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Abstract

Cardiac Magnetic Resonance (CMR) is essential to
diagnosis of a host of cardiovascular diseases. Coronary
Artery Disease (CAD) is a common disease that can be
identified using CMR technology. To aid clinical decision-
making, a pretrained Swin Transformer architecture was
employed in order to classify images as normal or CAD
patients. CLIP Transformer was used to stratify CAD
images into mild, moderate, and severe. Upon
hyperparameter tuning, an AUC score of 0.98 was
achieved. Results were comparable to a baseline,
pretrained ResNet50 architecture. Performance was
strongest on mild CAD cases and weakest on severe cases.
Performance was comparable across various axes of CMR
images. Future directions include increasing dataset size
and modifying model architecture to evaluate
performance.

1. Introduction

Cardiac Magnetic Resonance (CMR) is a critical
diagnostic technique for a host of cardiovascular diseases.
CMR can capture not just anatomical structure but also
physiological attributes through a series of ‘cine’ frames.
An example of a Vertical Long Axis (VLA) CMR image
is below.

"Cardiac mri slice sagittal bionerd" by Bionerd is
licensed under CC BY 3.0.

These images are critical to identify changes in the
blood vessels, the patient’s Stroke Volume (the quantity of
blood pumped to the body during systole), as well as
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structural malformations in the heart and its valves (1).
Thus, each CMR image can be considered to house many
different descriptive features pertaining to the patient’s
cardiovascular health. For Coronary Artery Disease
(CAD) which affects over 16 million Americans, CMR is
key to identification of abnormalities in the heart wall and
coronary vessels (2). Because CMR images can
experience wide variation in quality based on the scanner
used and the patient’s movement while getting scanned,
there is a risk for artifact that can limit interpretability (3).
This along with a need for efficient analysis of results for
acute clinical decision-making motivate the use of
computer vision in classification of CMR images for
CAD.

The current work employs transfer learning to leverage
state-of-the-art Swin  Vision  Transformer (ViT)
architectures for CMR image classification in CAD. The
inputs to this model are single CMR images extracted
from cine sequences and the output is a prediction of
‘normal’ or ‘CAD.” This architecture is compared to
baseline Swin ViT approaches without pretrained weights
as well as ResNet50, both pretrained and non-pretrained.

2. Related Work

State-of-the-art models used in cardiac magnetic
resonance (CMR) data processing include Swin
Transformers. A recent paper applied VST (Video Swin
Transformer) models to use understanding of specific
CMR features and motion detection across the cine to
classify images into categories of disease (4). They
observed the model was able to outperform classification
of images by cardiologists with AUC of 0.991 + 0.0%.
The paper’s narrative is compelling, but the limited
number of data points restricts the generalizability of their
results. Other papers have applied Swin Transformers for
segmentation tasks, which are often critical to effectively
capture anatomical structures on CMR images (5). They
were able to achieve a pixel accuracy of 93.68% and
improvement of segmentation precision when compared to
state-of-the-art models. Another paper took a similar
approach to perform CMR image segmentation but used
AnatSwin. This was clever since it integrated the Swin
Transformer architecture but passed in label images as
input and allowing the model to effectively train on


https://commons.wikimedia.org/w/index.php?curid=3056129
https://commons.wikimedia.org/wiki/User:Bionerd
https://creativecommons.org/licenses/by/3.0/?ref=openverse

anatomical structures (6).

Given that CMR images often include portions of other
organs, segmentation can be critical to identify relevant
portions of the images. Since these papers illustrate the
ability of Swin to spot differences in the minutia on
images, it is promising in the realm of classification as
well.

For classification tasks, an ensemble model was used
integrating both a CNN and ViT framework to classify
images as normal or from patients experiencing a
myocardial infarction (7). They achieved an F1 score of
98.63%, which was not as successful as the other model
architectures. However, it is clear from the literature that
ViT models are a powerful application for this task.

Because biomedical datasets can often be difficult to
access in large quantities, transfer learning is highly
relevant to this task (8). One analysis applied transfer
learning to finetune a CNN-MLP framework. Though they
achieved a high F1 score of 96%, the results are limited by
the small size of the fine-tuning dataset—361 images.

U-Nets are another approach explored in the literature
for this task, but primarily for image segmentation. One
study applied Swin-Unet in order to achieve a Dice
Coefficient of 91.72% on the public ACDC dataset (9).
Because U-Net is specifically designed for segmentation it
is not as well-suited to the current work.

While the application of ResNets to this task is
currently limited, it has been explored for kidney MRI
based classification of chronic kidney disease (10). While
the model showed some promise, they found an accuracy
of only 0.862+0.036. The current work utilizes ResNets as
a baseline, comparison architecture to the ViT
architecture.

3. Methods

The key architecture utilized is the Swin Transformer,
specifically ‘swin tiny patch4 window7 224.” This is
a type of Vision Transformer with 12 Transformer
blocks, but it is distinct from a vanilla ViT because it
merges image patches through successive layers of the
model. When we merge these patches, the number of
channels increases. Another key attribute of the Swin
Transformer is that it does not calculate global self-
attention, but only does so for specific windows
(unmerged patches), as depicted in red in the below
figure.
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(a) Swin Transformer (ours) (b) ViT
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Swin Transformer architecture
https://arxiv.org/abs/2103.14030v2

Each of the 12 transformer blocks include an MLP, multi-
head self-attention, residual connections, and layer
normalization layers.

The second algorithm deployed in this work is
ResNet50. As the name suggests, this architecture consists
of 50 layers that perform convolution but also include
residual connections. These connections mean that the
network is trained to learn F(x) + x, rather than just F(x).

An issue with comparing transformers and ResNets is
the issue of the sheer greater complexity of transformer
architectures. To account for this, the ResNet50
architecture was selected in order to ensure that both
models have a comparable number of parameters (around
28M). An additional fully connected layer was added to
the vanilla ResNet50 in order to increase the number of
model parameters to be comparable to the Swin
Transformer architecture.

A key difference between Swin and ResNet is the use of
patches versus convolution. Swin uses patches that are
processed chronologically through the self-attention
transformer framework. Self-attention allows the model to
compare the relevance of different patches to one another
when calculating weights. Convolution, which is used in
ResNets, entails simply sliding a filter of weights over all
parts of the image which are then passed into the next
layer. Both can be effective for image classification tasks
but ViT has shown greater promise in learning finer
details of CMR images.

Model inputs consisted of CMR images, X, and outputs
consisted of classes 0 or 1 (normal or CAD). We utilized
cross entropy loss, depicted below, where P(x) is
probability of classifying the image in the correct class
and Q(x) is probability of classifying the image in the
class that was ultimately predicted.

L

=-X P(x) * log(Q(x))

Based on the common usage of the AdamWOptimizer in
the literature, it was utilized to train both models.
AdamWOptimizer applies weight decay to the weights to
ensure the model is regularized, mitigating overfitting to
the training set.

The models were trained both with pretrained ImageNet
weights as well as randomly initialized weights. The
models were fine-tuned using a hyperparameter search for
ideal learning rates.

The current dataset did not include additional
stratification of the patients beyond the ‘normal’ or ‘sick’



labels, so additional techniques were deployed to label the
images as ‘mild’, ‘moderate’, or ‘severe’ CAD. Initially,
Open_AI LLM calls were attempted in order to label the
images as a ‘ground truth,” but since this was a medical
image the labeling was not permitted. Similar attempts
were made using the BLIP-2 ViT model, but it did not
respond to the prompt well. Thus, I opted to use the CLIP
transformer. I provided a set of three output labels (mild,
moderate, and severe) and the algorithm (using pretrained
weights) calculated cosine similarity between the labels
and the images. CLIP works through contrastive learning,
ensuring that cosine similarity is maximized for images
that are most like their captions while it is minimized for
images not like other captions. This model was deployed
for classification of the validation dataset for downstream
error analysis of the Swin classification architecture.

4. Dataset and Features

All CMR data comes from the CAD Dataset on Kaggle
(11). The dataset consists of 51,000 images from CMR
sequences. One image was extract from each CMR
sequence, resulting in a total of 2875 images. Using a
train/validation split of 0.8, I had 2300 images to train the
model and 575 images in the validation set. Some
examples of the images are below.

To preprocess the data, all images were resized to a
resolution of 224X224, which is necessary for the Swin
Transformer framework. Because CMR images are
grayscale, they were converted to a three-channel tensor.
All images were normalized by the mean and standard
deviation of ImageNet pretrained weights.

Because of the small size of the dataset, I performed
data augmentation by resizing the images, random
horizontal flips, random rotation by 15 degrees, color jitter
(brightness of 0.2, contrast of 0.2, saturation of 0.2, and
hue of 0.05). Some examples of data augmentation are
below.

227

Augmentation 4

Augmentation 5

Augmentation 3

5. Experiments, Results, and Discussion

Upon preprocessing, the CMR images were utilized in
order to tune four models—the Swin Transformer with
pretrained weights, the Swin transformer without
pretrained weights, the ResNet50 with pretrained weights,
and the ResNet50 without pretrained weights. Single-fold
cross-validation was performed, and the mini-batch size
was 32. This is because larger batch sizes caused memory
issues and smaller batch sizes were less efficient. See
Methods for description of the AdamWOptimizer. The
ROC results after four epochs of training (when losses
generally converged) are reported below.
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AUC scores across all four models are also summarized in
this table.

Model AUC Score after 5 Epochs
Resnet — not pretrained 0.69
Resnet — pretrained 0.98
Swin — not pretrained 0.57
Swin — pretrained 0.98

The notable result is how the pretrained weights make a
substantial difference in model performance. For both the
ResNet and Swin, lack of pretrained weights cause the
model to suffer in performance. Additionally, it is
interesting that the ResNet and Swin Transformer should
reasonably similar performance. This could be due to the
limited size of the dataset and lack of complexity in
training examples, which prevent the transformer from
outperforming the ResNet baseline.

Furthermore, the pretrained ResNet and Swin were
further fine-tuned using a hyperparameter search after two
epochs. The results are shown below.
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For both models, the learning rate of 5e-05 allows for the
best performance, and the second-best performing learning
rate is 1e-4. This is interesting because it shows that there
is not a clear direct relationship between decreasing
learning rate and increasing model performance. After a
certain point of le-5, higher learning rates perform better.
This makes sense because a learning rate that is too low
does not allow the model to efficiently improve the
weights and is too slow. An overly fast learning rate,
however, may not allow the model to learn from the
gradients and complexities in the dataset.

To get a sense of failure cases and highlight additional
features of the images in the Swin transformer, a thorough
error analysis was conducted. First, I manually labeled all
565 validation set images based on the planar axis in
which the CMR image was taken. Since there was a
combination of short axis, vertical long axis, and
horizontal long axis images, I hypothesized that some
image types may be easier or more difficult for the model
to classify. After stratifying the dataset, I assessed
accuracy over the various buckets, as shown below.
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It is clear that a majority of the images are short axis
images, with a large number of unknown axis images. |
also plotted proportional accuracies for each bucket of
image type.

Swin Transformer Accuracy by MRI Axis
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Generally, it seems that accuracy is consistent across
different image types, which is certainly a key strength of
this model. Despite variations in image type, the model is
able to classify relatively similarly across all. From a
medical relevance standpoint, it seems as if there is no
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particular axis view that is particularly ‘salient’ or more
useful in CAD classification according to this analysis.

To get a sense of saliency in my images, | employed
gradCam to various images in the validation set, both
correctly and incorrectly classified. GradCam
demonstrates salient areas in bright colors and less salient
areas in blue.

Though the GradCam results should smoothly depict areas
of greater aid in classification, we do not see this. Instead,
the GradCam results are quite noisy. It is possible that the
target layers I was analyzing had lower resolution since I
had merged patches in my Swin transformer. Since
GradCam is not designed for Swin Transformer, it is
possible that this limitation prevented interpretability of
the results. The results for incorrectly classified images are
below.

CAM: Pred 0, True 1 Original Image

CAM: Pred 0, True 1

Original Image

Original Image

Original Image

CAM: Pred 1, True 0

CAM: Pred 1, True 0

While it is difficult to say quantitatively, from a qualitative
perspective, the GradCam results do appear noisier (with



many choppy colorful lines), which is reassuring since
these images were unable to be correctly classified.
Looking at the examples shown above, it seems that the
misclassified examples exhibit less contrast in the image,
which may make it harder to classify correctly.

A final assessment employed in my error analysis was
the use of the CLIP transformer in order to stratify the
ground truth CAD images into buckets of mild, moderate,
and severe CAD. Similar to the axis analysis, I evaluated
model accuracy within each of these buckets.

Stratification of Sick Images Using CLIP Transformer
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A vast majority of the images were classified as
‘severe’ by the CLIP transformer, which is the closest I
could get to the ground truth since I did not have access to
these bucket labels. Since CLIP is not pretrained on CMR
images, this could have limited its accuracy.

Strlact)ification of Sick Images Using CLIP Transformer and Proportion Classified Correctly
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It is interesting here that all mild cases were correctly
classified whereas there was some error in the moderate
and severe cases. One reason for this could be simply

because there were many more moderate and severe cases,

increasing the chance for error. Assessing this clinically,
we would hypothesize that severe images are easier to

classify since they show greater contrast with healthy
images, but we see the opposite effect. This calls into
question the classifications of the CLIP transformer, since
it is not what we expect. Another explanation for this is a
more complex clinical explanation—it is possible that in
earlier stages of CAD, when the heart begins to fail, it
exhibits signs of failure on CMR. In the moderate case, it
may exhibit compensatory mechanisms such as
hypertrophy (thickening of the heart walls). It is possible
that this clinical mechanism is not well reflected in the
CLIP model’s labels, thus causing misleading results.
Overall, it seems the model is most promising for mild
cases.

In terms of overfitting of the model, it seems unlikely
because of high AUC scores on the validation set. To
ensure this, future analyses could perform cross-validation
on different sets of validation data. It is possible that the
model is overfitting to this particular dataset; additional
data from other sources is required to validate this.

6. Conclusions

The Swin Transformer and ResNet, pretrained
architecture demonstrate equally highest performance
(AUC=0.98) when compared to the other architectures. It
makes sense that the pretrained architectures fell short
because the limited size of the dataset made it difficult for
the model to learn from scratch, given that there are
millions of trainable parameters. Since Swin Transformers
often require a larger number of data points to outperform
the ResNet, we observed comparable success between the
two.

Remarkably, the Swin model’s classifications are
consistent across varying planes in which images were
taken. This is likely because the model was able to
effectively identify relevant portions of the image (the
ventricles and key blood vessels) respective of the
background plane. Another notable finding is that the
Swin model performs best on mild cases of CAD.

A key limitation in the current analysis is the quality of
the dataset. I noticed some superpositions and shadows on
some training images which may have made learning key
parameters difficult. An example is shown below.

Future directions could include testing unique Swin
architectures with varying layers and patch sizes,
deploying ensemble models of combined ResNet and



Swin architectures given their roughly equivalent success,
performing a classification task of different clinical
features (hypertrophy, valvular dysfunction, etc.), and
training on larger, diverse datasets to prevent overfitting.
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