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Abstract

Obtaining labels for fully-supervised learning is often
a cost and labor-intensive task. In many settings, it is
easier to obtain a pairwise relationship (i.e., the label for
A is greater than the label of B). We investigate the effi-
cacy of training in this weakly-supervised setting. Using
the MNIST handwriting dataset as a toy example, we ex-
amine 3 models. The first is a CNN classifier for the 10
class labels, used as the baseline metric for comparison.
The second is a Siamese CNN model that is trained on re-
lational data to output relationship classifications (greater
than, less than). We use a transfer learning technique to
then convert this Siamese model to a classifier, and train
it for few-shot learning. The final model is a CNN classi-
fier trained on purely relational data. We observe that the
Siamese few-shot learning model is the most efficient at us-
ing the pairwise-relationship data for classification. As few
as 1 explicit image-label pair per class is needed to achieve
98.43% accuracy for digit classification, which is similar to
the accuracy achieved with 50k datapoints in a fully super-
vised setting.

1. Introduction
Deep learning models have achieved remarkable per-

formance across various computer vision tasks. However,
most successful approaches rely on fully supervised learn-
ing with large labeled datasets, which require significant hu-
man annotation effort. Weakly supervised learning aims to
reduce this dependence on extensive labeled data by utiliz-
ing cheaper, more abundant forms of supervision.

In this project, we explore a specific form of weak su-
pervision: learning from relational comparisons between
pairs of images. Instead of providing absolute class labels,
we only specify the relative ordering between image pairs
(e.g., “the digit in image A is greater than the digit in image
B”). This type of supervision can be particularly valuable
in domains where precise labels are difficult to obtain, but
relative comparisons are easier to generate or are naturally
available.

Our work addresses the following key research ques-
tions:

• Can models trained solely on relational data achieve
accuracy comparable to fully supervised counterparts?

• How does the quantity of pairwise comparisons affect
performance?

• How does post-training the model with a small set of
labeled data change the dynamics of the accuracy and
number of relational data needed?

2. Related Work
2.1. Manifold Learning and Digit Embeddings

Classical manifold learning techniques have long re-
vealed that handwritten digits naturally form structured,
low-dimensional embeddings. Methods like t-SNE [15],
Isomap [14], and Locally Linear Embedding [12] consis-
tently demonstrate that digits organize into meaningful clus-
ters when projected to low dimensions. These unsupervised
methods discover such structure post-hoc by analyzing the
geometric properties of the data manifold. Notably, visu-
alizations derived from t-SNE often reveal not just distinct
clusters but also an apparent one-dimensional ordinal pro-
gression for digit datasets, where, for instance, the cluster
for ’0’ is adjacent to ’1’, ’1’ to ’2’, and so on. This ob-
served phenomenon, where an inherent ordinal structure is
suggested by unsupervised embeddings, informed our hy-
pothesis that models could be explicitly trained to capture
and represent such one-dimensional ordinal relationships
directly from relational inputs. Consequently, these visu-
alization techniques also serve as a valuable tool for quali-
tatively assessing the degree to which a model has success-
fully learned the intended ordinal structure in its embedding
space.

2.2. Siamese Networks and Metric Learning

Siamese networks, introduced by Bromley et al. [2], use
twin networks with shared weights to learn similarity met-
rics between pairs of inputs. These architectures have been
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successfully applied to face verification [4], one-shot learn-
ing [7], and visual tracking [1]. Our work extends this
paradigm by using Siamese networks to learn from ordinal
relationships rather than similarity, demonstrating that pair-
wise “greater than” comparisons naturally discover digit or-
dering without explicit numerical labels.

2.3. Learning from Pairwise Comparisons

Learning from pairwise preferences has been extensively
studied in information retrieval [9] and recommendation
systems [11]. In computer vision, ranking approaches have
been applied to age estimation [3] and aesthetic assess-
ment [8]. Our work differs by investigating whether pair-
wise comparisons alone can induce representations suitable
for classification tasks. We show that models trained solely
on ordinal relationships achieve competitive classification
accuracy (up to 97.8%) when combined with minimal la-
beled data.

2.4. Transfer Learning and Few-Shot Classification

Transfer learning leverages pre-trained representations
for new tasks with limited data [17]. Few-shot learn-
ing approaches, including prototypical networks [13] and
MAML [6], aim to classify with minimal examples.
Our “chimera” approach uniquely combines Siamese pre-
training on pairwise comparisons with few-shot classifica-
tion, achieving 96.64% accuracy with only 3 labeled exam-
ples per class. This demonstrates that relational pre-training
creates well-separated clusters that require minimal super-
vision to map to semantic categories.

2.5. Weakly Supervised Learning

Zhou [18] categorizes weak supervision into three types:
incomplete (missing labels), inexact (coarse labels), and in-
accurate (noisy labels). Our approach falls under incom-
plete supervision, where we have relational information be-
tween examples but lack absolute labels. Recent work has
explored learning from partial labels [5], noisy labels [10],
and side information [16]. We contribute by showing that
purely relational supervision can discover meaningful or-
dinal structure, and that scaling from 50k to 5M pairwise
comparisons progressively improves both ordering quality
and downstream classification performance.

3. Dataset
We use the MNIST dataset of handwritten digits to eval-

uate our approach. For the baseline supervised method, we
use the dataset as-is, using a 5:1:1 train/val/test split. For
the weakly supervised setting, we generate a synthetic rela-
tional dataset by

1. Sampling random pairs of images (xi, xj) from the
dataset (i ̸= j)

2. Generating relational labels zij based on the relation-
ship of the original labels yi, yj . zij = 1 if yi > yj .
We purposely omit examples where yi = yj for sim-
plicity.

We generate a validation and test set of 20k image pairs
using only the images in the validation and test sets, respec-
tively. For the training set, we generate 3 datasets of sizes
50k, 500k, and 5M to be able to test the effect of the quan-
tity of relational data for training models.

The datasets are generated in
data/mnist/download mnist.py, and the dataset
handling is done in data/dataset.py.

4. Technical Approach
4.1. Base Model

For consistency of the larger model structure and for
transfer learning, we elected to use the same fundamental
model structure for all tasks. We define a BaseModel
that consists of Conv2d and MaxPool layers, and use this
BaseModel as the embedding generation part of all mod-
els (Figure 1a). The models only differ by the final few
layers (heads) attached to the base model.

4.2. Supervised Model

For the supervised model, we attach a classification head
to the base model (Figure 1b). The classification head is
a simple, fully-connected linear layer that takes the 128-
dimensional embedding and outputs predictions for the 10
classes. The final prediction is done by running a softmax
over the 10 logits.

The model is trained using a standard cross-entropy loss,
with a learning rate of 10−3 and a weight decay of 10−4.
The model is trained for 100 epochs with batch size 64. The
model with the best validation accuracy during training was
selected as the final baseline model. This model was able to
achieve a test accuracy of 99.38%.

4.3. Siamese CNN Model

Siamese model architectures can choose to have differ-
ent models for the embedding of the first and second im-
age; in this study, we choose to use the same model (shared
weights) for both images (Figure 3b). Intuitively, this is
reasonable as there is no inherent difference between the
images based on position.

Embeddings of both images are computed through the
BaseModel, and are then concatenated to form a 256-
dimensional embedding for the pair. The new embedding
is passed through a relational classifier head. The head con-
tains two linear layers connected by the ReLU nonlinearity
and dropout. The final result is a relational prediction, as a
number between 0 and 1. The training objective is a binary



Figure 1. a) The architecture of the BaseModel used across all models. b) The architecture of the baseline supervised model.

Figure 2. The loss and accuracy per epoch when training the su-
pervised model.

cross-entropy loss between the actual label and this predic-
tion. The Siamese models were trained with various train-
ing dataset sizes (50k / 500k / 5M image pairs). The epochs
were scaled accordingly such that each setting would see
the same number of datapoints (i.e., the model that uses the
50k dataset will see each datapoint 100x more times than
in the 5M dataset). This was done to place a control on the
number of training batches, so the effect of ‘new’ data could
be observed.

During the training of each of the three models, we were
able to achieve the following accuracies for the relational
prediction task (predicting zij’s):

We then repurpose the BaseModel within the Siamese
model as a classifier. As the model has not explicitly seen
the class labels, we introduce a few-shot learning scheme:

Model Test Accuracy (%)
50k 99.33
500k 99.40
5M 99.45

Table 1. Test accuracies of the Siamese models for the relational
task.

we transfer the weights of the BaseModel of the Siamese
model into the supervised model (Figure 1b) with a ran-
domly initialized classifier head. We then train the classi-
fier, with the BaseModel weights frozen, on a small su-
pervised training dataset. In this study, we try training on
10 datapoints (1 per label) and 30 datapoints (3 per label).

4.4. Weakly Supervised Model

The Siamese model, as will be discussed below, has
shown promising results on the ability of the relational data
to generate distinct segmentations in the embedding space.
With this knowledge, we attempt to train a classifier fully
on relational data (this is unlike the Siamese model, which
had to use few-shot learning).

We achieve this by using the structure shown in Figure
3a. Each image is passed through the same BaseModel,
which uses a fully-connected linear layer and a softmax to
generate predicted probabilities for the labels of each image.



Figure 3. a) The architecture of the weakly supervised model and b) the architecture of the Siamese model.

This process is identical to the fully supervised model. To
enable training on the relational data, we then use a function
that uses the class probabilities of the two images to derive
the probability that the first image has a greater class label
than the second. This is achieved in a vectorized form by
computing a cross product of the two probability vectors,
then using a lower triangular mask to add the matrix ele-
ments that correspond to a probability that the first image is
greater than the second. The final predicted probability is
used as the predicted label.

The loss is defined as a binary cross-entropy loss, and the
model is trained on 3 distinct datasets of varying sizes, as
discussed for the Siamese model. The final test accuracies
for the relation task (predicting zij) are listed below. We
observe that the weakly supervised model performs worse
on the relational task compared to the Siamese model; this
is expected as we introduced a rigid inductive bias into the
model (classification into 10 classes before prediction of re-
lation).

Model Test Accuracy (%)
50k 95.90
500k 98.23
5M 96.89

Table 2. Test accuracies for the weakly supervised model for the
relational task.

By the design of this architecture, predicting actual clas-
sification labels is trivial. Instead of comparing the class
probabilities of two images, we directly use the predicted
probabilities as the class label predictions.

5. Results and Discussion

5.1. Supervised Model

As is known, the supervised model (baseline model) per-
forms very well. The confusion matrix in Figure 4 shows

Model Test Accuracy (%)
Supervised 99.23

Siamese (50k), 1-shot 97.80
Siamese (50k), 3-shot 97.63
Siamese (500k), 1-shot 98.42
Siamese (500k), 3-shot 98.41
Siamese (5M), 1-shot 98.73
Siamese (5M), 3-shot 98.72

Weakly supervised (50k) 20.28
Weakly supervised (500k) 83.33
Weakly supervised (5M) 71.19

Table 3. Test accuracies for all models for the classification task.

Figure 4. The confusion matrix for the supervised model.

that there are very few errors between class labels. The test
accuracy of the baseline is 99.23%; the goal of the other
models is to approach this number with subpar data.

5.2. Siamese Models

The Siamese models show very high accuracies on the
classification task. We observe that the model can learn



Figure 5. Confusion matrix for the 500k + 3-shot Siamese model.

comparable accuracies to the supervised dataset with as few
as 1 image-label pair per class label. This shows that there
is very accurate segmentation happening in the embedding
space of the original Siamese model, such that only a single
example is needed to confirm the class of the group. The
efficient clustering can be seen in the t-SNE plot of Figure
7. Increasing the dataset size of the training pairs is seen
to have minimal but positive effects on the accuracy of both
the relational and classification tasks, indicating a possibil-
ity that even fewer image pairs can be used to achieve a
similar accuracy.

5.3. Weakly Supervised Models

The weakly supervised model shows decent accuracy,
but falls quite below the supervised baseline. Upon exam-
ining the confusion matrix for the best model (Figure 6), we
see that this is entirely due to the labels 7, 8, and 9. Exclud-
ing these three labels, the model classifies labels 0-6 with
99.04% accuracy.

This result is reasonable for the model, as the goal of
the model is to predict the probability that the first image is
larger than the second image. Confusing the image of ‘7’
as a 8, and the image of ‘8’ as a 9 would affect the loss
minimally. Accordingly, we see that the test accuracy for
the relational task is high despite these misclassifications.

Interestingly, the weakly supervised models perform
worse on the classification test set when training on more
training pairs (5M). We see that this phenomenon occurs
for the test accuracy of the relational task as well (Table
2). We postulate that this is due to the model only being
trained for 1 epoch (which was done to equalize the number
of training batches between the different training sets). We
hypothesize that the model accuracy will increase when the
number of epochs is increased to a normal amount (> 5).

Figure 6. Confusion matrix for the weakly supervised model
(500k)

5.4. t-SNE Embedding Analysis

To understand how different supervision paradigms
shape the learned representations, we employ t-SNE (t-
distributed Stochastic Neighbor Embedding) [15] to visu-
alize the high-dimensional embeddings produced by each
model. t-SNE is particularly well-suited for this analysis
as it preserves local neighborhood structure while revealing
global patterns in the data manifold.

Figure 7 presents a striking comparison of how super-
vised versus relationally-trained models organize digit rep-
resentations. The supervised CNN, trained exclusively on
categorical labels, produces distinct, well-separated clus-
ters for each digit class. This clustering behavior is ex-
pected—the model optimizes for maximum inter-class sep-
aration to minimize classification error. However, this ap-
proach treats each digit as an independent category, failing
to capture the inherent ordinal relationships between numer-
ical values.

In contrast, both the Siamese Network and Weakly
Supervised models, trained solely on pairwise ”greater
than” comparisons, discover remarkably different embed-
ding structures. These models arrange digits along smooth,
continuous manifolds that respect numerical ordering. The
Siamese model achieves near-perfect ordinal correlation
(ρ = 0.962), creating an embedding space where the pro-
gression from 0 to 9 follows a natural path through the latent
space. Similarly, the Weakly Supervised model achieves
substantial ordinal correlation (ρ = 0.818), despite never
observing explicit class labels.

5.4.1 Ordinal Structure Quantification

To quantify the degree of ordinal structure in each embed-
ding space, we project the learned representations onto their
first principal component and compute the Spearman rank



Figure 7. t-SNE plots of the embeddings of each class.

correlation coefficient (ρ) between the projected values and
true digit labels. This metric captures how well the embed-
ding preserves the natural ordering of digits (0 < 1 < 2 <
... < 9). The violin plots in the bottom row of Figure 7
visualize this one-dimensional projection, revealing the dis-
tribution of each digit class along the discovered ordering
axis.

The supervised model exhibits low ordinal correla-
tion (ρ = 0.193), with a discovered ordering of
”2→7→3→1→9→8→4→0→5→6” that bears little re-
semblance to the true numerical sequence. This scrambled
ordering reflects the model’s focus on discriminative bound-
aries rather than relational structure. Individual digits oc-
cupy distinct regions along the projection axis with minimal
overlap, but their arrangement is essentially arbitrary from
an ordinal perspective.

Conversely, the Siamese model discovers an ordering of
”0→1→2→3→4→6→5→8→7→9” (ρ = 0.962), nearly
perfectly recovering the true numerical sequence with only
minor inversions. The violin plots show smooth transi-
tions between adjacent digits, with overlapping distribu-
tions that respect ordinal relationships. This emergent struc-
ture arises naturally from training on pairwise compar-
isons—the model learns to position digits such that travers-
ing the embedding space corresponds to numerical progres-
sion.

5.4.2 Implications for Representation Learning

These visualizations reveal a fundamental trade-off in rep-
resentation learning. Supervised models optimize for clas-
sification accuracy, creating representations that maximize
separability at the expense of semantic structure. While
this yields excellent performance on the classification task,
it fails to capture the meaningful relationships between
classes.

Relational supervision, despite its apparent weakness
(lacking absolute labels), induces representations that en-
code rich semantic structure. The smooth manifolds dis-
covered by relational models suggest they learn more gen-
eralizable features that respect the underlying data seman-
tics. This property becomes particularly valuable in transfer
learning scenarios, as evidenced by our chimera model ex-
periments where Siamese-pretrained features enable effec-
tive few-shot classification.

The continuous nature of relationally-learned embed-
dings also suggests potential applications beyond classifi-
cation. These representations could enable interpolation
between digit classes, provide meaningful similarity met-
rics, or support tasks requiring understanding of numerical
magnitude—capabilities that would be challenging to de-
rive from the discrete clusters produced by supervised learn-
ing.



6. Conclusion and Future Work
In this work, we investigated learning from pairwise re-

lational comparisons as an alternative to traditional super-
vised learning. Our experiments on MNIST demonstrate
that relational supervision induces fundamentally different
representations compared to categorical supervision, with
relational models discovering smooth manifolds that re-
spect ordinal structure while supervised models create dis-
crete clusters optimized for classification boundaries.

Our key finding is that combining relational pre-training
with few-shot learning (the “chimera” approach) proves
more effective than training classifiers directly on relational
data. The Siamese models trained on pairwise compar-
isons create well-structured embedding spaces that require
only minimal labeled examples (1-3 per class) to achieve
strong classification performance. This suggests that rela-
tional pre-training provides a powerful inductive bias that
facilitates efficient learning from limited labeled data.

Future work could explore several promising directions.
First, extending this approach to more complex visual do-
mains beyond digits would test the generalization of rela-
tional supervision. As our current method benefits from
ordinal correlation, this paradigm of training may be espe-
cially useful for computer vision tasks where the compar-
ison of quantities is crucial (e.g., counting the number of
cars in an image).

Second, investigating different types of relational com-
parisons (e.g., similarity, attributes) could reveal which rela-
tionships are most informative for downstream tasks. Com-
parative studies can be done by changing the relationships
to greater-than-or-equal-to, for example, and seeing how
this affects the training results.

Finally, developing theoretical frameworks to understand
why relational pre-training creates such effective represen-
tations would provide deeper insights into this learning
paradigm.

Our results suggest that in scenarios where obtaining
precise labels is expensive but comparative judgments are
readily available, relational supervision offers a practical
path toward building effective classifiers with minimal an-
notation effort.
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8. Appendix
The code used for the training and analy-

sis of the models described can be found at
https://github.com/junhakunha/cs231n final project.
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