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Abstract

Standard deepfake detection approaches using CNN
classifiers such as ResNet often suffer from extreme class
imbalance, with many systems achieving high perfor-
mance on one class while failing on the other, limiting
their effectiveness in real-world deployment. We propose
an enhanced ResNet-50 ensemble system that combines
a general-purpose model with a specialist model sensi-
tive to non-deepfake images, and introduces systematic
threshold optimization to achieve balanced performance.
Our architecture uses layer freezing, class-specific aug-
mentation, weighted sampling, and mixed precision train-
ing for efficient learning. Evaluated on the CelebDF
dataset, our ensemble achieves 91% accuracy, 99.3%
fake recall, and 91.7% real recall, significantly outper-
forming the baseline ResNet-50 model (63% accuracy,
25% real recall). Compared to a standard YOLOI1 fine-
tuning pipeline, our approach directly addresses class
imbalance through architectural and training-level inno-
vations. Our method achieves balanced, high-precision
deepfake detection, addressing the real-world challenge
of classifier bias in imbalanced datasets.

1. Introduction

The rapid advancement of generative models (e.g.,
OpenATl’s GPT-4o [12], GANs [6]) has led to widespread
proliferation of Al-synthesized media, particularly face-
swapping videos known as deepfakes [2]. These syn-
thetic images and videos convincingly replicate a per-
son’s likeness, often making it difficult, if not impossible,
for the human eye to distinguish them from authentic

content. [[L1]. This trend has created an urgent need for
reliable detection systems.

Although progress has been made in developing deep-
fake detection algorithms [21], recent research has found
significant limitations that make many systems unsuitable
for real-world deployment: severe class imbalance bias
where models achieve high overall accuracy in test envi-
ronments but fail in real image detection. This bias arises
from training datasets that overrepresent Al-generated
content and rely on limited evaluation metrics, leading to
poor generalization. In systems such as content modera-
tion platforms, this leads to extremely high false positive
rates, where real content is flagged as being fake.

Our work addresses the class imbalance issue through
an ensemble architecture that combines the training of a
specialist model with systematic threshold optimization.
Unlike standard transfer learning methods which treat
all classes equally, our approach allows for the system
to achieve balanced performance across both real and
Al-generated content, providing structured framework
which can be applied to any base model.

Using ResNet-50 as a benchmark architecture, we
developed a generalizable method comprising specialist
model training with extreme class weighting, ensemble
fusion to combine the predictions of the general and spe-
cialist models, and systematic threshold optimization to
enhance balanced performance specific to the deploy-
ment. Starting at a baseline of 63% accuracy and 25%
recall, this method resulted in a dramatic provement to
91% accuracy, 91.7% real recall, and 99.3% fake recall.

Guided by feedback from TA Gabriela Aranguiz-Dias,
we referenced our approach from the Multi-Attentional
Deepfake Detection method [23] and the Celeb-DF v2



dataset [8]].

2. Related Work

Deep learning models, such as ResNet-50 and
YOLOL11, are pivotal in identifying and labeling deep-
fakes due to their proven effectiveness in image clas-
sification and feature extraction tasks. Convolutional
Neural Networks (CNNs) are widely utilized in various
computer vision applications, including deepfake detec-
tion, owing to their ability to effectively capture and
analyze complex visual patterns that is often indicative
of manipulated media [22]]. ResNet-50, with its intricate
architecture and skip connections, excels at discerning
subtle differences between authentic and manipulated
images, making it highly efficient for deepfake detection.
Similarly, YOLO11 is known for its speed and accuracy
in examination of image features, which is critical for ac-
curately identifying altered content [S]]. Integrating these
models into deepfake detection frameworks facilitates the
development of robust systems capable of detecting even
the most subtle manipulations. Moreover, these models
are often employed in ensemble approaches, leveraging
their unique strengths to further enhance detection ac-
curacy. Accurate deepfake identification is essential in
scalable scenarios, such as content moderation on social
media platforms or forensic investigations [16].

2.1. Advancements in Deepfake Detection

Yildiz [20] conducted a comprehensive survey on
deepfake detection methods, emphasizing advancements
in datasets and the application of computer vision and
deep learning algorithms. Their work underscores the
importance of categorizing deepfake datasets and devel-
oping robust protocols to differentiate between genuine
and manipulated media. Rana et al.[13] explored the
use of traditional machine learning algorithms for deep-
fake detection, comparing their effectiveness with deep
learning approaches. Their findings suggest that ma-
chine learning methods can serve as viable alternatives
or complements to deep learning techniques, particularly
in resource-constrained environments. Lin et al.[9] es-
tablished a rigorous benchmark for evaluating deepfake
detection algorithms, providing a standardized frame-
work for assessing their effectiveness. Shao et al.[18]
introduced the concept of “Sequential DeepFake Manip-
ulation,” proposing a dataset and a detection method,
SeqFakeFormer, to address complex multi-step facial ma-
nipulations, which are more challenging than single-step
alterations. H. Ling et al.[10] presented a method using
image-level supervision to detect deepfakes by learning
diverse local patterns, enhancing the ability to identify
subtle manipulations in real-world scenarios.

2.2. Cross-Domain Transfer

Several studies highlight the versatility of ResNet-50
and YOLOI11 in image classification tasks beyond deep-
fake detection. Sarwinda et al.[14] investigated the use of
ResNet-50 for colorectal cancer detection, demonstrating
its consistent and reliable performance in distinguishing
between benign and cancerous images. This underscores
its capability in tasks requiring precise image analysis.
H. P. Chilakalapudi et al. [3] conducted a compara-
tive analysis of YOLO11 and ResNet50V2 for COVID-
19 detection in lung images. Their findings revealed
that YOLO11 offered superior speed and lower compu-
tational demands, while ResNet50V2 exhibited excep-
tional precision, particularly for mild conditions. Wang
& Gong[19] proposed a novel approach using ResNet-50
to classify metastatic cancer images, achieving higher
precision compared to models like YOLO11. The study
emphasized ResNet-50’s ability to handle complex image
datasets, a critical factor for detecting sophisticated deep-
fakes. Lamine et al.[[1] explored the use of YOLO11 and
ResNet-50 for tumor region detection in histopathology
images, achieving accuracy rates close to 97%. Simi-
larly, Shah et al.[[17] compared ResNet-50, Inception V3,
and VGG16 for early detection of rice diseases, with
ResNet-50 achieving the highest accuracy, highlighting
its robustness in classification tasks essential for deepfake
detection.

2.3. Facial Expression Analysis in Deepfake De-
tection

Effective classification of facial expressions is critical
in deepfake detection, as deepfake techniques often in-
volve subtle alterations to facial features and expressions
to create convincing yet deceptive content. ResNet-50
and YOLOI11 are well-suited for this task due to their
robust image classification capabilities, including pre-
cise facial expression identification. This study leverages

the | Celeb-DF dataset |, applying extensive preprocess-
ing, followed by training and evaluating the models us-
ing key metrics such as precision, recall, and F1 score.
This approach enhances the models’ ability to distinguish
between authentic and manipulated images while high-
lighting the importance of facial expression analysis in
deepfake detection. By focusing on these methodologies,
this research aims to improve the efficiency of automated
systems in detecting deepfakes, particularly in scenarios
where facial expressions are critical for determining au-
thenticity. One of the challenges in Deepfake datasets
is to measure structural limitations of Deepfake Media
Datasets. Seth Layton et al. [[7]] presented the first sys-
tematization of deepfake media, discovered significant
problems impacting the comparability of systems using
these datasets, including unaccounted-for heavy class
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imbalance and reliance upon limited metrics.

3. Methods

Our goal is to evaluate and compare different CNN-
based architectures for frame-level deepfake detection.
Rather than combining models into a single pipeline,
we assess each model independently to understand its
strengths, limitations, and suitability for handling spatial
manipulations commonly found in deepfakes.

We consider two models: ResNet-50 and YOLOv11.
ResNet-50, a deep residual network, is configured for
binary classification of cropped facial images as real or
fake. YOLOv11, in contrast, is designed for fast, general-
purpose object detection and classification. Although not
specifically optimized for deepfake analysis, YOLOv11
offers a useful performance baseline due to its architec-
tural efficiency and high recall on manipulated images.

For both models, inputs are treated at the frame level.
A preprocessing pipeline based on OpenCV extracts a
fixed number of representative frames from each video,
standardizes them, and feeds them into the selected
model. Predictions are generated independently for each
frame, with no temporal aggregation.

The ResNet-50 system includes enhancements to ad-
dress class imbalance, including the use of a real-class
specialist model and threshold sweeping for improved
calibration. YOLOv11, by contrast, is evaluated as-is
to assess how well a general-purpose detector performs
under the same conditions.

By comparing these approaches side-by-side, we aim
to isolate the contributions of model architecture, special-
ization, and threshold design in the overall performance
of deepfake detection systems.

3.1. ResNet-50 Baseline

We use ResNet-50 as our base architecture for deep-
fake detection due to its effectiveness in image recogni-
tion and classification tasks. ResNet-50 employs resid-
ual blocks which enable the training of deeper networks
while avoiding vanishing gradient problems. However,
our baseline implementation revealed severe class imbal-
ance limitations, achieving only 25% real image recall
despite 91% fake image recall, motivating our enhanced
approach.

3.2. YOLOv11

We incorporate YOLOv11, a recent Ultralytics model,
into our evaluation pipeline. Its architecture includes
a Backbone for multi-scape feature extraction (C3k2,
SPPF), a Neck with Cross-Stage Partial Spatial Attention
(C2PSA), and a Head for object detection and classi-
fication. While YOLOvI11 is primarily optimized for
general-purpose vision tasks, we include it in our evalua-

tion to assess its potential for rapid, lightweight deepfake
detection. Its strong performance in generic anomaly
detection offers a useful baseline for comparison against
more specialized models.

To contextualize our ResNet—50 ensemble’s perfor-
mance, we use YOLOV11 as a baseline. Despite its effi-
ciency and accuracy in standard object detection tasks,
YOLOV11 is not explicitly designed to address the chal-
lenges posed by deepfake detection—particularly the issue
of class imbalance. Its architecture and loss functions
prioritize bounding-box accuracy and high-throughput in-
ference, rather than the fine-grained classification needed
to distinguish real from convincingly generated faces
under skewed data distributions. In our experiments,
YOLOV11 achieves high recall on fake samples but strug-
gles to maintain precision on real ones, reflecting its bias
toward the majority class.

This limitation highlights the value of more targeted
solutions. Our ensemble-based ResNet-50 system in-
corporates a real-sensitive specialist model and adaptive
threshold optimization to correct for imbalance-driven
misclassification. In this context, YOLOvV11 serves not
as a competing architecture but as a representative of
general-purpose models that fail to address the core chal-
lenges of deepfake detection under class imbalance.
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3.3. Enhanced ResNet-50 Architecture

Our enhanced ResNet-50 architecture utilizes several
architectural improvements to address the limitations of
class imbalance, such as the use of a fully connected layer
acting on mid-level features, batch normalization, and
dropout. We additionally use layer freezing to preserve
low-level features (such as edges and textures) and fine-
tune later parts of the model focused on more complex
patterns (such as faces and expressions). This enhanced
architecture serves as the foundation for both the general
and specialist models.

3.4. Specialist Model Training

To address high class imbalance, we train a special-
ist model prioritizing real-image detection. The model
shares the same architecture and layer freezing strategy
as the general model, but uses extreme class weighting
to focus learning on the minority class.

We compute the class weight for real images as:

fake_count
Wregl = | ———— | X 8.0
real_count

This amplification biases the loss function toward the
minimization of real-image errors. The model is trained
for 25 epochs using a cross-entropy loss with this weight
configuration, producing a model with a high recall on
real images.

3.5. Ensemble Architecture

In order to combine the strengths of both models,
we create an ensemble which fuses the outputs of the
balanced main model and the specialist This strategy
allows us to increase the system’s sensitivity on real
images without lowering overall accuracy.

3.6. Threshold Optimization

Unlike standard binary classifiers which use a fixed
threshold of 0.5 and fail when faced will class imbalance,
we introduce a threshold sweeping function to maximize
real-class recall while maintaining high fake recall, im-
proving decision boundary calibration.

3.7. Advanced Training Strategies

We implemented several advanced training strate-
gies aimed at enhancing both performance and gen-
eralization. First, we applied layer freezing to pre-
serve low-level visual features learned from pretrain-
ing by freezing the early convolutional layers (specif-
ically, layerl and layer2) of the ResNet archi-
tecture. To address class imbalance during train-
ing, we incorporated weighted sampling using the
WeightedRandomSampler, which ensured that each
mini-batch contained a balanced distribution of real and

fake samples. For improved computational efficiency
and faster convergence, we enabled mixed precision
training using Automatic Mixed Precision (AMP). Fur-
thermore, we employed an ensemble method, where pre-
dictions from the main model were combined with those
of a specialist model trained specifically on the minority
class. Finally, we introduced differential augmentation,
applying distinct data augmentation pipelines to real and
fake images to expose the model to a broader range of
domain-specific variations and reduce overfitting.

3.8. Comparison: YOLO vs. ResNet for Deep-
Fake Detection

We compare the architectural roles and performance
characteristics of YOLOv11 and our ResNet-50 ensemble
in the context of deepfake detection.

YOLOV11 is optimized for high-throughput, real-time
object detection, offering efficient region-of-interest ex-
traction from uncropped frames. However, its design
emphasizes localization and speed over fine-grained bi-
nary discrimination, making it less effective for deepfake
detection under class imbalance. In our experiments,
YOLOV11 achieves high recall on fake samples but ex-
hibits degraded precision on real inputs—a consequence
of its bias toward the majority class.

The ResNet-50 ensemble, by contrast, is purpose-built
to address these limitations. It integrates a balanced
base classifier, a real-class specialist model, and adap-
tive threshold optimization to enhance robustness under
skewed distributions. This targeted architecture improves
sensitivity to subtle generative artifacts while reducing
false positives on real content—a critical requirement in
high-stakes forensic applications.

This comparison highlights a fundamental tradeoff:
YOLOVI11 excels in speed and general-purpose detec-
tion, whereas the ResNet-50 ensemble delivers higher
reliability for domain-specific binary classification. Eval-
uating both models side by side quantifies the value of
architectural and training specialization in the context of
deepfake detection.

4. Dataset and Features

For facial DeepFake detection, we utilize the publicly
available Celeb-DF dataset [8]], which comprises 5,639
high-quality DeepFake videos of celebrities generated
using an improved face synthesis method. The dataset
corresponds to over 2 million individual video frames,
offering a rich and diverse collection for training and eval-
uation. The real source videos are curated from publicly
available YouTube clips featuring 59 celebrities across
a range of genders, age groups, and ethnic backgrounds.

The DeepFake samples in Celeb-DF are synthesized
using an enhanced generation pipeline that significantly



Figure 2. Celeb-DF synthetic process

reduces common visual artifacts found in earlier datasets,
resulting in more photorealistic and challenging exam-
ples. This improved realism better reflects DeepFakes en-
countered in the wild. An example visualization is shown
in Fig. 2] We conduct our evaluations using Celeb-DF in
conjunction with other existing datasets, providing one
of the most comprehensive benchmarks for assessing the
generalizability of current DeepFake detection methods.
Notably, the results reveal that Celeb-DF remains chal-
lenging for many state-of-the-art models, highlighting the
need for more robust detection techniques despite high
reported accuracies on earlier, less complex datasets. For
reference, the dataset is available at ’ Celeb-DF dataset |

4.1. Data Preprocessing

After reading the video files, we preprocessed them
by extracting individual frames prior to feeding the data
into our spatial and temporal models. To preserve spa-
tial consistency, we maintained the original height and
width dimensions of the images throughout preprocess-
ing. Data augmentation techniques were subsequently
applied during training to improve the model’s gener-
alization capability. Each video was annotated with a
binary label: 1 for real videos and 0 for fake videos.
Using the OpenCV library, we extracted a single repre-
sentative frame from each video. In total, we generated
5,306 entries in the input dataset, consisting of 890 real
frames and 4,415 fake frames.

The dataset was randomized and partitioned into three
subsets: 70% for training, 20% for validation, and 10%
for testing. This corresponds to 3,710 images in the
training set, 1,058 images in the validation set, and 537
images in the testing set, all labeled into two classes:
real and fake. For our local frame-by-frame models
(YOLOv11 and ResNet-50), we treated the dataset as
a "bag of frames" and applied shuffling at the frame level
to ensure randomness and prevent temporal bias during
training.

5. Experiments/Results/Discussion
5.1. YOLO implementation and analysis
5.1.1 Initial Model Architecture

We started our experiment by implement State-of-Art
YOLOV11 pretrained model to fine tune on our dataset.
We have tested both YOLOvV11n-cls and YOLOv11s-cls
versions. We started the training by initialize the model
architecture as below:

Listing 1. Baseline ResNet50 Architecture

from ultralytics import YOLO

# Load a pretrained YOLOIlln model
model = YOLO ("yololln-cls.pt")

# Train the model

train_results = model.train (
data="/content/DeepFake-1",
epochs=10, # Number of training epochs
imgsz=640, # Image size for training
device=0, # Device to run on (e.g.,

< ’‘cpu’, 0, [0,1,2,3])

task="classify",
project="Deepfake-YOLOvV11l",
name="yololln",
auto_augment="randaugment",
val=True,
verbose=False,

5.1.2 Baseline Training Setup

For the YOLOv11 model, we incorporated the AutoAug-
ment technique [4]], a powerful method for enhancing
the performance of modern image classifiers by automat-
ically discovering improved data augmentation policies.
In our implementation, we defined a flexible search space
in which each policy consists of multiple sub-policies.
During training, one sub-policy is randomly selected for
each image in every mini-batch. Each sub-policy applies
two image transformation operations—such as translation,
rotation, or shearing—each with its own probability and
magnitude.

While the milestone version of the model was trained
for only 10 epochs, we extended training to 30 epochs
in the final version. This longer training schedule led to
noticeable improvements in both training and validation
loss, as illustrated in Figure E Additional plots show-
ing the training and validation loss as well as accuracy
are provided in Appendix [I2] To better understand the
model’s predictive behavior, we also visualized its classi-
fication results using a confusion matrix in Figured For
qualitative insights into the model’s attention, we applied
GradCAM visualizations to a few representative samples
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Figure 5. YOLO GradCAM

from our dataset, which helped interpret what regions
the model focuses on when making predictions, show
examples in the Fig[3]

5.2. ResNet implementation and analysis

5.2.1 Initial Model Architecture

Listing 2. Baseline ResNet50 Architecture

nn.Linear (in_features,
“ num_classes)

class DeepFakeResNet50 (nn.Module) :
def _ init_ (self, num_classes=2,

< pretrained=True) :
super (DeepFakeResNet50,

— self).__init_ ()
self.model =

~— models.resnet50 (pretrained)
in_features =

«» self.model.fc.in_features
self.model.fc = nn.Sequential (

nn.Dropout (0.5),

5.2.2 Baseline Training Setup

The baseline training configuration incorporated several
foundational strategies to facilitate effective model con-
vergence. Stochastic Gradient Descent (SGD) was em-
ployed as the optimizer, using a momentum value of
0.9 and a weight decay of 1 x 10~* to promote gener-
alization and mitigate overfitting. The learning rate was
initialized at 0.0005 and scheduled to decrease over time
via a StepLR scheduler. For the loss function, CrossEn-
tropyLoss was used with class weights set to [1.5, 0.8]
to partially address class imbalance. To enhance model
robustness and reduce overfitting, a variety of data aug-
mentation techniques were applied, including resizing,
random cropping, horizontal flipping, rotation, and color
jittering. The batch size was set to 128 when training
on GPU and reduced to 16 when training on CPU to
accommodate hardware limitations.

5.2.3 Milestone Results

Here is a summary of our milestone results, we can also
visualize it in Fig[6}] We are providing a qualitative results
using evaluation metrics with precision, recall, f1-score
and accuracy in the Fig[7} We also included our training
and val loss in Appendix T3]

* Overall Accuracy: ~72%

* Real Detection: 19 correct, 57 misclassified (Very
Poor)

¢ Fake Detection: 181 correct, 19 misclassified

» Key Issue: Severe class imbalance causing model
bias towards fake class

5.2.4 Final Implementation Improvements

We started our improvements by first enhanced the archi-
tecture as below:

Listing 3. Enhanced FC Layers in ResNet50

self.model.fc = nn.Sequential (
nn.Dropout (0.4),
nn.Linear (in_£f, 512),
nn.BatchNormld (512),
nn.RelLU(),
nn.Dropout (0.2),
nn.Linear (512, num_classes)
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Figure 6. Milestone Baseline Confusion Matrix

Final Evaluation Metrics:

precision recall fl-score support
.33 76

.83 200

accuracy .72 276
macro avg . 0.58 .58 276
weighted avg 5 . .69 276

Figure 7. ResNet Evaluation Metrics

Listing 4. Real-focused Specialist Trainer

def train_real_specialist():
# real weight = (fake_count /
—» real count) * 8.0
# Trains specifically for real images

With the improvements discussed above, we are able
to achieve the performance comparison in the table [I]
below:

Table 1. Milestone vs. Final Performance Comparison

Metric Milestone | Final Improvement
(Ensem-
ble)

Overall Accuracy | 72% 91% +19%

Real Recall 25% 91.7% +67%

Fake Recall 90% 99.3% +9%

AUC Score 0.75 0.916 +0.166

5.2.5 Final Results Summary

We are providing our final qualitative results using eval-
uation matrix |§| below, we can also visualize it in Fig E}
We also included our training precision-recall curve and
ROC Curve in the appendix [T4] We also add and test the
different Thresholds setting where we achieve our best
results, shown in Fig[I0]

Classification Report (Threshold = 0.5):

¢ Real: Precision 0.74, Recall 0.63, F1-Score 0.68
¢ Fake: Precision 0.94, Recall 0.96, F1-Score 0.95

Ensemble (threshold=8.5) - Classification Report:
recall fl-score support

precision

Real 8.74 -63 -68
Fake 8.94 -96 -95

accuracy
macro avg
weighted avg

-

=
[
ca 0o oo

[

Figure 8. Final ResNet Evaluation Matrix

Confusion Matrix (Counts) @ Threshold 0.5

Confusion Matrix (Normalized) @ Threshold 0.5

Metrics at fixed
Threshold @.25 |
Threshold @.
Threshold @.

I

» Precision: ©.919, Recall
Precision: 0.937, Recall
Precision: 0.954, Recall

Threshold @. Precision: 8.851, Recall

PR AUC: 8.982, ROC AUC: 8.916

Real/Fake Recall Sweep (Fake > 90%)
Th=0.80 - Real 0.0%, Fake 100.0%
Th=8 - Real 9 , Fake 99.9%
Th=0.82 - Real 9 , Fake 9
Th=8.83 - Real 9 , Fake

Th=8.49 » Real 74.6%, Fake 96.2%
Th=8.58 - Real

* BEST THRESHOLD = @.82, Expected Real-Recall = 97.8%

Figure 10. Final ResNet Evaluation Matrix with thresholds

¢ Accuracy: 91%

* PR AUC: 0.982, ROC AUC: 0.916
Optimal Threshold Analysis:

* Best threshold = 0.10

* Real Recall: 91.7%

¢ Fake Recall: 99.3%

5.2.6 Milestone vs. Final Version Analysis

The final implementation marks a substantial improve-
ment over the milestone in both architecture and method-
ology. This advancement is driven by three key technical
innovations:

1. Balanced Dataset Pipeline

class CelebDFDataset (Dataset) :
# Class—-specific transforms and
< balancing



# Automatic label detection via
<~ folder name

2. Threshold Optimization

def sweep_real_threshold(labels,
<~ probs, min_fake_recall=0.90):
# Find threshold maximizing real
<~ recall

3. Ensemble Architecture

def ensemble_predict (main_model,
— specialist, inputs):
combined = 0.6 % main_logits +
— 0.4 x specialist_logits
return combined

These architectural and procedural improvements sig-
nificantly elevated model performance. Beyond the three
core innovations, we introduced several auxiliary refine-
ments: a deeper network with Batch Normalization re-
placed the shallow milestone classifier, boosting gener-
alization; training was stabilized with techniques like
layer freezing, mixed-precision execution, and stratified
sampling; and fixed thresholding was replaced by a data-
driven optimization strategy that better controlled recall—
precision tradeoffs.

Together, these changes led to a 25 percentage point
increase in real-class recallaATfrom 66.7% in the mile-
stone version to 91.7% in the final model. What began
as a proof-of-concept evolved into a robust, interpretable
system for deepfake detection under class imbalance.

5.2.7 Heatmaps

To improve interpretability, we applied Grad-CAM [135]
to both ResNet-50 and YOLOv11. As shown in Fig. [TT]
ResNet-50 emphasized localized facial artifacts, while
YOLOvI11 attended to broader regions. These saliency
maps clarified model behavior and underscored the im-
portance of architectures tuned to subtle manipulations.

Figure 11. Final ResNet Heatmap

6. Conclusion/Future Work

Our work addresses a limitation in deepfake detection
due to severe class imbalance. Our enhanced ResNet-50
ensemble system transforms low baseline accuracy and
recalls into balanced, high performance, in both accu-
racy and recall. Through our work, we identified class
imbalance as a key factor in training and deploying effec-
tive CNN-based deepfake detection models, developed a
specialist model to enhance prediction accuracy on the
minority class, developed an ensemble strategy combin-
ing a general model with a specialist model, and used
threshold optimization to tune the system’s performance.

Our experiments focus on spatial models operating
at the frame level. While effective at detecting intra-
frame artifacts, these models cannot capture inconsis-
tencies that emerge only across consecutive frames, i.e.
in videos. This limitation highlights the critical impor-
tance of temporal modeling in robust DeepFake detection.
Without access to sequential information, spatial mod-
els are prone to missing temporal artifacts indicative of
manipulation. Our study was conducted exclusively on
the Celeb-DF dataset. Future research should incorporate
additional benchmarks, such as the DeepFake Detection
Challenge (DFDC) dataset and FaceForensics++, to eval-
uate model generalization and robustness across varied
sources. Since training data strongly affects performance,
leveraging multiple datasets would offer deeper insight
into cross-domain transferability and detection reliability.

A promising direction for future work involves inte-
grating temporal architecturesdATsuch as 3D CNNs or
video transformersaATinto pipelines that already extract
representative frames. This would enable the detection
of dynamic anomalies and improve performance on full-
length videos.

7. Appendices
7.1. YOLOV11 training validation and accuracy
7.2. ResNet training loss

7.3. final resnet training curve
8. Contributions & Acknowledgments

Victor led the implementation for YOLOv11. Mad-
huhaas developed the ResNet-50 ensemble system, con-
ducted, specialist model training and, performed thresh-
old optimization. Jiheng led the research and data analy-
sis. We would like to express our gratitude for the TAs
who have helped us throughout the project, special thanks
to Gabriela Aranguiz-Dias, Sabri Eyuboglu, Kyle Sar-
gent, Matthew Jin and Shutong Zhang for their insightful
feedback and guidance.
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