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Abstract

Discriminative, single-image visual geolocalization often
suffers from ambiguity. In this report, we present OmniLoc,
a framework for Probabilistic Multiview Visual Geolocal-
ization (PMVG) that leverages multiple, geographically co-
herent ground-level perspectives. We address the PMVG
task by efficiently adapting the OpenStreetView dataset into
a multiview scene dataset osv5m-multi. The OmniLoc
models use an attention-based mechanism to fuse infor-
mation from multiple images. This fused representation
conditions both a deterministic regression head for direct
coordinate prediction (OmniLocregression) and a conditional
generative head (OmniLocrfm) employing Riemannian Flow
Matching to model location probability distributions, allow-
ing for uncertainty-aware localization conditioning on the
scene embedding. We systematically explored the design
space of OmniLocregression and OmniLocrfm, and achieved
strong results on a challenging subset of osv5m-multi.

1. Introduction
Visual geolocalization, the task of estimating the geographic
origin of an image or a set of images using computer vision,
is a fundamental capability with far-reaching implications
across numerous real-world applications [17]. It underpins
autonomous navigation systems, particularly where GPS re-
liability is compromised [3], enhances safety and security
through intelligent surveillance and forensic analysis, aids
in cultural heritage documentation by identifying and cata-
loging location-specific features, and serves as a challeng-
ing benchmark for assessing the contextual understanding
of advanced vision models [1].

The Ambiguity of a Single Glimpse. Localizing an im-
age is fundamentally a task of uncertainty. A solitary im-
age usually lacks the comprehensive visual cues necessary
for deterministic localization, especially in common urban
settings or visually repetitive natural environments. This

limitation highlights a discrepancy between current single-
image systems and innate human spatial reasoning.

TowardsHuman-like Spatial Reasoning Humans, when
faced with an unfamiliar environment, instinctively seek out
multiple perspectives to orient themselves. Consider the
popular game GeoGuessr: successful players rarely rely on
the initial static view. Instead – in the gamemode where they
can – they virtually ”explore” their surroundings, panning
and moving to gather contextual information from various
vantage points. This accumulation of evidence from mul-
tiple, nearby perspectives is crucial for disambiguating the
scene and forming a confident hypothesis about their loca-
tion [6].

While recent advancements in visual geolocalization
have explored the fusion of diverse information sources,
such as combining ground-level imagery with overhead
satellite views [2], the specific potential of leveraging multi-
ple ground-level perspectives captured from a local vicinity
remains a compelling and relatively underexplored avenue.
Harnessing this rich, spatially coherent information, akin to
human exploration, offers headroom for localization accu-
racy and the reliability of predictions.

OmniLoc: Probabilistic Multiview Visual Geolocation
(PMVG). This work makes two primary contributions to
the space of visual geolocalization:
1. A New Task and a Dataset Adaptation Algorithm for

Multiview Probabilistic Geolocation: We formally de-
fine the task of multiview probabilistic geolocalization,
which involves predicting a probability distribution over
geographic locations given a set of images from a coher-
ent local scene. To support research in this area, we intro-
duce osv5m-multi, a dataset derived from osv5m [1],
specifically curated to provide geographically coherent
multiview scenes (Section 3.2). The proximity partition-
ing algorithm can be applied to any dense, GPS-tagged
dataset.



Figure 1. Visualizing the Riemannian Flow Matching process for geolocalization by OmniLoc. Given input street-view images group
(shown on the periphery of map insets), the model learns a trajectory (blue line) on the Earth’s manifold. This flow transports an initial
noisy location (•) through intermediate steps (•) towards a final predicted geographic coordinate (•), aiming to match the ground truth
location (⋆).

2. OmniLoc: A Novel Multiview Probabilistic Geolo-
cation Framework: We present OmniLoc, a series of
PMVG models designed for this task. OmniLoc effec-
tively fuses information from multiple ground-level per-
spectives using an attention-based mechanism to create
a unified scene representation. Along with a regres-
sion head, we also present a Riemannian Flow Match-
ing (RFM) model [12] to learn a conditional probability
distribution over geographic coordinates for uncertainty-
aware localization (Section 4.3.2).
By addressing the limitations of single-viewmethods and

providing a principled way to model uncertainty, OmniLoc,
along with the proposed task and dataset, aims to advance
the capabilities and reliability of visual geolocalization sys-
tems for real-world applications.

2. Related Work
Visual geolocalization research has evolved significantly,
from foundational single-image approaches to more nu-
anced probabilistic and multi-modal methods. This section
reviews key developments relevant to our work on multi-
view probabilistic geolocalization.

2.1. Classical Visual Geolocation

Early and foundational work in visual geolocalization fo-
cused on localizing single images using large-scale datasets
and powerful image representations. OSV-5M [1] stands as
a critical resource in this area. It is a large-scale, crowd-
sourced street-view dataset comprising 5.1 million geo-
tagged images, uniformly sampled to cover 225 countries
and territories with minimal geographic bias. Each im-
age includes administrative metadata and auxiliary tags like
land-cover type, making this dataset’s scale and diversity
well-suited for training and evaluating robust geolocation
systems.

Building on such datasets, models like StreetCLIP [7]
have advanced the state-of-the-art. StreetCLIP is a CLIP
(Contrastive Language–Image Pretraining)-based vision-
language foundation model fine-tuned for street-level ge-
olocation. StreetCLIP is pre-trained by deriving image cap-
tions synthetically from image class labels using a domain-
specific caption template. Built on a ViT-L/14 backbone,
it was pretrained on 1.1 million GeoGuessr images across
101 countries, each paired with a synthetic caption of the
form ”A Street View photo close to the town of city in
the region of region in country.” As a foundation model,



StreetCLIP achieves state-of-the-art performance on mul-
tiple open-domain image geolocalization benchmarks and
does so in a zero-shot setting without additional fine-tuning,
outperforming supervised models trained on more than 4
million images.

2.2. Probabilistic Visual Geolocation
Recognizing the inherent ambiguity in visual scenes, some
research has shifted towards probabilistic visual geoloca-
tion, where models predict a probability distribution over
possible locations rather than a single point estimate. An
early example, Im2GPS [8], produced a probabilistic-like
output by considering k-nearest neighbors (kNN) of feature
distances and performingmean-shift clustering on their GPS
coordinates, often visualized as a density map.

More recently, generative modeling techniques have of-
fered sophisticated ways to model these distributions. Flow
Matching (FM) [11], for instance, learns a continuous-
time velocity field to transport samples from a simple prior
distribution to a target data distribution by regressing in-
stantaneous velocities of predefined probability paths. Ap-
proaches employing generative techniques like diffusion
and Riemannian Flow Matching [5] further refine this by
explicitly modeling probability densities over geographic
locations, learning denoising trajectories on the Earth’s sur-
face. This allows for robust location estimation and the
quantification of inherent localizability. Our work on proba-
bilistic modeling draws inspiration from these methods, par-
ticularly aiming to adapt techniques similar to those used for
S2 manifold modeling as seen in [5].

2.3. Visual Geolocation Beyond Single Image
The intuition that multiple perspectives improve localiza-
tion, as commonly observed in games like GeoGuessr, has
motivated research into methods that utilize more than a sin-
gle image. Some approaches have exploredmultimodal fu-
sion, such as models [15] that combine convolutional visual
features with textual context from news articles. Experi-
ments on news photo geolocation demonstrate that jointly
modeling both modalities significantly outperforms single-
modality baselines, highlighting the value of diverse infor-
mation sources.

Other works, like Bianco et al. [2], have focused on
different forms of supplementary information. They intro-
duced a retrieval-inspired metric, Recall vs. Area (RvA),
and ensembled geolocation models (GeoEstimation, Geo-
CLIP) with satellite-derived attribute predictors (e.g., pop-
ulation density, land-cover). This strategy yielded signif-
icant accuracy gains, especially in underrepresented rural
and wilderness areas. These efforts underscore the benefits
of incorporating diverse data beyond a single query image
for more robust global visual geolocalization, aligning with
our goal of leveraging multiple ground-level views.

3. Problem Statement
3.1. Problem Formalization
The traditional single-image geolocalization task is to learn
a mapping f : I → S2. In contrast, we formulate the prob-
lem as multiview geolocalization. Our goal is to learn a
function fmulti : P(I) → S2, where we impose proxim-
ity constraints on P(I). The input is a set of M images,
I = {i1, i2, . . . , iM}, that constitute a single geographic
scene. The output is a single, unified point estimate L̂ ∈ S2
that represents the location of the entire scene.

We also explore a conditional generative formulation.
In this setting, the goal is to learn a mapping fgen :
P(I) → Prob(S2), which outputs a full probability distribu-
tion p(L|I) over the sphere, allowing us to explicitly model
location uncertainty.

3.2. Dataset
To support our multiview geolocalization tasks, we adapt
the OpenStreetView-5M (osv5m) dataset [1] (∼5 million
images with GPS coordinates) to generate geographically
coherent ”scenes” for multiview geolocation. The graph-
based method imposes proximity constraints on I such that
it has proximity structure (I ∈ CCs(G∆) ∧ diam(I) ≤
Dmax). Figure 1 shows several examples of multiview
scenes from osv5m-multi.

Efficient Graph-based Partitioning. To create these
multiview scenes, we developed an efficient graph-based
partitioning algorithm. This method first indexes images
spatially, then constructs a proximity graph by connecting
images within a defined distance ∆. Finally, scenes are
formed from the connected components of this graph. A
detailed description of this algorithm can be found in Ap-
pendix 6.1.

This algorithm is computationally tractable for large
datasets like osv5m (N ≈ 5 × 106). The ∆ parameter
defines guarantees of how far away images are in a parti-
tion. We explored different choices of ∆ (Figure 4) and
found ∆ = 0.5km with a maximum scene diameter of 8km
gives a good 39.97% coverage of the osv5m [1] training
set. We provide this multiview version of osv5m, named
osv5m-multi, as a benchmark for the multiview geolocal-
ization tasks we propose. osv5m-multi’s train set contains
1,956,167 images with an average scene size of 7.0.

3.3. Evaluation Metrics
We evaluate our models using several quantitative met-
rics, some specific to the formulations, averaged over the
test set. For point-estimate predictions (the direct out-
put of deterministic models, or samples from generative
models), we use standard accuracy metrics: Accuracy@R
(km), Mean/Median Distance (km) [1], and GeoScore



(5000 exp(−d/1492.7), where higher is better). To assess
the quality of conditional generativemodels, we evaluate the
full output distribution using the Negative Log-Likelihood
(NLL) of the true location under the predicted distribution.

4. Methods
OmniLoc models are designed to transform a set of im-
ages from a single scene into a precise geographic pre-
diction. We investigate two distinct prediction modali-
ties: a deterministic regression approach that outputs a
single coordinate point, and a conditional generative ap-
proach that conditionally models distributions of likely lo-
cations. Both modalities share a common front-end archi-
tecture consisting of a visual backbone and a fusion mod-
ule but employ specialized prediction heads tailored to their
respective tasks. Figure 2 shows the architecture of the
OmniLocregression and OmniLocrfm models.

OmniLocregression

…

visual backbone

fusion

regresseion head

R3

c
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…

visual backbone
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t
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c

Figure 2. Overview of the OmniLocregression and OmniLocrfm model
architectures. Both models share a common visual backbone and
fusion module, which processes multiple input images into a scene
context vector c. This vector then conditions specialized predic-
tion heads: a regression head for direct coordinate prediction, and
a velocity head for conditional generative modeling of location dis-
tributions using Riemannian Flow Matching.

4.1. Visual Backbone
To extract robust visual features, we leverage large, pre-
trained vision models as frozen feature extractors. This al-
lows us to build upon robust, general-purpose visual knowl-
edge and train the prediction network more efficiently. We
investigate two state-of-the-art backbones:
• StreetCLIP: A vision-language model based on CLIP,
specifically fine-tuned for street-level visual geolocaliza-
tion [7]. It was trained using synthetic captions (e.g., ”A
Street View photo close to the town of city in the region of
region in country.”) derived from GeoGuessr images, en-
abling it to learn strong geographically-aware visual fea-
tures. We utilize its ViT-L/14 image encoder.

• SigLIP 2: A more recent family of powerful multilin-
gual vision-language encoders that improve upon the orig-
inal SigLIP [16]. SigLIP 2 incorporates techniques like
captioning-based pretraining and self-supervised losses,
resulting in enhanced semantic understanding and local-
ization. We employ its ViT (So400m/14) image encoder.

For any input image ij , the backbone outputs a 768/1,152-
dimensional embedding ej .

4.2. Fusion Module
The fusion moduleś task is to map the variable-sized set
of image embeddings {e1, . . . , eM} to a single, fixed-size
scene vector c that represents the scene. We explored sev-
eral architectures for this task:
• Mean Pooling Baseline: Simple, parameter-free method.
We evaluated element-wise Mean Pooling (c =
1
M

∑M
j=1 ej).

• Query Attention Fusion: A single learnable query vec-
tor attends to all image embeddings using multi-head at-
tention to produce the scene vector.

• Self-Attention Fusion: Image embeddings first undergo
self-attention. A learnable token, prepended to the se-
quence (a.k.a. CLS token), is then used as the final scene
vector after attention.

4.3. Prediction Heads
The fused scene vector c is passed to one of two specialized
heads, corresponding to our two prediction modalities.
4.3.1. Deterministic Regression Head
For deterministic prediction, we use a regression head to
map the scene vector c to a single 3D coordinate vector on
the unit sphere.

Architecture The head is aMLP conditioned on the scene
vector c with the option to use AdaLN and residual connec-
tions. It employs ReLU or GELU activations and a final
linear layer that outputs a 3D vector ŷ ∈ R3. This vector
is L2-normalized to lie on the sphere S2, yielding our final
location estimate L̂. The architectural details are explained
in 5.4.

Loss Function To handle the spherical topology correctly,
we explored several loss functions, defaulting to the Hu-
ber geodesic loss for its robustness to outliers. The primary
losses considered, operating on the predicted 3D vector ŷ
and the ground truth vector y (both on or normalized to the
unit sphere S2), are:
• Cosine Similarity Loss: Minimizes the angular distance.
Defined as Lreg = 1− ŷ·y

∥ŷ∥2∥y∥2
.

• Angular Loss: Directly computes the angle (in radians)
between L2-normalized predicted vector ŷ and ground
truth vector y. Assuming inputs are normalized, it is



Lang = acos(ŷ · y). During computation, the argument
to acos is clamped to the range [−1, 1] for numerical sta-
bility.

• Huber Geodesic Loss: Operates on the great-circle
distance dkm (in kilometers) between the predicted and
ground truth locations. It is quadratic for errors smaller
than a threshold β and linear otherwise:

LHuber(dkm, β) =

{
0.5 · d2km/β if dkm < β

dkm − 0.5 · β otherwise
(1)

Our default configuration uses β = 250 km.
4.3.2. Velocity Head for Conditional Generative Model-

ing with Riemannian Flow Matching
For conditional generative modeling, we learn a distribu-
tion p(L|c) over likely geographic locations L on the sphere
S2, conditioned on the scene vector c. This is achieved us-
ing Riemannian Flow Matching (RFM) [4, 11], a technique
for learning generative models on manifolds. RFM learns
a time-dependent vector field (velocity field) that transports
samples from a simple prior distribution (uniform on S2)
to samples from the target data distribution (the ground
truth locations). The ”Riemannian” aspect ensures that the
learned flow respects the geometry of the sphere. This
method was proposed in [5] and we reimplemented it in our
work in conjunction with the explored visual backbones and
fusion modules.

Architecture The core of this head is a velocity network,
denoted uθ. This network is tasked with approximating the
true velocity field. We explored FiLM conditioning and
AdaLN conditioning and explain the details in 5.4. The net-
work uθ takes three inputs: a point on the sphere xt ∈ S2, a
scalar time step t ∈ [0, 1], and the scene conditioning vector
c. The time t is first embedded into a high-dimensional rep-
resentation using Gaussian Fourier Projection. The AdaLN
conditioning and Fourier embedding tricks are similar to the
original implementation in [5], but we reimplemented them
in our work. We also heavily used the flow-matching li-
brary from [12] to implement the Riemannian Flow Match-
ing models.

The output of this network is an ambient vector in R3.
This vector is then projected onto the tangent space TxtS2 at
the point xt to ensure the manifold structure.

Loss Function The velocity network uθ is trained using
the conditional Optimal Transport (OT) Flow Matching ob-
jective on the Riemannian manifold S2. The specific path
between a prior sample and a data sample is chosen to be
the geodesic path on the sphere. The loss encourages the
learned velocity field uθ(xt, t, c) to match a target velocity
field vt(xt|x0, x1) that deterministically transports samples

x0 from a simple prior distribution p0(x) (uniform on S2)
to the ground truth location x1 = LGT , conditioned on the
scene vector c. The path sample xt at time t is given by
xt = Path(t; x0, x1), which is the point along the geodesic
from x0 to x1 at fraction t of the path. The target velocity
is then vt = d

dtxt. The loss, fully conditioned on our scene
vector c, is:

LFM (θ) = Et∼U [0,1],x1∼pdata(·|c),x0∼p0(·) ∥uθ(xt, t, c)− vt(xt|x0, x1)∥22
(2)

Here, x1 is the ground truth location (converted to a 3D vec-
tor on S2) and x0 is a random sample from the uniform dis-
tribution on S2. The expectation is taken over uniformly
sampled time t ∈ [0, 1], ground truth locations x1 (whose
distribution depends on c), and prior samples x0.

To enable Classifier-Free Guidance (CFG) [9], during
training, we randomly replace the scene conditioning c with
a learned null embedding (a zero vector in our case) with a
probability cfg_dropout_prob (e.g., 0.1). This allows the
model to learn both conditionally and unconditionally. We
examine the effect of CFG in 5.5.

Inference and Sampling During inference, we generate
samples from the learned conditional distribution p(L|c)
by solving an ordinary differential equation (ODE) on the
sphere S2, typically using numerical solvers. Classifier-Free
Guidance (CFG) can be optionally employed to enhance the
conditioning. This generative process enables the visualiza-
tion of the full distribution of likely locations and the esti-
mation of its properties (e.g., mode, uncertainty), offering a
more comprehensive understanding than a single point esti-
mate. Full details of the inference and sampling procedure,
including the ODE formulation and CFG application, are
provided in Appendix 6.2.

5. Experiments and Results
In this section, we detail the experimental setup and present
the results of our investigations aimed at answering the fol-
lowing key research questions. We evaluate our methods on
the osv5m-multi dataset, focusing on the metrics defined
in Section 3.3.

5.1. Implementation Details
We implemented variants of the OmniLocregression and
OmniLocrfm models, with different choices of visual back-
bones, fusion modules, and prediction heads. We use a sin-
gle g4dn.xlarge instance with T4 GPU, 4 vCPU, and 16
GB memory. Because of the limited compute resource, we
trained the models on a subset of the osv5m-multi dataset
consisting of 129k examples from 1593 unique cities from
the west and southwest of the US; we use the partition algo-
rithm described in Section 3.2. This is a challenging subset
because the images share regional features, and the distances



have a mean of 1244.82 km and a median of 1183.65 km.
For computational efficiency, we precompute image embed-
dings using the visual backbones described in Section 4.1.

Training Details Unless otherwise specified for a partic-
ular experiment, all models were trained using the AdamW
optimizer [13] with a weight decay of 1e-5. We employed
a learning rate schedule with a linear warmup phase for the
first 5 epochs (1% of total epochs, with an initial learning
rate factor of 0.1), followed by a cosine annealing decay
down to 1e-6 (LR/100). Models are trained for a maximum
of 500 epochs (with early stopping using median val dis-
tance with a patience of 10 epochs), using mixed precision
(bf16-mixed) for efficiency. We use the Huber geodesic loss
(β=250km) (which performs the best within the three candi-
dates) for deterministic regression and the Riemannian Flow
Matching loss for generative models (Section 4.3.2), both
operating on the sphere S2. We use batch size of 512 for
all experiments, and a 9:1 train-validation split. We per-
formed 10-fold cross-validation for shallower networks for
hyperparameter tuning, and inherited applicable settings for
larger models where we couldn’t. We swept learning rates
before training each model.

5.2. RQ1: Impact of Visual Backbone Embeddings
We first explore how different visual backbone embeddings
affect the performance of our geolocalization models. We
compare the effectiveness of StreetCLIP [7] and SigLIP
2 [16] as feature extractors. Specifically, we used the
so400m/14 variant of SigLIP 2 and the ViT-L/14 variant of
StreetCLIP (largest models that we can efficiently use with
our GPU memory).

Preliminary t-SNE Analysis To guide our selection of
visual backbones, we first performed a preliminary t-SNE
analysis on a sample of 5000 SigLIP and StreetCLIP em-
beddings (Figure 5). The resulting visualizations show
that SigLIP embeddings could form more distinct and well-
structured clusters compared to StreetCLIP. SigLIP embed-
dings showed a lower coefficient of variation in pairwise
t-SNE distances (0.474 vs. 0.544 for StreetCLIP) and a
higher point density in the 2D projection (0.346 vs. 0.319
points/unit2). This observation, suggesting potentially bet-
ter separability and feature representation with SigLIP, mo-
tivates further investigation in our subsequent experiments,
despite StreetCLIP’s specialization for street-level scenes.

Experimental Setup To understand the impact of the vi-
sual backbones, we train a simple regression model using
both StreetCLIP and SigLIP 2 embeddings, keeping all other
hyperparameters and architectural details consistent (mean
fusion and simple MLP head described below).

Table 1. Performance comparison of StreetCLIP and SigLIP 2 em-
beddings.

Embedding Type

Median
Dist. (km)

↓

Mean
Dist. (km)

↓

Acc@250km
(%)
↑

GeoScore
↑

StreetCLIP 1013.67 1129.19 7.04 2,534.23

SigLIP 2 543.89 708.00 18.16 3,474.39

Analysis Our results indicate that SigLIP 2 provides
stronger conditioning than StreetCLIP, presumably because
its WebLI pre-training corpus (≈10 B images) captures
richer geographic and scene diversity than the 1 M street-
view photos used for StreetCLIP, and because its con-
trastive objective is augmented with caption-grounding and
masked-patch tasks that preserve fine spatial cues critical
for localization [16]. The results also validate our findings
in the preliminary t-SNE experiment. Because of the strong
result, we default to using SigLIP 2 for the rest of the exper-
iments.

5.3. RQ2: Evaluating Pooling Mechanisms for Mul-
tiview Fusion

This study examines the influence of various pooling mech-
anisms in the fusion module for aggregating multiview im-
age embeddings into a unified scene vector. We compare
Mean Pooling and several attention-based mechanisms, in-
cluding Self-Attention and Query Attention (e.g., using a
learned query vector).

Experimental Setup Using the best performing embed-
ding from 5.2, SigLIP 2, we train simple regression mod-
els with different pooling strategies: Mean Pooling, Self-
Attention, and Query Attention. This helps us understand
the impact of the fusion module on the performance of the
model, and its scalability with the number of images in a
scene. Training parameters are kept consistent across these
experiments.

Table 2. Comparison of different pooling mechanisms.

Pooling Mechanism

Median Dist.
(km)
↓

Mean Dist.
(km)
↓

Acc@250km
(%)
↑

Geoscore
↑

Mean Pooling 543.89 708.00 18.16 3472.32

Self-Attention 458.87 646.70 27.52 3675.98

Query Attention 465.72 677.52 24.23 3659.13



Analysis Our results in 2 show that attention-based fu-
sion outperforms simple pooling strategies. This difference
stems from how each mechanism aggregates multiview in-
formation. Mean Pooling, while simple and efficient, treats
all image features equally, failing to emphasize geometri-
cally or semantically salient views. Query Attention intro-
duces a learnable query for some selectivity but lacks the full
pairwise context modeling of Self-Attention. Transformer-
style Self-Attention explicitly models inter-image relation-
ships, enabling the network to focus on the most informa-
tive perspectives (e.g., distinctive landmarks or unique street
patterns), leading to better geolocation performance.

We also investigated scalability with the number of im-
ages (group size). Attention-based mechanisms (query and
self-attention) generally outperform mean pooling as group
sizes increase, supporting the hypothesis that complex fu-
sion better captures salient features from multiple views.
Mean fusion shows erratic behavior and low performance
at larger scales, suggesting ineffective aggregation. Self-
attention benefited from scaling, peaking at a group size of
3 (0.28 acc@250km), but performance declined at larger
group sizes, indicating potential limitations in handling
many images. Query attention, however, demonstrated the
most consistent performance across group sizes, with strong
performance at group size 5 (0.52 acc@250km), suggesting
better scalability (for transparency, however, group size 5
sample size is relatively small, see 4). This may be due to its
learned query vector selectively attending to relevant parts
of each view, ignoring redundancy. With more images, it is
more probable that some views will contain discriminative
features for the query.

We acknowledged that more experiments are needed to
confirm these findings, as our dataset’s training mixture is
skewed towards smaller group sizes. We added group size
jittering to the training set to attempt to address sequence
length generalization.

5.4. RQ3: Optimizing Prediction Head Architec-
ture

Since we use frozen image encoders from strong visual
backbones, we wanted to determine whether prediction net-
works benefit from deeper architectures or if shallower prob-
ing networks offer better quality-cost trade-offs. This sec-
tion investigates the prediction head architecture for both
deterministic regression and the RFM model’s velocity net-
work. All models in these experiments use SigLIP 2 em-
beddings with self-attention pooling. We use the best per-
forming regression model from 5.3 as the base model, and
implemented the baseline/deeper RFM models described in
4.3.2.

Deterministic regression.
• Baseline: a three-layer MLP (hidden width 512, ReLU)

that maps the fused embedding to latitude-longitude. A
LayerNorm is applied after each layer.

• Deeper MLP with AdaLN: eight AdaLN–MLP blocks
operating on a learnable register; the fused embedding is
linearly projected to the hidden dimension (dh = 256)
and supplies per-block triplets (γ, µ, σ) that adaptively
scale and shift the LayerNorm-centred activations. A fi-
nal AdaLN modulation and a tiny MLP predictor output
the coordinates. We expect the AdaLN head to be more
expressive and stable.

Riemannian Flow-Matching (RFM) velocity network.
• Baseline with FiLM conditioning: three FiLM-
conditioned [14] residual blocks where time and image
embeddings generate additive (γ, β) parameters that mod-
ulate hidden features.

• Deeper with AdaLN: twelve AdaLN–MLP blocks ap-
plied to the projected spherical state; the shared condition-
ing vector controls per-block (γ, µ, σ), followed by a final
AdaLN layer and linear read-out. The scale-invariant de-
sign is expected to yield smoother, more accurate velocity
fields while preserving tangent–space equivariance.

Table 3. Comparison of deterministic regression and RFMvelocity
network designs.

Model
NLL
↓

Median
Dist. (km)

↓

Mean
Dist. (km)

↓

Acc@250km
(%)
↑

GeoScore
↑

Regression (Simple) N/A 458.87 646.69879 24.68 3675.97
Regression (Deeper) N/A 358.96 604.89545 37.54 3930.61
RFM (Simple) 5.41 825.12 979.53 8.13 2875.89
RFM (Deeper) 2.08 709.08 876.02 14.91 3108.32

Analysis The results in Table 3 show that deeper predic-
tion head architectures incorporating AdaLN yield better
performance for both deterministic regression and Rieman-
nian FlowMatching (RFM). These findings validate our hy-
pothesis that the deeper networks can acquire more com-
plex mappings for geospatial localization, beyond probing
the pre-trained scene embeddings.

We did notice, however, that the generative RFM mod-
els’ accuracy performance, as measured by median distance
and Acc@250km, is generally lower than their determinis-
tic regression counterparts when trained with the same data
and number of epochs. This is likely because RFM learns
the entire conditional distribution on S2. Inference involves
sampling this distribution, so variance inevitably introduces
inaccuracies in deterministic metrics. The additional modal-
ity of being able to model the conditional distribution comes
at a cost where future works should consider leverage more
data to learn the distribution. We expect training with the
full osv5m-multi will help to reduce the gap. In 5.5, we



explore a method to improve the RFMmodel’s performance
by using Classifier-Free Guidance (CFG).

5.5. RQ4: Enhancing RFM Performance with CFG
Experimental Setup Using the best performing RFM
model architecture identified in the 5.4 , we conduct experi-
ments with and without CFG (varying guidance scales) and
study its effect on the model’s performance.

We examine the effect of CFG on the RFM model’s
performance. Figure 3 shows the validation accuracy
(Acc@250km) curves during training for the baseline RFM
model and RFM with Classifier-Free Guidance (CFG,
scale=2.0). Table 4 shows the performance metrics for the
two models.

Figure 3. Comparison of validation accuracy (Acc@250km)
curves during training for the baseline RFM model and RFM with
Classifier-Free Guidance (CFG, scale=2.0). CFG demonstrates
improved accuracy throughout training.

Table 4. Impact of Classifier-Free Guidance (CFG) on on RFM
performance.

RFM
Config.

NLL
↓

Median
Dist. (km)

↓

Mean
Dist. (km)

↓

Acc@250km
(%)
↑

GeoScore
↑

Baseline RFM 2.08 709.08 876.02 14.91 3108.52
CFG (scale=2.0) 7.13 576.84 713.13 19.98 3396.51

Analysis The results show that CFG significantly im-
proves the RFMmodelś predictive accuracy, with better dis-
tance metrics and accuracy within 250 km. This shows CFG
effectively steers the generative process toward more pre-
cise location predictions. However, this adversely affects
probabilistic calibration, as shown by the significant rise in
NLL. This is a known trade-off between sample quality and
diversity [9].

5.6. Overall Performance and Future Work
Our experiments indicate that the optimal regression model
utilizes a deeper MLP architecture with AdaLN, achiev-

ing a median distance error of 358.96 km and an accu-
racy of 37.54% within 250 km. For the generative ap-
proach, the Riemannian Flow Matching model enhanced
with Classifier-Free Guidance (scale=2.0) performed best,
yielding a median distance error of 576.84 km and an accu-
racy of 19.98% within 250 km. We systematically explored
the impact of the visual backbones, fusionmodules, and pre-
diction heads on the performance of the models. We also ex-
plored the impact of Classifier-Free Guidance (CFG) on the
RFM model’s performance. For better performing models,
we would like to train using the full osv5m-multi dataset.
We expect this to, particularly, improve the RFM model’s
performance. We could use EMA to stabilize the training
of the RFM model as well, a standard practice in generative
models albeit requiring more compute.

6. Conclusion
This work introduced OmniLoc, a framework for multiview
probabilistic visual geolocalization. We extended visual
geolocation to the multiview setting by extracting features
with strong visual backbones, fusing them with attention,
and then either regressing coordinates (OmniLocregression) or
modeling location probability distributions on the sphere
(OmniLocrfm).

Key contributions include: (1) the osv5m-multi dataset,
created with an efficient proximity-based partitioning algo-
rithm that transforms dense GPS-tagged imagery into ge-
ographically coherent scenes for multiview research; and
(2) an exploration of the OmniLoc design space, demon-
strating strong performance for both OmniLocregression and
OmniLocrfm on a challenging osv5m-multi subset.

Experiments revealed that: modern vision-language
models (SigLIP 2) offer more discriminative features than
specialized ones (StreetCLIP); attention-based fusion sur-
passes simple pooling, especially for complex scenes;
deeper, adaptively normalized architectures improve both
deterministic and generative models; and Classifier-Free
Guidance enhances generative model accuracy at the cost
of calibration.

We think OmniLoc provides a valuable foundation for
future multiview geolocalization and uncertainty model-
ing. Future work includes scaling to the full osv5m-multi
dataset, exploring advanced fusion and generative tech-
niques for better calibration, and adapting OmniLoc for dy-
namic or sparse environments. Developing spatially rea-
soning agents that actively select viewpoints to reduce im-
ages needed for localization is a particularly exciting direc-
tion.
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Figure 4. Effect of the ∆ threshold on the distribution of multi-
view scene sizes (Connected Components) from osv5m. Larger∆
thresholds produce fewer but larger scenes. The Y-axis is on a log
scale. Stars denote the maximum scene size observed for each ∆
setting, given an 8km maximum diameter constraint for scenes.

Figure 5. t-SNE visualization of StreetCLIP and SigLIP 2 em-
beddings (n=5000 each) from a subset (individual images) of the
osv5m-multi dataset.

6.1. Efficient Graph-based Partitioning for Scene
Creation

Identifying optimally ”dense” visual clusters in large image
datasets can be computationally challenging. For instance,
framing this as findingmaximal cliques in a proximity graph
is an NP-hard problem, making it infeasible for datasets with
millions of images. To address this, we employ an efficient
graph-based approach. This method identifies connected
components (CCs) in a proximity graph, which naturally
represent explorable scenes where any image is reachable
from another via a path of nearby observations. The algo-
rithm proceeds as follows:

1. Spatial Indexing: Image coordinates (latitude, longi-
tude) are indexed using a BallTree [10] with the Haver-
sine metric. BallTree construction isO(M logM) forM
images.

2. Proximity Graph Construction: For each image, a
radius query on the BallTree identifies all neighbors
within a∆ threshold (in kilometers). This defines an ad-
jacency list for the graph. For sparse graphs, this step
is typically efficient (amortized O(M logM) or O(M ·
kavg) where kavg is the average number of neighbors per
image).

3. Scene Formation: Multiview scenes are formed by
computing the CCs of this graph. A Breadth-First Search
(BFS) on the sparse graph representation (M nodes, E
edges) achieves this in O(M + E) time.

6.2. Detailed Inference and Sampling for Rieman-
nian Flow Matching

At inference, to draw samples from the learned conditional
distribution p(L|c), we solve the ordinary differential equa-
tion (ODE) dx

dt = uθ(xt, t, c) from t = 0 to t = 1, starting
with an initial sample x0 drawn from the prior distribution
(uniform on S2). This is performed on the manifold S2 using
numerical ODE solvers such as Euler, Midpoint, or RK4,
with a configurable number of sampling steps. In practice,
we use 100 steps and midpoint solver.

If Classifier-Free Guidance (CFG) is used, the velocity
function during sampling is modified to:

ûθ(xt, t, c) = uθ(xt, t, ∅) + s · (uθ(xt, t, c)− uθ(xt, t, ∅))

where ∅ denotes the null conditioning and s is the
cfg_scale (guidance scale). A scale s > 1 amplifies the
conditioning.


