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Abstract

This project explores optical character recognition
(OCR) for Syriac, a historically significant but underrep-
resented writing system. The task is divided into two sub-
tasks: consonant detection/recognition and word detec-
tion/recognition. The dataset was constructed using real
Syriac manuscript images as well as clean synthetic ren-
derings, with extensive preprocessing and normalization. 1
implement and evaluate several deep learning models, in-
cluding K-Nearest Neighbors (KNN), Convolutional Neu-
ral Networks (CNN), CRNN-LSTM, and Transformer-based
architectures. For each model, I experiment with hyperpa-
rameter configurations and analyze performance using ac-
curacy as the primary evaluation metric. My results show
that while CNNs perform well on single-character recogni-
tion, Transformer-based models outperform CRNN-LSTMs
on the more complex word-level task. This work demon-
strates the feasibility of using modern deep learning meth-
ods for Syriac OCR and provides insights for further im-
provements in low-resource language processing.

1. Introduction

The Syrian language, which originates from early and
medieval Christian communities in the region of modern-
day Syria, is of significant cultural and historical impor-
tance. These communities maintained extensive records in
Syriac manuscripts. Consequently, the ability to efficiently
extract information from these manuscripts is crucial to ex-
pand our understanding of these communities.

Optical character recognition (OCR) is a valuable tool
in this regard. OCR is a method for extracting text from
images, offering a means of automating the transcription of
Syriac manuscripts. However, the application of OCR to
Syriac text introduces unique challenges.

A major challenge in developing Syriac OCR lies in
the script’s structure. Syriac is written from right to left
and often features connected characters, making it diffi-
cult to isolate individual consonants. Consonants are rep-
resented by larger base characters, while vowels appear as

smaller marks above them, requiring careful modeling of
their spatial relationships. Additionally, Syriac manuscripts
use three primary fonts—Serto, Estrangela, and East Syr-
ian—each with distinct stylistic variations.

To tackle these challenges, I adopt a structured approach
that breaks down the OCR task into a baseline and a pro-
posed method. The baseline method focuses on Syriac de-
tection and recognition at the character level. The proposed
method focuses on Syriac detection and recognition for en-
tire syriac words.

Before performing recognition, Syriac text must first be
detected and localized within an image. This involves iden-
tifying the regions that contain individual characters or lines
of text. Due to the handwritten and often degraded nature
of Syriac manuscripts, text detection presents a significant
challenge. Common issues include uneven line spacing,
connected characters, ink bleed, and background noise. In
this project, Syriac text detection was applied to both clean
synthetic images and historical manuscript scans. The input
to the detection system was an image containing Syriac text,
and the output was a set of bounding boxes corresponding
to either individual consonants or full words.

The input to the Syriac consonant recognition task is an
image of a Syriac consonant. I use both a K-Nearest Neigh-
bors (KNN) classifier and a Convolutional Neural Network
(CNN) to output the predicted consonant class from a fixed
set of 35 Syriac consonants. For full word recognition, the
input is an image containing a sequence of 2 to 9 conso-
nants. I explore two architectures: a CRNN-LSTM model
trained with Connectionist Temporal Classification (CTC)
loss, and a Transformer-based sequence-to-sequence model
trained with cross-entropy loss. Both models output a pre-
dicted sequence of consonants representing the full word.

Across experiments, this project found that while the
CNN consistently outperformed KNN in single-character
classification, accuracy improved significantly with more
training data and deeper architectures. In the word recogni-
tion task, the Transformer model outperformed the CRNN-
LSTM model, achieving higher accuracy and generating
more coherent predictions on multi-character input. These
results suggest that attention-based architectures are better



suited for modeling Syriac’s positional and morphological
complexity, especially in low-resource settings.

2. Related Work

Smith (2007) introduced Tesseract OCR, a widely used
open-source OCR engine that has been adapted for multiple
scripts, including Syriac [18]. While Tesseract has demon-
strated effectiveness in recognizing Latin-based scripts, its
application to Syriac remains limited due to the script’s
cursive nature and diacritic usage, necessitating specialized
adaptations for improved recognition.

Majeed and Hassani (2024) presented a study on devel-
oping an OCR model for handwritten Syriac texts using
the KHAMIS dataset, which consists of 624 handwritten
East Syriac sentences from 32 contributors [11]. Their re-
search fine-tuned the Tesseract OCR engine’s Syriac model
for handwritten text recognition, achieving significantly im-
proved character error rates. This study highlights the im-
portance of dataset creation and adaptation in Syriac OCR
development, reinforcing the necessity of tailored datasets
for enhancing recognition performance.

Chesley et al. (2024) evaluated Tesseract 4.0’s OCR per-
formance on different Syriac font types [4]. Their findings
indicate that Tesseract achieves high consonantal accuracy
for Estrangela (around 99%) but performs less reliably on
Serto (89—94%) and East Syriac (89%). Their work under-
scores the need of further training and human revision for
Serto and East Syriac, aligning with this project’s focus on
improving accuracy for these less-supported Syriac styles.

Effective text detection is a critical preprocessing step for
any OCR pipeline, especially when dealing with complex
or degraded images. Cho et al. (2016) discuss the Canny
Text Detector, a fast and robust scene text localization al-
gorithm inspired by the Canny edge detector [5]. By lever-
aging the structural similarities between edge patterns and
text—such as spatial cohesion, stroke width, and color sim-
ilarity—their method uses double thresholding and hystere-
sis tracking to detect cohesive character regions, improv-
ing recall compared to methods that rely heavily on high-
confidence character classification. This is especially useful
in multilingual or noisy visual environments. Complement-
ing this, Ventzas et al. (2012) address the specific chal-
lenges of historical manuscript restoration through denois-
ing and binarization techniques [21]. Their work highlights
the importance of converting images to grayscale and ap-
plying adaptive thresholding to remove background textures
and enhance character visibility. Together, these approaches
inform the preprocessing pipeline for my Syriac text recog-
nition model, which must contend with background noise,
variable script morphology, and limited training data.

Bush et al. (2024) challenge the traditional binary classi-
fication of Syriac scripts into Estrangela and Serto [3]. Us-
ing a database of tens of thousands of Syriac letters from

96% of securely dated early Syriac manuscripts, their re-
search demonstrates that this common categorization does
not accurately reflect how early scribes actually wrote. By
applying digital analysis and visual analytics, their study
illustrates the need for a more nuanced classification sys-
tem that better represents historical script variations. Their
findings support the use of large datasets and computational
methods in refining Syriac paleographic studies.

Kataria and Jethva (2022) address the challenges of OCR
for Sanskrit manuscripts using a CNN-BLSTM architec-
ture with CTC loss [9]. Their work focuses on overcoming
issues such as overlapping lines, touching characters, and
degraded inputs—common in historical Indian manuscripts
written in complex scripts. While existing models primar-
ily focus on isolated character recognition, their approach
emphasizes robustness against real-world noise and script
irregularities by leveraging sequence modeling with bidi-
rectional LSTMs. Similarly, Mars et al. (2023) propose
a hybrid architecture that combines a denoising generative
adversarial network (DE-GAN) with a CNN-LSTM-CTC
pipeline to improve OCR accuracy for Arabic script on im-
ages with colorful and noisy backgrounds [12]. The DE-
GAN is used to clean the input image before sequence la-
beling. These works are particularly relevant to my project,
which also employs a CNN-LSTM model with CTC loss to
recognize Syriac verb sequences from images. Like San-
skrit and Arabic, Syriac poses challenges such as connected
consonants and variation in script shape, making both de-
noising and sequence-aware architectures valuable compar-
ative strategies for improving OCR performance in low-
resource, historical scripts.

Transformer-based OCR models have shown strong po-
tential for handling the complexity and variability of histori-
cal scripts. Strobel et al. (2023) demonstrate that such mod-
els can generalize well across multilingual datasets with
minimal training data, effectively recognizing both printed
and handwritten texts—an ability particularly useful for
digitizing diverse archival materials [19]. Building on this
promise, Mostafaa et al. (2022) propose an end-to-end OCR
framework for Arabic handwriting that eliminates convolu-
tional backbones in favor of a Vision Transformer (BEIT)
encoder paired with a standard transformer decoder [13].
Their model incorporates image enhancement, time-space
optimization, and post-correction layers, achieving a 4.46%
character error rate on a massive 270 million-word corpus
with Classical Arabic diacritics. These studies highlight the
adaptability and scalability of transformer architectures, of-
fering a compelling path forward for a transformer-based
Syriac OCR, where challenges such as morphological rich-
ness, diacritics, and stylistic variation closely parallel those
in Arabic and other historical scripts.



3. Data Sources

The Digital Analysis of Syriac Handwriting (DASH)
project (2010—present) has contributed significantly to the
digital study of Syriac manuscripts [16]. This interdisci-
plinary initiative integrates religious studies, computer sci-
ence, and visual analytics to analyze Syriac script develop-
ment and scribal practices. DASH consists of a large image
database of 22,089 images of 35 distinct consonants (in-
cluding subforms) found in 156 early Syriac manuscripts.
This data that I scraped is used to train both the single-
consonant classifier and the word classifier. Rather than re-
lying on traditional font-based categories (i.e., Estrangela,
Serto, and East Syrian), which Bush et al. (2024) argue
do not accurately reflect early scribal practice [3], I adopt
the DASH categorization system, which emphasizes stylis-
tic variation. This more granular approach aligns with the
evidence that early Syriac writing did not conform neatly to
rigid script families and allows for more accurate consonant
classification.

Moreover, I employ the verb conjugation paradigms
available from Beth Mardutho: The Syriac Institute [1]. By
scraping their website, I collected paradigms that span var-
ious conjugations based on specific verb forms, tenses, and
personal-gender-number (PGN) combinations. I then ren-
dered these conjugated forms using Beth Mardutho’s Syriac
fonts to generate labeled images for the purpose of develop-
ing single consonant detection methods. Then, for a more
granular approach that would also be used as the input for
the syriac word recognizer, I made synthetic images of these
verb conjugations be merging the DASH single-consonant
images together. These synthetic images, paired with their
corresponding textual labels, are used to train the Syriac
word recognition models. This dataset enables the model
to learn not only individual character shapes, but also how
they appear in context within longer textual units, account-
ing for variations in spacing and ligatures.

4. Methodology and Data Preprocessing

The development of an effective Syriac OCR model in-
volves four key components, the first two being the base-
line method and the last two being the proposed method.
First, text detection for single Syriac consonants, ensuring
that individual characters can be accurately located within
manuscript images. Second, text recognition models are
built specifically for these single consonants. Third, text de-
tection for entire Syriac words, addressing the complexities
of connected script and varied spacing. Finally, methods
are explored for constructing robust text recognition mod-
els capable of identifying full Syriac words. This multistep
methodology aims to address both the granular identifica-
tion of individual characters and the broader challenge of
recognizing meaningful textual sequences.

4.1. Text Detection for Single Consonants
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Figure 1: Steps for text detection for single consonants.

The first stage of the methodology focuses on detecting
individual Syriac consonants [Figure 1]. Given a simple,
noise-free image of Syriac script where the consonants are
separated [Figure 1a], the detection process is as follows.
The Canny edge detector is used to identify the edges within
the manuscript image. This algorithm detects sharp changes
in pixel intensity, which often correspond to the boundaries
of individual characters. By applying this method, the pri-
mary structure of each character is effectively highlighted.
These enhanced boundaries allow for improved contour de-
tection. Contours are continuous curves that trace the outer
boundaries of each character [Figure 1b]. By identifying
these contours, the system can distinguish individual char-
acters within the text. Finally, bounding boxes are drawn
around each detected character [Figure 1c]. These rectan-
gles define the text regions, simplifying the process of iso-
lating characters for subsequent recognition.

4.2. Text Recognition for Single Consonants

Following text detection, the next step involves build-
ing effective recognition models for individual Syriac con-
sonants. In constructing the datasets, the small dataset has
35 examples per consonant and the larger dataset has 160
examples per consonant. From these datasets, an 80-10-10
split was used for training, validation, and testing data.

All selected images required preprocessing. Since the
original images were grayscale PNGs with an extra dimen-
sion for the transparent background, this dimension was re-
moved, and the background was replaced with white pixels.
Based on a random sample analysis, the largest images had
dimensions of about 400 pixels in width and 200 pixels in
height. The images were resized to 200x100 pixels. To pre-
vent warping, each example was resized proportionally to
fit within the new dimensions, with white padding added
as needed [Figure 2]. The resulting grayscale images were
then normalized so that pixel values fell between 0 and 1.

To recognize individual Syriac consonants from image
inputs, this project implemented and evaluated two mod-
els: a K-Nearest Neighbors (KNN) classifier and a Convo-
lutional Neural Network (CNN).
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Figure 2: Each example image is resized, keeping its orig-
inal aspect ratio, to fit in a 200x100 image. This resized
image is then used for the training-validation-testing sets.

4.2.1 K-Nearest Neighbors (KNN)

The KNN algorithm is a non-parametric, instance-based
learning method that classifies an input image = € R¥*W
based on the majority label among its k closest neighbors in
feature space. For this experiment, the feature vectors were
extracted by flattening grayscale image data. The model
was evaluated on both small and large training samples. For
the smaller dataset, I tested k& € {2, 3, 4,5} and selected the
best-performing k to use in the larger dataset to minimize
training time, as KNN scales poorly with dataset size. The
predicted labels were compared to ground truth labels, and
the loss was computed using 0—1 loss, where the loss is 0 if
the prediction is correct and 1 otherwise. The overall accu-
racy, calculated as the number of correct predictions divided
by the total number of examples, was used as the evaluation
metric

4.2.2 Convolutional Neural Network (CNN)

The CNN model takes input images z € RE*HXW and

outputs logits f(x) € RE over K classes. The model was
trained to minimize the standard multi-class cross-entropy
loss:

K
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where g; is the softmax-normalized output of the network
and y; is the one-hot encoded ground truth label. The Adam
optimizer was used to minimize this loss and update the net-

work’s weights during training.
The CNN architecture consists of two convolutional lay-
ers followed by max pooling, and then three fully connected

layers. Specifically, the model includes:

e Conv2d (3, 6, kernel_size=5) — RelLU —
MaxPool2d (kernel_size=2)

e Conv2d (6, 16, kernel_size=5) — ReLU —
MaxPool2d (kernel_size=2)

* Flattening of spatial features

e Fully connected layers: Linear (16544, 120)
— ReLU — Linear (120, 84) — ReLU —
Linear (84, 35)
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Figure 3: Steps for text detection for words.

The output dimension of 35 corresponds to the number
of consonant classes in our label set. Training was con-
ducted using a batch size of 5. For the small dataset, the
model was trained for 2 epochs. For the larger dataset, I
trained the model for both 2 and 10 epochs to examine the
impact of extended training.

4.3. Text Detection for Words

Given a manuscript image containing Syriac script where
the consonants are connected [Figure 3], the detection pro-
cess follows the same steps as the single-consonant detec-
tion process but with an added preprocessing step to remove
noise. The manuscript image is first converted to grayscale,
and noise pixels above a specified threshold are set to white
[Figure 3a].

Following noise reduction, the process continues with
Canny edge detection to identify sharp intensity changes.
Contours are subsequently detected to trace text outlines
[Figure 3b]. Finally, bounding boxes are drawn around de-
tected text regions, and overlapping or closely aligned text
boundaries are merged to ensure entire words are correctly
grouped for recognition [Figure 3c].

4.4. Text Recognition for Words

Once text boundaries are identified, these regions can be
fed into a Syriac recognition model. To obtain the data, I
used the DASH dataset and programmatically merged in-
dividual Syriac consonants to form real verb conjugations.
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Figure 4: Example input images for the Syriac word recog-
nition models.

I limited the scope to geminate, hollow, and strong verbs,
ensuring linguistic coherence. Each resulting image repre-
sents a complete conjugation and measures 400x200 pixels
to accommodate words ranging from 2 to 9 consonants in
length [Figure 5]. Images were normalized to standardize
pixel values, and any samples containing visual errors were
removed. To prevent overlap between training and evalua-
tion sets, I split the data by verb stem into training (82.02%),
validation (8.82%), and testing (9.16%) sets, resulting in
2,864 training examples, 308 validation examples, and 320
test examples—each drawn from distinct conjugations.

Distribution of Label Lengths
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Figure 5: The number of consonants in the data samples
range from 2 to 9, inclusive. Therefore, max length param-
eters for model architectures are set to 9. The majority of
samples have 4 to 6 consonants.

To recognize entire Syriac word images containing up
to nine consonants, I implemented and evaluated two dis-
tinct model architectures: a Convolutional Recurrent Neu-
ral Network-Long Short Term Memory (CRNN-LSTM)
model trained with Connectionist Temporal Classifica-
tion (CTC) loss, and a Transformer-based encoder-decoder
model trained with cross-entropy loss. Both were trained
with the Adam optimizer. Both models were hyperparam-
eter tuned on a smaller data set with 50 examples before
using the entire dataset.

4.4.1 CRNN-LSTM with CTC Loss

The first model follows the CRNN structure, which com-
bines convolutional layers for visual feature extraction with
recurrent layers for sequence modeling. The input image
x € R3>HXW s first passed through a series of convo-
lutional blocks that include convolution, ReLLU activation,
and max pooling. These layers extract local features while
reducing spatial resolution. The resulting feature maps
are flattened and reshaped to form a temporal sequence of
length T'.

This sequence is then passed to a multi-layer bidirec-
tional LSTM, which captures dependencies in both forward
and backward directions. The LSTM outputs are fed into
a fully connected layer that projects each timestep to a dis-
tribution over the character vocabulary. Let z; € RE*!
denote the logit vector at timestep ¢, where K is the number
of Syriac consonants and the extra class corresponds to the
CTC blank token.

I train the model using the CTC loss function:

Lere = —log P(ylx),

where P(y|z) is the total probability of aligning the in-
put sequence to the target label y over all valid alignments,
and no explicit segmentation of characters is required. This
makes it well-suited for unsegmented handwritten text.

4.4.2 Transformer Sequence-to-Sequence Model

The second model adapts a Transformer architecture for
OCR by treating the task as an image-to-sequence trans-
lation problem. The input image is first encoded using a
ResNet-50 backbone, from which I extract global image
features via average pooling. These features are linearly
projected into a d-dimensional embedding and treated as the
encoder memory.

The decoder is a standard Transformer decoder con-
sisting of NV layers of multi-head self-attention and cross-
attention. During training, the decoder takes as input a
tokenized and padded ground truth sequence of length L,
shifted by one position. Each token is embedded and com-
bined with a sinusoidal positional encoding. The model is



trained to predict the next token in the sequence using the
cross-entropy loss:

L
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where y; is the target character at position ¢ and z is the en-
coded image. Special tokens including <PAD>, <START>,
and <END> are added to the vocabulary to handle sequence
boundaries and padding.

This model is capable of modeling complex dependen-
cies and decoding characters autoregressively, making it
suitable for handling a wide variety of word lengths and
script complexities. Unlike the CTC model, it explicitly
generates one token at a time, conditioned on previously
predicted characters and the image representation.

5. Experiments

To evaluate the effectiveness of the models for Syriac
character and word recognition, I conducted a series of ex-
periments comparing traditional and deep learning-based
approaches. The evaluation focuses on accuracy as the pri-
mary metric, defined as the proportion of characters cor-
rectly classified out of the total ground truth characters. For-
mally:

Number of Correct Predictions

Accuracy = Total Number of Characters

I report accuracy at both the individual character level
and sequence level (i.e., across entire word images). All ex-
periments were conducted using manually constructed im-
age datasets derived from the DASH Syriac corpus, as de-
tailed in the methods section.

5.1. Hyperparameter Selection

For all models, I used the Adam optimizer and exper-
imented with learning rates ranging from 1072 to 107°
based on standard practice for deep learning models with
CTC or cross entropy loss. CNN models for single-
consonant recognition were trained with a batch size of
5 due to memory constraints and limited training exam-
ples. For the word recognition models (CNN-LSTM and
Transformer), I used a batch size of 32 and selected hyper-
parameters through random sampling within a constrained
range (e.g., dropout between 0.1 and 0.3, number of de-
coder layers between 2 and 6). Moreover, I maintained a
strict 80/10/10 train-validation-test split to ensure that no
overlapping conjugations appeared across data subsets.

5.2. Single Consonant Classification

I began by testing a KNN classifier, which served as a
non-neural baseline. As shown in Table 1, the KNN model

Sample Size K Value Accuracy
Small 2 56%
Small 3 70.86%
Small 4 64%
Small 5 68.57%
Large 3 79.29%

Table 1: KNN accuracies per sample size and k value. The
small sample size has 35 examples per consonant. The large
sample size has 160 examples per consonant.

Sample Size Batch Size Num Epochs  Accuracy
Small 5 2 2%
Large 5 2 50%
Large 5 10 80%

Table 2: CNN accuracies per sample size, batch size, and
number of epochs. The small sample size has 35 examples
per consonant. The large sample size has 160 examples per
consonant.

achieved 70.86% accuracy with £ = 3 on the small dataset,
but its performance plateaued with larger datasets due to its
reliance on raw pixel similarity rather than learned represen-
tations. In contrast, the CNN baseline demonstrated clear
gains from increased data and training time. Table 2 shows
that accuracy improved from 2% to 80% when scaling from
a small dataset trained for 2 epochs to a large dataset trained
for 10 epochs.

To better understand how individual characters were be-
ing classified, I analyzed per-consonant CNN performance
[Table 3]. Consonants with unique or isolated shapes, such
as Alaph and Lamadh-final, achieved near-perfect accuracy
(96.9%), while visually similar or variably shaped charac-
ters such as Shin and Taw-looped saw significantly lower
accuracies (62.5% and 56.2%, respectively). This suggests
that errors often stemmed from subtle differences in stroke
width or final/medial positioning, which are difficult to re-
solve in pixel space alone.

5.3. Word Recognition

I next evaluated two sequence recognition models for
predicting entire Syriac word images. The first was a
CRNN-LSTM architecture that combined convolutional
layers with a bidirectional LSTM and was trained using
CTC loss. Table 4 reports accuracy across sampled hy-
perparameter configurations. The best-performing CRNN
model achieved 17.31% accuracy on a small dataset and
2.64% on the large dataset. The low performance on the
larger dataset is likely due to overfitting on early epochs
and the inherent difficulty of aligning long sequences with-



Consonant Name Script  Accuracy
Alaph (Angular) ~ 96.9%
Lamadh (Final, closed) > 96.9%
Nun (Final, connected) < 96.9%
Waw a 96.9%
Yudh (Stand-alone) ’ 96.9%
Zain \ 96.9%
Gamal S 90.6%
Nun . 90.6%
Pe 2 90.6%
Rish (Round) 9 90.6%
Qaph o 87.5%
Ayin =~ 84.4%
He (Angular) m 84.4%
He (Round) d 84.4%
Lamadh (Final, open) A 84.4%
Teth SV 84.4%
Beth - 81.2%
Heth b 81.2%
Kaph 2 81.2%
Mim = 81.2%
Mim (Final) » 81.2%
Semkath @ 81.2%
Taw (L-shaped) L 81.2%
Dalath (Angular) 3 78.1%
Kaph (Final) “\ 78.1%
Nun (Final, unconnected) N 78.1%
Dalath (Round) } 75.0%
Rish (Angular) 1 75.0%
Taw (Triangular) N 71.9%
Alaph (Round) z 68.8%
Sadhe _s 68.8%
Shin X 62.5%
Lamadh l 59.4%
Taw (Looped) n 56.2%
Yudh (Connected) 1 40.6%

Table 3: CNN large sample accuracies per consonant.

out sufficient regularization.

The second model was a Transformer-based encoder-
decoder. This model used a ResNet-50 encoder to extract
global image features, and a Transformer decoder to autore-
gressively predict a sequence of consonants, trained with
cross-entropy loss. As shown in Table 5, the Transformer
outperformed the CRNN-LSTM model on the small dataset,
reaching 26.33% accuracy. Moreover, the large dataset
reach an accuracy of 43.56%.

5.4. Qualitative Observations and Failure Modes

I observed a number of recurring qualitative error pat-
terns across models. At the character level, confusion often
occurred between morphologically similar consonants (e.g.,
Dalath vs. Rish, Taw variants), especially when characters
were connected or appeared in final forms. At the word
level, the CRNN-LSTM model struggled with correct align-
ment, often predicting repeated characters or collapsing se-
quences prematurely. The Transformer model frequently
made valid character predictions out of order or similarly
mistook consonants with similar characteristics [Figure 6].

T Ml

(a) True label. (b) Predicted label.
ST ahhhr <
(c) True label. (d) Predicted label.

Figure 6: True labels and their respective predicted label
from the Transform model. (b) is the predicted label of (a).
(d) is the predicted label of (c). Both sets have an accuracy
of 50%—the first with 2 correct out of 4, and the second
with 3 correct out of 6.

Example misclassifications showed that both models
were sensitive to handwriting variation, especially when
multiple consonants were connected with little inter-
character spacing. Overfitting was a concern in smaller
models, as training loss decreased steadily while valida-
tion accuracy plateaued early. To mitigate this, dropout and
early stopping were used in subsequent runs, although fur-
ther regularization (e.g., data augmentation or synthetic ex-
pansion) remains a promising future direction.

While the CNN baseline performed robustly on single-
character classification, sequence models require more data
and more refined architecture tuning to generalize well on
the Syriac verb corpus. The results underscore the impor-
tance of dataset size and character morphology in develop-
ing OCR systems for historical scripts.



Sample Size Hidden Size Num Layers Learning Rate Batch Size Num Epochs  Accuracy
Small 256 3 0.01 32 15 17.31%
Small 512 2 0.0001 64 15 12.24%
Small 512 3 0.01 16 15 11.76%
Small 512 3 0.01 32 15 12.76%
Small 256 1 0.001 16 15 10.20%
Large 256 3 0.01 32 4 2.64%

Table 4: Hyperparameter configurations and accuracy results for the CRNN-LSTM model. The table displays combinations
with the highest accuracies through random sampling of the hyperparameter space. The small sample size has 50 examples:
40 for training and 10 for validation. The large sample size has 3,492 examples: 2,864 for training, 308 for validation, and
320 for testing.

Sample Size Model Dim  Num Heads Num Decoder Layers = FeedForward Dim  Dropout Learning Rate Num Epochs  Accuracy
Small 256 4 3 1024 0.1 0.0001 5 26.33%
Small 256 4 3 1024 0.2 0.0001 5 24.04%
Small 256 8 3 1024 0.2 0.0001 5 23.28%
Small 512 4 3 1024 0.1 0.0001 5 21.42%
Small 256 4 3 1024 0.1 0.001 15 15.19%
Large 512 8 6 2048 0.1 0.0001 10 19.04%
Large 256 4 3 1024 0.1 0.0001 10 43.56%

Table 5: Hyperparameter configurations and accuracy results for the Transformer model. The table displays combinations
with the highest accuracies through random sampling of the hyperparameter space. The small sample size has 50 examples:
40 for training and 10 for validation. The large sample size has 3,492 examples: 2,864 for training, 308 for validation, and

320 for testing.

6. Conclusion

This study highlights the effectiveness of KNN and CNN
models in recognizing Syriac consonants. The KNN model
performed relatively well with smaller datasets but lacked
scalability, while the CNN model demonstrated significant
improvements when trained with larger datasets and more
extensive training periods. This study also demonstrates
that Transformer Sequence-To-Sequence models outper-
form CRNN-LSTM models for Syriac recognition. Despite
both architectures struggling with limited data, Transform-
ers achieved higher overall accuracy and produced more co-
herent predictions on multi-consonant word images. These
results suggest that attention-based models are better suited
for capturing the structural and positional complexity of
Syriac script.

A valuable direction for future work is the development
of Handwritten Text Recognition (HTR) models for Syriac.
Unlike OCR methods that focus on printed texts in tradi-
tional fonts, HTR systems address the challenges presented
by modern handwritten Syriac. Modern handwriting differs
significantly from ancient calligraphic styles, often appear-
ing less uniform. Resources like the KHAMIS dataset [1 1]
along with other contemporary handwritten datasets could
provide a strong foundation for training HTR models.

Lastly, further improvements to OCR model perfor-
mance may involve grouping visually similar conso-
nants—such as Dalath and Rish or the multiple stylistic
variants of He and Taw—into shared classification buck-
ets to reduce confusion and enhance recognition accu-
racy for characters with subtle visual differences. Ad-
ditionally, more rigorous hyperparameter tuning—such as
grid searches for learning rates, batch sizes, and model
depths—may yield performance gains, especially given the
long training times observed. Incorporating techniques like
data augmentation, character context modeling, or ensem-
ble methods could also help further improve accuracy, es-
pecially for degraded manuscript images.

The implications of this work extend beyond improv-
ing Syriac OCR models alone. By demonstrating effective
recognition techniques for Syriac consonants and words,
this study contributes to preserving and studying the rich
cultural and historical manuscripts written in Syriac. Ac-
curate text recognition can enable researchers to analyze,
translate, and digitize ancient texts more efficiently, advanc-
ing research in history, theology, and linguistics. Further-
more, improved OCR techniques for Syriac may serve as
a foundation for expanding OCR capabilities for other an-
cient, endangered, and low-resourced languages that share
similar script complexities.



7. Contributions

All work for this project—including data preprocessing,
model implementation, experimentation, and writing—was
completed by the author. This project uses Pytorch [14],

TorchVision [ 10], Tensorflow [2], Scikit-Learn [ | 5], Python
[20], BeautifulSoup [ 7], Pillow [6], NumPy [7], and Mat-
plotlib [8].
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