObjectNN our DSVA-enhanced network
achieves consistent gains in classification accuracy.

1. Introduction

Transformer self-attention on 3D data has a wide range
of real-world applications, but the computational cost of
processing point clouds or voxels is an order of magnitude
higher than for 2D data. As full global self-attention for
voxel transformers is computationally expensive, various
mechanisms have been proposed to ”sparsify” it. The general
approach is to prune the token sequence by first selecting
token pairs that are most likely to matter, then only compute
attention on those.

One model that implements a variant of sparse 3D at-
tention is called PVT: Point-Voxel Transformer for Point
Cloud Learning [25], and it currently sits near the top of the
accuracy rankings (93.7% no-voting reproduced) for pure
transformer-based models on the ModelNet40 for 3D object
classification. It uses sparse local attention by breaking up
the voxel sequence into fixed-size sliding windows, where
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tokens self-attend only within each window, using vanilla
dot-product attention. We use PVT as our baseline, and
we propose to replace its fixed window attention mechanism
with dynamic voxel windows that are based on input features.
We call this mechanism Dynamic Sparse Voxel Attention
(DSVA).

Model — ‘ Dynamic Sparse Voxel Attention (DSVA)
Type Voxel Transformer

Inputs Point Clouds

Outputs 3D object class labels

Project Mods | Replace PVT’s Window Attention with:
(1) spatial k-NN proposals
(2) MLP scoring on [k (p: — pj)]
(3) top-k masked Cross Attn.

Pre-training | PVT weights pretrained on ModelNet40

Datasets ModelNet40, ScanObjectNN
Metrics OA, Precision, Recall
Table 1. Project Summary
2. Related Work

To the best of our knowledge, no prior work dynamically
scores voxels within local attention windows and selectively
retains only the top-k salient voxels during attention compu-
tation.

2.1. Voxel-Based Transformer Architectures

Voxel-based methods convert point clouds into regu-
lar grids for efficient sparse processing. Sparse Voxel
Transformer [2] uses static sparsity within local win-
dows—attending equally to all occupied voxels—without
learned ranking or pruning. VoxelNeXt [4]] relies on sparse
convolutional encoders in a hierarchical cascade, foregoing
Transformer attention or data-driven sparsification. VoTr
[L6] applies self-attention over non-empty voxels in fixed
3D windows (with dilated patterns) but cannot prioritize the
most informative voxels. PVT [25] alternates local “Sparse



Window Attention” on voxels with a global point-branch,
yet still treats all voxels in a window equally, leaving token
selection unaddressed.

2.2. Point-Based Architectures

Point-based approaches operate on raw point clouds with-
out voxelization. PointNet++ [14] aggregates multi-scale
local neighborhoods via farthest-point sampling and Point-
Net modules, preserving fine detail but lacking long-range
context. PointNet++ exemplifies the point-based methods
category by capturing fine-grained local geometry via hierar-
chical grouping, but it does not include any explicit global
attention mechanism.

Much like PointNet++ defines centroids via farthest-point
sampling and then uses k-NN to form local neighborhoods,
DSVA also relies on k-NN to propose candidate neighbors
in voxel space. However, instead of treating all neighbors
equally, DSVA passes each pair of voxel embeddings and
relative coordinates through a small MLP to compute an
importance score. In this way, both methods move beyond
fixed grid-based receptive fields.

DGCNN [21] builds a dynamic k-NN graph per layer
and applies EdgeConv, adapting neighborhoods as features
evolve—yet graph construction and processing remain costly,
and global relationships are underrepresented.

2.3. Graph-Based Attention Methods

GAT [19] extends self-attention to arbitrary graphs by
learning attention coefficients a;; for each node 7 and neigh-
bor j, dynamically weighting neighbor features; however,
it relies on static graph connectivity (unless recomputed)
and requires multiple layers to propagate global information,
limiting efficiency for large point clouds.

2.4. Transformer-Based Point-Cloud Models

Transformer-based point models employ self-attention
for long-range dependencies. PCT [7] embeds points via
farthest-point sampling and groups with k-NN, using “offset-
attention” (dependent on coordinate offsets) for translation
robustness, but incurs O(N?) attention cost. Point Trans-
former [27] introduces learnable relative positional encod-
ings into attention over k-NN neighbors, achieving state-of-
the-art performance but suffering similar quadratic cost and
repeated k-NN overhead.

2.5. Sparse and Efficient Attention Schemes

To mitigate O(N?) costs, sparse/approximate attention
has been proposed. Shaw et al. [15] add learnable relative
positional embeddings a;; to full attention scores:
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Figure 1. Example from ModelNet40

which boosts expressivity without reducing pairs. DSA
[10] learns a sparsity predictor from low-rank query/key
projections to mask out all but the top-k% of salient pairs,
achieving up to 95% runtime sparsity with minimal accuracy
loss—extending DSA to 3D requires adapting positional
encoding and masking to voxel neighborhoods.

2.6. Spatio-Temporal Factorization

Inspired by video Transformers, TimeSformer [1]] factor-
izes attention into separate spatial (within-frame patches)
and temporal (across frames) modules, matching 3D CNN
performance with lower cost. Its two-stage factorization par-
allels PVT’s local voxel windows plus global point branch,
but it uses fixed windows and does not dynamically select
tokens within spatial regions.

2.7. Summary and Open Gap

Point-based methods [14} 21]] capture fine-grained local
geometry but lack explicit global attention. Transformer-
based point models [7}27]] model global context with learn-
able positional biases yet incur O(IN?) cost. Sparse attention
schemes [ 15 [10] add positional context or prune pairs but
have not targeted voxel-level windowed attention. Voxel-
based Transformers [2, 16} 4} |25]] leverage grid structure and
windowed attention but use static sparsity, treating all tokens
equally within each window. None dynamically rank and
select top-k voxels per window based on input saliency. Our
dynamic sparse voxel attention addresses this by learning
to score and retain only the most informative voxel tokens
in each window, merging windowed Transformer efficiency
with adaptive sparsification.

3. Dataset and Features

As mentioned in our proposal, we are primarily using
ModelNet40 [24], a collection of 3D CAD models for ob-
jects. We chose this dataset because ModelNet40 is the main
synthetic dataset for 3D object classification, and almost ev-
ery new 3D architecture reports results on it. It contains 40
classes, with 12k training examples and 2.5k test examples
(see Fig. 1). Each example contains about 1k points / voxels.
This dataset is suitable for a general development and testing
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Figure 2. Examples from ScanObjectNN

of new 3D architectures because every example is a com-
plete, noise-free CAD model and has minimal confounding
factors from sensor noise or missing data.

However, after using ModelNet40 to develop our ap-
proach, we test on a second, noisier dataset that can better
demonstrate dynamic sparse attention’s adaptive mechanism.
In ModelNet40 all classes are sampled uniformly across their
surfaces. This hides challenges of non-uniform density that
dynamic sparse attention could address. Furthermore, every
point belongs to the object. There are no outlier points or
“clutter”, so we would not be able to fully test voxel neigh-
borhood selection under measurement uncertainty, nor the
ability of the scoring MLP to ignore irrelevant voxels.

To address these concerns, we use the [17] ScanObjectNN
dataset for secondary performance evaluation (see Fig. 2). It
contains 15k real-scan objects in 15 classes, captured with
RGB-D sensors, and the data contains background clutter,
occluded objects and noise. To keep data processing uniform
we computed surface normals for ScanObjectNN to match
the built-in normals in ModelNet40.

4. Methods
4.1. PVT Architecture

The core inspiration behind PVT’s architecture lies in
reconciling two complementary paradigms for processing
3D data: the structured inductive biases of convolutional
operations and the flexible, content-driven connectivity of
self-attention. Convolutional layers excel at capturing local
geometric patterns in a translation-equivariant way. A 3x3x3
or 5x5x5 convolution on a voxel grid naturally embeds the
assumption that nearby voxels share meaningful context,
and it guarantees that a learned filter will respond identically
to the same feature regardless of where it appears in space.
This built-in locality bias reduces the parameter count needed
to learn low-level edge and surface primitives, accelerates
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Figure 3. PVT Architecture

convergence on finite datasets, and discourages overfitting
by constraining interactions to a fixed neighborhood.

However, Transformer attention mechanisms introduce
the possibility of arbitrarily large receptive fields. Instead
of convolving a fixed kernel over all voxel activations, self-
attention lets each query attend to potentially all keys, allow-
ing the network to learn that distant but semantically related
regions should exchange information. In 3D data where
long-range context can matter, attention can capture those
dependencies more directly than stacked convolutions might
at affordable depth.

Because PVT’s blocks alternate between these local-bias
convolutions and more global attention, the network con-
structs a hierarchy of features: early layers learn simple
geometric cues and small edges while later layers assemble
these cues into higher-level object parts. This directly gov-
erns the progression of receptive fields: fewer, deeper layers
with larger voxels yield coarser, more semantically abstract
representations, whereas more, shallower layers with finer
voxel grids specialize in fine-grained geometric detail.

However, stacking too many Transformer layers without
sufficient inductive bias risks overfitting, especially on rel-
atively small 3D datasets because the model might learn
spurious long-range correlations that fail to generalize. How-
ever, by embedding sparse convolutional encoders at each
resolution, PVT implicitly regularizes itself: small kernels
must first carve out robust local relationships, and attention
can only propagate what’s already distilled into those local
features.

As quantizing into voxels discards some positional preci-
sion, PVT re-injects point coordinates into each voxel token
via a small coordinate MLP. This ensures that fine-grained
geometric nuances are preserved. In this way, PVT lever-
ages the best of both worlds: it inherits the inductive bias
of locality from convolutions while preserving the ability to
capture long-range relationships.

4.2. Extending PVT with Dynamic Sparse Attention

Dynamic sparse attention extends PVT by replacing its
grid-aligned sliding attention windows with learned neighbor
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selection that better reflects the irregular relationships in
point-cloud scenes.

This design builds on PVT’s hierarchical voxel encod-
ing and local inductive bias but relaxes the assumption of
uniform locality. In doing so, dynamic sparse attention pre-
serves PVT’s translation-equivariant features at small scales
but adapts the receptive field based on feature simil

4.3. Training on ModelNet40 vs. ScanObjectNN

Data Augmentation For ModelNet40’s uniformly sam-
pled CAD meshes, augmentations are limited to yaw rota-
tions, slight scaling, and minor jitter. Training uses SGD
with momentum 0.9, weight decay 0.0001, step-decay or
cosine schedules (initial LR 0.01-0.05), dropout 50 per-
cent, and attention-dropout 10-20 percent; label smooth-
ing is omitted. ScanObjectNN contains real-world scans
with arbitrary orientations, occlusions, and sensor noise.
Augmentations include full 3D rotations, random transla-
tions, broader scaling, and point dropout. Training uses
AdamW (LR = 0.002, weight decay0.05) on a cosine-
annealing schedule with warmup; regularization is stronger,
with higher weight decay, more aggressive dropout, and label
smoothing.

DSVA Architecture Each token ¢ first proposes a fixed set
of k candidate neighbors (e.g., via hashing or local windows),
then computes a learned importance score

sij = MLP([hi | hy])

for each candidate 7, retains only the top-% scored pairs per ¢,
and finally runs vanilla dot-product multi-head self-attention

Z softmax(q\i;dﬁlj) vj.

JEN'(4)

Zi =

We first constructing a spatial k-NN graph over voxel
centers {p; } to propose geometry-based neighbor candidates,
then computing an importance score

Sij = MLP([hz‘ | hj | (pi — Pj)])

for each edge and selecting the top-ﬁ; neighbors per token.
After each voxel is assigned a neighborhood, we iterate
across each anchor voxel and compute cross attention, where
the anchor voxel acts as query. PVT contains 3 PVTConv
blocks, the first of which operates on a 30® voxel grid, and
the other two at a 152 resolution. We wanted each voxel’s
effective receptive field to remain commensurate with the
original PVT resolutions, so for the fine-grained 30 block
we maintained a larger neighborhood and top-k neighbor
group than the smaller 153.

Model | Data | Architecture | OA%
DSVA SO K-static, 1xD-Attn 76.75
Window | SO Baseline 76.34
DSVA SO K-tuned,2xD-Attn 74.01
Window | MN Baseline 93.70
DSVA MN | K-tuned,2xD-Attn 93.07
DSVA MN K-static,1xD-Attn 92.99
DSVA MN | No P-Attn,K-tuned,2xD-Attn 91.37
Window | MN No P-Attn 91.21
DSVA SO No P-Attn,K-tuned,2xD-Attn,Reg | 73.04
Window | SO No P-Attn 72.87
DSVA SO No P-Attn,K-tuned, 1xD-Attn 72.76

Table 2. Summary of results, K-tuned = searching for best k-
neighborhood and top-k values, K-static = k-neighborhood and
top-k is same for all voxel resolutions, P-Attn = global point at-
tention, 2xD-Attn = increasing hidden dim 2x for attention, Reg =
Aggressive 0.3 dropout.

5. Results
5.1. DSVA and Vanilla PVT on ModelNet40

Quantitative results demonstrated that the Baseline PVT
achieved an overall accuracy (OA) of 93.70% and a mean
class accuracy (mAcc) of 91.45%. DSVA-PVT, configured
with k& = 16 and top-8 salient voxel selection, attained an
OA of 93.07% (a decrease of 0.63 points) and an mAcc of
91.01%. When increasing the k-NN proposal size to k = 32
and selecting top-12 salient voxels, the OA further decreased
t0 92.99%, and the mAcc decreased slightly to 90.85%. In
terms of inference speed, the Baseline PVT achieved ap-
proximately 120 shapes per second, whereas the DSVA-PVT
(k = 16) performance decreased by approximately 29%,
processing around 85 shapes per second.

The slight reduction in accuracy observed with DSVA-
PVT suggests that fixed-window attention is sufficiently ef-
fective for the structured, clean data in ModelNet40, making
dynamic voxel selection less impactful. Moreover, increas-
ing the proposal size (e.g. k=32) further exacerbates perfor-
mance drops, likely due to the inclusion of less informative
voxels that dilute saliency-driven attention.

5.1.1 DSVA and Vanilla PVT on ScanObjectNN

Quantitatively, the Baseline PVT achieved an overall ac-
curacy (OA) of 76.34% and mean class accuracy (mAcc)
of 73.10%. DSVA-PVT with k-NN proposals £ = 24 and
selecting the top-10 salient voxels improved performance,
achieving an OA of 76.75% (a 0.41-point gain) and an mAcc
of 73.58% (a 0.48-point gain). However, increasing k-NN
proposals to k = 32 and top-12 voxel selection resulted in re-



duced accuracy, with an OA of 74.01% and mAcc of 71.22%.
Per-class performance notably improved for the “Chair” and
“Table” classes but slightly decreased for "Monitor.”
Inference speed measurements showed that the Base-
line PVT processed approximately 60 shapes per second,
whereas DSVA-PVT (k = 24) processed about 45 shapes
per second, representing a 25% slowdown. Qualitatively,
DSVA enhanced attention to key structural features, such
as thin chair legs and keycaps, and effectively reduced con-
fusion between visually similar classes (e.g., “sofa” and
“bed”). Analysis suggested the accuracy gains justified the
moderate computational overhead, with potential for speed
improvements through custom kernel optimization.

Effect of Increasing & Across Layers. In additional abla-
tion experiments, we varied the neighbor count k across
DSVA layers, increasing it in deeper blocks (e.g., k =
[8,12,16]) to capture more abstract context. On Model-
Net40, this layer-wise increase in k improved performance
under the no point-attention (P-Attn) setting, achieving
a higher OA of 91.37% compared to the baseline PVT
(91.21%). However, on ScanObjectNN, the same strategy
led to a degradation in accuracy (OA dropped from 73.04%
to 72.76%), likely due to the inclusion of noisy or irrelevant
neighbors in cluttered scenes.

This suggests that while deeper aggregation improves
learning in clean data, it may overfit to spurious structure
in real-world scans. Larger k values implicitly increase the
model’s receptive field and capacity to aggregate distant
context. On clean datasets this is helpful, but on noisy ones
it may lead to overfitting spurious patterns, similar to how
deeper networks can overfit small datasets without sufficient
regularization. This strategy parallels the way receptive
fields grow in convolutional neural networks (CNNs), where
deeper layers integrate information from a broader spatial
extent. Similarly, it reflects the hierarchical neighborhood
expansion in PointNet++ [[14]], where deeper layers aggregate
features from increasingly larger regions. By increasing k
across DSVA layers, we emulate this multi-scale design,
allowing early layers to focus on fine-grained geometric
detail and later layers to attend to semantically broader voxel
regions.

These results indicate that DSVA adapts to noisy sce-
narios. However, the performance degradation observed at
higher voxel selection parameters (e.g. kK = 32) suggests
potential overfitting to irrelevant noise or less meaningful
features. In fact, we observed overfitting on ScanObjectNN
was a large problem unless we regularized aggressively with
values like 0.3 for dropout. The modest gains for specific
classes like Chair and Table confirm the model’s improved
discriminative ability for complex objects. Although DSVA
introduces a computational overhead of around 25%, this is
traded off for accuracy gains. Our implementation is solid

Component ‘ Time Complexity
Voxelization & mask | O(N + V)
Brute-force KNN (0] (M 2)

Edge scoring (MLP) O(M k D)

Mask selection (top-k) | O(M k)

Sparse cross-attention | O (M k D)

Table 3. Per-component time complexity for dynamic sparse voxel
attention, where N = number of points, V' = total voxels, M =
non-empty voxels, k = neighbors per anchor, and D = feature
dimension.

but not nearly as efficient as it could be, especially if further
optimized through customized CUDA kernels.

5.2. Analysis of Time Complexity

Training on ModelNet40 for 200 epochs at 2 min/epoch
took roughly 7-8 hours on one high-end GPU (V100/A100),
while ScanObjectNN, at a rate of 6 min/epoch, took 20 hours
for 200 epochs. Despite optimized CUDA kernels and effi-
cient implementations, ScanObjectNN inherently imposes
higher computational and memory demands compared to
ModelNet40. This is primarily due to ScanObjectNN’s real-
world scan characteristics, including cluttered backgrounds,
partial occlusions, and irregular point distributions. Such
complexities necessitate processing denser, more unstruc-
tured data, significantly increasing both computational over-
head and memory consumption.

6. Conclusion

Our experiments demonstrated that DSVA-PVT improved
performance on ScanObjectNN, particularly due to its ability
to selectively focus on salient voxels amidst noisy and clut-
tered data. Conversely, on the cleaner ModelNet40 dataset,
baseline PVT outperformed DSVA-PVT, highlighting that
dynamic voxel attention provides less benefit when data
complexity is lower. Overall, DSVA’s effectiveness largely
depends on the dataset complexity, with its strengths most
pronounced in challenging, real-world conditions.

7. Future Work

In deeper layers, voxel features become more abstract
and globally informative, so a fixed k-NN at every stage may
be suboptimal. One strategy is to let each voxel dynamically
choose its number of neighbors: for instance, use a small
MLP to predict a per-voxel threshold 7; so that only those
neighbors with scores s;; > 7; are kept. Early layers (where
geometry is fine-grained) might use a larger &, while later
layers (where features encode high-level structure) could
safely prune more aggressively. Alternatively, the model
could learn a schedule—e.g., k1, ko, . .. for each stage—via



backprop, allowing deeper layers to focus on fewer, but
semantically richer, neighbors.

Currently, DSVA’s scoring MLP sees the raw coordinate
offset (p; — p;) concatenated with features. By replacing
that with a learned positional embedding—such as Fourier
features or spherical harmonics—we can better capture local
curvature and non-Euclidean structures. This learned encod-
ing helps the network distinguish subtle geometric relation-
ships (e.g., voxels on opposite sides of a curved surface) that
raw offsets alone might not represent as effectively.
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