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Abstract

Understanding the subsurface plays a pivotal role in
the sustainable energy transition through large-scale initia-
tives such as underground carbon sequestration and hydro-
gen storage. Visualizing rock structures and pore networks
is important for understanding fluid–rock interactions and
serves as a critical first step in implementing these geologic
projects. X-ray Computed Tomography (CT) is well-known
for providing rock imaging at approximately 100 µm with
high temporal resolution. This makes it suitable for in situ
observations of fluid–rock interactions during experiments.
However, the limited spatial resolution of CT introduces sig-
nificant uncertainty in key pore-scale features that govern
transport processes, such as fracture locations, pore con-
nectivity, and micro-scale pores or fractures. As a robust
alternative, micro-CT offers around tenfold improvement
in spatial resolution but is constrained by high acquisition
costs in both time and resources. This limits its use for in
situ dynamic studies. To address this trade-off between spa-
tial and temporal resolution, this study proposes a workflow
that leverages super-resolution X-ray CT, powered by var-
ious computer vision models, to efficiently generate high-
resolution micro-CT rock images from fast-acquired CT im-
ages. The outcomes of this work have the potential to signif-
icantly improve the economic viability and implementation
feasibility of large-scale subsurface energy projects.

1. Introduction
Understanding the pore structure of rocks is important

for large-scale geological and reservoir engineering applica-
tions, including CO2 sequestration, underground hydrogen
storage, and geothermal energy recovery. To understand the
subsurface characteristics, reservoir engineers need to take
rock samples from the subsurface reservoir of interest and
perform lab experiments on the collected samples. To ob-
tain the properties of the rock and monitor the experiment
progress, 3-D CT scans on the sample before, during, and
after the experiments are essential. For a 5 cm-long rock

sample, a 3-D CT scan can be obtained in around 3 minutes,
but a 3-D micro-CT scan requires at least 3 hours [8]. This
long image acquisition time limits the micro-CT’s ability
to perform in situ observation (i.e., observation during the
experiment). On the other hand, the resolution of micro-CT
images (around 10 µm) is significantly finer than CT images
(around 100 µm), and it can give a detailed characterization
of the pore networks of rocks. To take advantage of both
short data-acquisition time and high image resolution, we
plan to translate X-ray CT images of rock to micro-CT in
this project.

The fundamental idea is to treat this task as micro-
CT generation conditioned on paired CT scans and spatial
masks that discriminate between regions inside and outside
the rock. Previous research on using generative adversarial
networks (GANs) for this conditional generation has been
explored in Murugesu et al. [8]. However, recent advances
in deep generative models show that diffusion models and
flow matching models achieve state-of-the-art performance
in many computer vision tasks [2] and are much easier to
train compared to GANs. Denoising diffusion probabilistic
models [3, DDPMs] are one of the most famous diffusion
models that learn and reproduce complicated distributions
of high-dimensional data by maximizing the likelihood of
training data. The backbone of diffusion models, U-Net,
was later replaced by transformers called diffusion trans-
former [9, DiT] and scalable interpolant transformer [7,
SiT], which make the model more scalable. Therefore, we
will primarily focus on two popular models—DDPMs and
SiT—and compare them in terms of generation efficiency
and performance.

2. Related Work
Several previous studies have investigated the super reso-

lution of computed tomography images using deep-learning
based approaches. However, instead of transferring among
modalities (i.e., from CT to micro-CT), previous studies
have largely focused on recovering high-resolution struc-
ture within a single imaging modality with moderate scal-
ing factors and either paired or reference-based supervision.
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Figure 1. Visualization of the processing stages for a pair of CT
(top row: rock matrix identification, cropping, and normalization)
and micro-CT (bottom row: normalization, averaging, and align-
ment) images from the dataset described in Section 4.

For instance, You et al. [14] introduced GAN-CIRCLE
to enhance tibia CT using an ensemble of adversarial and
cycle-consistency losses. They successfully enhanced the
resolution from 300 µm to 150 µm. To better captur-
ing long-range dependencies and global contextual rela-
tionships, Zhou et al. [16] implemented a joint denois-
ing scheme that combines GAN with reference-based trans-
former approaches to enhance CT scans from low to high
resolution. In the context of geology, Liu et al. [5] ad-
dressed unpaired rock CT super resolution using a non-local
CycleGAN. They successfully reached 4 times resolution
enhancement for CT images. Meanwhile, Ma et al. [15] ap-
plied diffusion models to synthetically enhance micro-CT
carbonate volumes by up to 16 times. Despite the large res-
olution enhancement, their model assumed already micro-
scale input. These studies operate within the same modality
and improve from already decent-resolution inputs. In con-
trast, the task of predicting micro-CT-scale features (< 10
µm) directly from CT (> 100 µm) introduces a more severe
resolution gap, compounded by cross-modal discrepancies
and the lack of voxel-aligned training pairs.

The only known attempt to enhance the resolution of
rock images across modality is done by Murugesu et al.
[8]. They employed conditional GAN to enhance the res-
olution of rock CT iamges. However, their results revealed
two main limitations. First, due to memory constraints
and the limitations of CNN-based architectures, both CT
and micro-CT images were resized to 256 × 256, effec-
tively downscaling the micro-CT by a factor of four and
upscaling the CT by a factor of two. While they still pre-
served a relative resolution gap, it compromised physical
fidelity. Second, the super-resolution performance remains
limited, with the best test sample achieving only an SSIM of
0.1999 and a PSNR of 18.286. This indicates that the gen-
erated micro-CT images still struggle to recover fine-scale
structural details essential for downstream geological anal-
ysis. This project uses the same raw dataset as Murugesu et
al. [8], but employs more advanced computer vision mod-

els, namely DDPMs and SiT.
Most previous studies utilized GAN-based models. Re-

cent work has shown that diffusion models offer superior
training stability and mode coverage compared to GANs by
gradually learning to reverse a fixed Markovian noise pro-
cess through likelihood maximization [3]. This avoids the
challenges of adversarial minimax optimization while pro-
ducing more diverse samples with stronger theoretical guar-
antees for convergence.

Building on these advantages, several diffusion model
formulations have been proposed to further improve image
synthesis performance. Among them, DDPMs [3], Score-
Matching Langevin Dynamics (SMLD) [12], and score-
based Stochastic Differential Equations (SDEs) [13] repre-
sent three complementary perspectives on diffusion mod-
eling. Song et al. [12] demonstrated that forward and re-
verse SDEs can describe the noise injection and denoising
processes, and derived the corresponding SDE formulations
for DDPMs and SMLD, referred to as the Variance Preserv-
ing (VP) and Variance Exploding (VE) SDEs, respectively.
In parallel, flow-based generative models [4, 6] and recent
work on unifying diffusion and flow-matching frameworks
through stochastic interpolants [1] have explored alternative
approaches to generative modeling. These methods provide
a theoretical bridge between score-based diffusion and de-
terministic flow models, and have shown strong potential
for high-quality image super-resolution.

3. Problem Statement

Specifically, the input for the model contains three chan-
nels. The first two are conditioning CT and the same-sized
Gaussian noise images. As shown in Fig. 1, all rock cores
in the CT and micro-CT images have a circular shape, so
we introduced a third masking channel of pixel values of 0
outside and 1 inside the circle to guide the network to fo-
cus only on the region that contains the rock matrix. The
output is the corresponding micro-CT. In this study, the CT-
micro-CT image pairs we used were obtained from shale
rock. Model performance is evaluated qualitatively, through
visual comparison of generated and ground-truth micro-CT,
and quantitatively, using Peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), and customized
loss. We analyzed stability trends across timesteps and
epochs. This project is connected to our broader research in
geologic imaging, but the model architecture design, train-
ing strategy, and evaluation framework were uniquely de-
veloped.

4. Dataset

We have obtained the 3-D CT and micro-CT scans of
shale rock samples. Using a series of customized programs,
we have developed a workflow to extract, process, and cor-



relate the CT images with corresponding micro-CT images.
In brief, we first read the raw CT and micro-CT images
from their directories and handled DICOM-to-PNG conver-
sion for CT. The 3-D volumetric scans were converted to
a stack of 2-D images, and the resolution of the CT and
micro-CT images is 195 µm and 27 µm. For each CT and
micro-CT pair, a tight circular mask was then created to
isolate the circular rock sample from the background. To
ensure consistency, pixel value intensities inside the circu-
lar region were normalized from 0 to 1; CT images under-
went histogram matching to align their intensity distribu-
tion with micro-CT images. Each normalized core was then
tightly cropped around the detected circle and resized (CT
to 128×128 and micro-CT to 1024×1024). To further en-
hance the image quality and contrast of distinct features in
the images, we implemented Gaussian noise filtering on the
images. To account for the difference in spatial resolution,
we averaged the pixel values of approximately 24 micro-
CT slices to match the resolution of a single clinical CT
slice. We also implemented Particle swarm optimization
(PSO)-based alignment to correct rotational misalignment
between CT and micro-CT images. A detailed visualization
of the image processing workflow is illustrated in Fig. 1.
One of the distinct features of shale rock is its long and thin
fractures. Because fractures are pore spaces, their pixel val-
ues are usually close to 0. To attenuate the prediction of the
distinct features, we inverted the normalized pixel values
in the original processed image pairs, so pixels in the frac-
tures will have the highest pixel values, and misprediction
on these pixels will result in greater loss.

After a series of image processing and visual inspection,
we selected 83 pairs of CT and micro-CT images. The data
augmentation consists of rotating each image by 10 degrees,
cropping the images evenly into 4, and vertically flipping
the cropped images. So, we have 83×36×4×2=23,904 im-
ages, and we used 80% for training, 10% for validation, and
10% for the test set.

5. Method

5.1. Diffusion and flow matching

Diffusion models and flow matching are two popular
and closely related generative methods, which include ap-
proaches such as DDPMs and SiT. We will first introduce
the principles of DDPMs, followed by SiT, which unifies
diffusion models and flow matching, as the latter has been
shown to generate higher-fidelity images.

DDPMs include two essential processes: a pre-defined
forward process and a trainable reverse process that gener-
ate data from Gaussian noise. The forward process converts
the mirco-CT, which is sampled from training sets, into
Gaussian noise by gradually adding small Gaussian noise
step by step, as illustrated in Fig 2.

Figure 2. Illustration of the forward (noise perturbation) and
reverse (denoising) processes in DDPM for micro-CT super-
resolution conditioned on CT images.

The forward transformation follows a Gaussian distribu-
tion with mean

√
1− βt xt−1 and variance βtI:

q(xt | xt−1) = N (xt;
√
1− βt xt−1, βtI), t ∈ {1, . . . , T},

where βt represents the variance of the added noise level,
and I represents the identity matrix, while t denotes the
iteration number and T is the total number of iterations.
With a sufficiently small value for βt, the reverse process
can be shown to have a function similar to the forward pro-
cess [11, 3], resulting in the inverse conditional distribution
pθ(xt−1 | xt) also being a Gaussian distribution. In Ho et
al. [3], βt is set to increase linearly, with β1 = 10−4 and
βT = 0.02.

To maximize the likelihood of the training data, the
smoothed L1 loss function Lt is derived for training the
neural network in DDPM, and is given by:

Lt(ϵθ, ϵt) =

{
0.5(ϵθ(xt, ct, t)− ϵt)

2, if |ϵθ − ϵt| < 1

|ϵθ(xt, ct, t)− ϵt| − 0.5, otherwise

where ϵt is a standard Gaussian noise independently sam-
pled at step t, and ϵθ(xt, ct, t) represents the noise pre-
dicted by a U-Net parameterized by θ, conditioned on the
CT image ct.

Once the denoising U-Net is trained, standard Gaussian
noise can be sampled and iteratively denoised using the
network—conditioned on the low-resolution CT input—to
generate a clean micro-CT image, as illustrated in Fig. 2.

SiT involves not only the diffusion or flow matching gen-
eration process but also leverages an autoencoder with Kull-
back–Leibler divergence (AutoencoderKL) for more effi-
cient generation. The first step is to train the Autoen-
coderKL from scratch to convert the original micro-CT do-
main into latent features with lower dimensionality, while
still allowing reconstruction of the original micro-CT im-
ages, as denoted by encoder and decoder in Fig 3. To en-
hance the reconstruction quality, we introduce two addi-
tional components: perceptual loss and a patch discrimi-
nator, following the procedure in [10]. Second, within the
latent space, we build a flow-matching generative model



that uses a transformer to learn the velocity fields that drive
Gaussian noise toward the latent micro-CT features, condi-
tioned on the CT data.

The forward process of SiT is described by xt = αtx0+
σtϵ, where x0 is the original micro-CT image, and ϵ ∼
N (0, I) is standard Gaussian noise. The transformer is
trained to predict the velocity field that reverses this pro-
cess. The loss function for training the transformer with
parameters θ is given by

Lv(θ) =

∫
E
[
∥v(xt, ct, t)− ẋt∥2

]
dt,

where v(xt, ct, t) denotes the velocity predicted by the
transformer, conditioned on the current state xt, the CT im-
age ct, and iteration step t.

Figure 3. SiT-based super-resolution framework showing forward
(noise perturbation) and reverse (generation) processes for produc-
ing micro-CT images conditioned on CT input.

After training the transformer-based velocity estimator,
an ordinary differential equation (ODE) solver, specifically
Dopri5, is used to generate the latent micro-CT features
from standard Gaussian noise. These latent features are then
passed through the decoder of the autoencoder to produce
the final micro-CT image, as illustrated in Fig. 3.

5.2. Experimental setup

For the DDPMs training, on top of the smoothed L1
loss, the overall loss also consisted of a customized loss
function termed fracture loss that emphasizes fine fractures
and pore regions using spatial variance, brightness weight-
ing, and gradient-based structural losses. Specifically, the
loss generated a weighted smoothed L1 loss with the fol-
lowing equations that give greater weights on regions with
low variance (e.g., homogeneous pixel distribution inside
fractures) and high brightness (e.g., congregated pore pix-
els). In the weighting equations, the hyperparameter α
controls the sensitivity to local variance, γ adjusts the em-
phasis on brighter structures, and δ modulates the overall
sharpness and influence of the combined weights. The lo-
cal variance is computed using a sliding average filter (i.e.,
Var(x) = AvgPool(x2)−(AvgPool(x))2). The total weight

is defined as the product of variance and brightness weights:

wtot = exp(−α · Var(x)) · (x+ 0.1)γ

These weights are combined with a sharpening exponent
and normalized:

wi,c,h,w =

(
wtot

i,c,h,w · maski,c,h,w
)δ

H∑
h=1

W∑
w=1

(
wtot

i,c,h,w · maski,c,h,w
)δ

+ ϵ

,

where i, c, h, and w denote the sample, channel, height, and
width indices, respectively and ϵ is a small constant for nu-
merical stability. Finally, the loss is computed as a weighted
smooth L1 loss:

Lfracture =
1

N

N∑
i=1

clamp
(
wiL

i
t,max = 5.0

)
,

where N is the batch size.
For the training of both DDPMs and SiT, we used the

AdamW optimizer with an initial learning rate of 5× 10−5.
For DDPMs, a ReduceLROnPlateau scheduler was ap-
plied with a reduction factor of 0.5 and a patience of 20
epochs. Noise levels were scheduled using a linear beta
scheduler over 800 diffusion timesteps. Regularization was
applied through weight decay of 5 × 10−4, and gradient
norm clipping with a threshold of 0.7 was used to improve
training stability. For the SiT, we used a cosine decay
scheduler, and we did not implement any weight decay and
gradient norm clipping, as this combination gave better re-
sults during both the training and testing.

6. Results
For training, we have built and trained a DDPM for

this image super-resolution task. Fig. 4 shows the train-
ing and validation losses of the DDPMs case, in which no
over-fitting is observed. The SiT model maintains similar
training and validation loss throughout training, as illus-
trated in Fig. 5, indicating that overfitting does not occur
as well. We quantitatively evaluated the performance of the
network on 60 samples in the test dataset. Figs. 6 and 7
present the quantitative performance of the trained DDPMs
on the test dataset. Figs. 8 illustrates the qualitative per-
formance. The average PSNR and SSIM scores on these
samples are 19.90 and 0.358, respectively. Despite not be-
ing extremely high, they are already better than the best
values reported from the previous study on similar dataset
(PSNR=18.29 and SSIM=0.199) [8]. There are four main
reasons behind the intrinsic difficulty in predicting micro-
CT with high quantitative metrics. First, PSNR and SSIM
are highly sensitive to small pixel-level differences, which
may not impact perceptual quality but still lower the scores.
Second, these metrics do not always reflect human visual
perception, especially in structurally complex images like
micro-CT. Third, even after denoising or correction, sub-



tle artifacts in micro-CT predictions can significantly re-
duce PSNR and SSIM. Fourth, the CT image inherently
lacks the high-frequency small-scale features contained in
the micro-CT. Each of the four areas presents distinct chal-
lenges that limit metric-based performance gains through
model design.

Figure 4. The training and validation loss for the DDPMs case.
The loss is smoothed L1 loss + 1.5 × fracture loss.

Figure 5. Training and validation loss curves of the SiT model. The
loss represents the mean squared error of the velocity prediction.

Figure 6. The peak signal-to-noise ratio for 60 images from the
test dataset.

We treat the model trained without the fracture loss as
the baseline, Figs. 6, 7, and 10 show both quantitative and
qualitative improvement introduced by the loss.

Figure 7. The structural similarity index measure for 60 images
from the test dataset.

In addition to some examples with relatively high statis-
tical indicators shown in Fig. 8, Fig. 9 displays five samples

Figure 8. The 5 samples predicted by the DDPMs with fracture
loss that achieved the highest SSIM among the 60 test images.
Each row (from left to right) contains the conditioning CT, the
generated micro-CT, the true micro-CT, and the absolute pixel-
wise prediction error.

with the lowest SSIM scores. Although their SSIM scores
are not as high as others, the key fractures are still gener-
ated at a fine resolution, matching well with the reference
micro-CT images.

We include the conditional generation results from the
baseline model without considering the fracture loss in Fig.
10. Without using the fracture loss, the baseline DDPMs are
not able to generate fractures that are consistent with those
in the reference micro-CTs. This demonstrates the signifi-
cant improvement achieved by adding the fracture loss.

The autoencoder were trained with with a discriminator,
Kullback–Leibler (KL) divergence, and perceptual losses.
Figs. 11 and 12 demonstrates that the autoencoder is able
to reconstruct the original micro-CT well given a certain set
of noise. The SiT-predicted micro-CT images demonstrate
superior accuracy compared to DDPMs predictions as evi-
denced by both SSIM (avg=0.41) and PSNR (avg=20.71)
metrics illustrated in Figs. 6 and 7. Notably, these re-
sults were achieved despite SiT being trained for fewer than
100 epochs, which is significantly less than the 200 to 300
epochs allocated to fully trained DDPMs. Furthermore,
SiT’s accuracy was evaluated on full-resolution micro-CT
images rather than the resized versions used for DDPMs.
This enhances physical fidelity. Qualitatively, as shown in
Figs. 13 and 14, SiT predictions exhibit markedly better
preservation of fine structural details including small black
grains, micro-fractures, and intricate grain textures. These



Figure 9. The 5 samples predicted by the DDPMs with fracture
loss that have the worst SSIM among the 60 test images. Each row
(from left to right) contains the conditioning CT, the generated
micro-CT, the true micro-CT, and the absolute pixel-wise predic-
tion error.

Figure 10. The 5 samples predicted by the DDPMs without frac-
ture loss that achieved the highest SSIM among the 60 test im-
ages. Each row (from left to right) contains the conditioning CT,
the generated micro-CT, the true micro-CT, and the absolute pixel-
wise prediction error.

findings suggest that SiT not only converges faster but also
preserves more physically meaningful features compared to

DDPMs. Future work will include direct performance com-
parisons between SiT and latent diffusion models to provide
a more valid assessment.

Figure 11. The structural similarity index measure and peak signal-
to-noise ratio of 60 images from the test dataset decoded by the
autoencoder.

Figure 12. The 5 samples predicted by the autoencoder that
achieved the highest SSIM among the 60 test images. Each row
(from left to right) contains the decoded micro-CT, the true micro-
CT, and the absolute pixel-wise prediction error.



Figure 13. The 5 samples predicted by the SiT that achieved the
highest SSIM among the 60 test images. Each row (from left to
right) contains the decoded micro-CT, the true micro-CT, and the
absolute pixel-wise prediction error.

Figure 14. The 5 samples predicted by the SiT that achieved the
lowest SSIM among the 60 test images. Each row (from left to
right) contains the decoded micro-CT, the true micro-CT, and the
absolute pixel-wise prediction error.

7. Discussion
In this study, we treat the image super-resolution as

a conditional image generation task. We mainly ex-

plored two models: Denoising diffusion probabilistic mod-
els (DDPMs) and scalable interpolant transformer (SiT).
Owing to time constraints, we did not investigate the la-
tent diffusion model, which employs a U-Net architecture
as its backbone. Instead, we resized the micro-CT image
from (512,512) to (256,256) and trained DDMPs directly
on the resized images. For the SiT training, we first trained
an auto-encoder with a discriminator, KL divergence, and
perceptual losses to reduce the dimension of micro-CT im-
ages from (1,512,512) to (8,64,64). Then, the SiT training
is performed on the encoded latent space with the CT im-
ages of size (1,64,64) as another concatenated conditioning
channel. Overall, we have achieved at least satisfactory per-
formance on all models examined.

Inference on 60 reduced-size images using the trained
DDPMs takes approximately 9 minutes with 800 timesteps.
In contrast, inference with the autoencoder and SiT models
on 60 full-size images requires only around 6 minutes. This
performance difference is rooted in the fundamental archi-
tectural distinctions between these generative approaches.
DDPMs operate through an iterative Markov chain of de-
noising steps, and they require hundreds of sequential for-
ward passes through the network to gradually convert noise
into image structure. This inherently sequential nature cre-
ates a computational bottleneck that scales linearly with the
number of diffusion steps.

In addition, the SiT models outperform DDPMs in both
perceptual quality and numerical accuracy. For DDPMs,
the inclusion of fracture loss is critical because it helps
direct the model’s attention to essential features. With-
out this guidance, DDPMs often fail to converge to the
ground truth. These observations suggest that SiT train-
ing is inherently more stable and better guided than that of
DDPMs. The transformer-based architecture of SiT lever-
ages self-attention mechanisms that capture global depen-
dencies across the entire spatial domain in a single oper-
ation. This parallel processing of spatial relationships al-
lows SiT to model complex inter-dependencies more effec-
tively than the step-by-step refinement approach of DDPMs.
The SiT architecture’s theoretical advantage stems from its
formulation as a continuous normalizing flow in the latent
space. By directly modeling velocity fields rather than noise
residuals, SiT learns probability flow ODEs that provide
more direct paths through the latent space. This learning
reduces the variance in gradient estimates during training
compared to the noise prediction objective in DDPMs. Be-
cause the model learns a deterministic transformation rather
than relying on a stochastic process with potentially higher
variance, the flow-based formulation also enables more sta-
ble convergence properties. Combining with the trans-
former’s capacity to capture long-range dependencies, the
flow-based strategy leads to the observed improvements in
both generation quality and computational efficiency.



8. Conclusion and Future Work
This study addresses the problem of rock image super-

resolution by framing it as a conditional generation task.
We evaluate two representative generative models, DDPM
and SiT, for synthesizing high-resolution micro-CT images
from low-resolution CT inputs. Both models demonstrate
the ability to recover fine structural details and generate
realistic micro-CT representations conditioned on coarse-
resolution data.

Among the two models, SiT demonstrates superior per-
formance, not only through visual comparison but also
based on quantitative metrics such as SSIM and PSNR.
While DDPM provides satisfactory results, SiT offers ad-
ditional advantages in computational efficiency by operat-
ing in a lower-dimensional latent space, which reduces the
cost of the iterative generation process. These results high-
light the effectiveness of deep generative models in bridg-
ing the resolution gap between CT and micro-CT imagery,
providing a data-driven approach for enhancing geological
interpretation.

Future work will focus on extending this framework in
several directions. First, we plan to implement DiT and
other transformer architectures to compare both generation
quality and computational performance. Second, we aim
to integrate end-to-end learning with visual representations
derived from DINO, which may lead to more robust fea-
ture learning. Third, we want to implement latent diffusion
model to give a more valid comparison between SiT and
DDPMs. Finally, we will expand the dataset to include var-
ious rock types, such as shale and mudstone, with the goal
of training a single model that generalizes across litholo-
gies.
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