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Abstract 

 
Cardiac Magnetic Resonance (CMR) is essential to 
diagnosis of a host of cardiovascular diseases. Coronary 
Artery Disease (CAD) is a common disease that can be 
identified using CMR technology. To aid clinical decision-
making, a pretrained Swin Transformer architecture was 
employed in order to classify images as normal or CAD 
patients. CLIP Transformer was used to stratify CAD 
images into mild, moderate, and severe. Upon 
hyperparameter tuning, an AUC score of 0.98 was 
achieved. Results were comparable to a baseline, 
pretrained ResNet50 architecture. Performance was 
strongest on mild CAD cases and weakest on severe cases. 
Performance was comparable across various axes of CMR 
images. Future directions include increasing dataset size 
and modifying model architecture to evaluate 
performance. 
 

1. Introduction 
Cardiac Magnetic Resonance (CMR) is a critical 

diagnostic technique for a host of cardiovascular diseases. 
CMR can capture not just anatomical structure but also 
physiological attributes through a series of ‘cine’ frames. 
An example of a Vertical Long Axis (VLA) CMR image 
is below. 

 

 
 

"Cardiac mri slice sagittal bionerd" by Bionerd is 
licensed under CC BY 3.0. 

 
 These images are critical to identify changes in the 

blood vessels, the patient’s Stroke Volume (the quantity of 
blood pumped to the body during systole), as well as 

structural malformations in the heart and its valves (1). 
Thus, each CMR image can be considered to house many 
different descriptive features pertaining to the patient’s 
cardiovascular health. For Coronary Artery Disease 
(CAD) which affects over 16 million Americans, CMR is 
key to identification of abnormalities in the heart wall and 
coronary vessels (2). Because CMR images can 
experience wide variation in quality based on the scanner 
used and the patient’s movement while getting scanned, 
there is a risk for artifact that can limit interpretability (3). 
This along with a need for efficient analysis of results for 
acute clinical decision-making motivate the use of 
computer vision in classification of CMR images for 
CAD. 

The current work employs transfer learning to leverage 
state-of-the-art Swin Vision Transformer (ViT) 
architectures for CMR image classification in CAD. The 
inputs to this model are single CMR images extracted 
from cine sequences and the output is a prediction of 
‘normal’ or ‘CAD.’ This architecture is compared to 
baseline Swin ViT approaches without pretrained weights 
as well as ResNet50, both pretrained and non-pretrained. 

2. Related Work 
State-of-the-art models used in cardiac magnetic 

resonance (CMR) data processing include Swin 
Transformers. A recent paper applied VST (Video Swin 
Transformer) models to use understanding of specific 
CMR features and motion detection across the cine to 
classify images into categories of disease (4). They 
observed the model was able to outperform classification 
of images by cardiologists with AUC of 0.991 ± 0.0%. 
The paper’s narrative is compelling, but the limited 
number of data points restricts the generalizability of their 
results. Other papers have applied Swin Transformers for 
segmentation tasks, which are often critical to effectively 
capture anatomical structures on CMR images (5). They 
were able to achieve a pixel accuracy of 93.68% and 
improvement of segmentation precision when compared to 
state-of-the-art models. Another paper took a similar 
approach to perform CMR image segmentation but used 
AnatSwin. This was clever since it integrated the Swin 
Transformer architecture but passed in label images as 
input and allowing the model to effectively train on 
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anatomical structures (6). 
Given that CMR images often include portions of other 

organs, segmentation can be critical to identify relevant 
portions of the images. Since these papers illustrate the 
ability of Swin to spot differences in the minutia on 
images, it is promising in the realm of classification as 
well. 

For classification tasks, an ensemble model was used 
integrating both a CNN and ViT framework to classify 
images as normal or from patients experiencing a 
myocardial infarction (7). They achieved an F1 score of 
98.63%, which was not as successful as the other model 
architectures. However, it is clear from the literature that 
ViT models are a powerful application for this task. 

Because biomedical datasets can often be difficult to 
access in large quantities, transfer learning is highly 
relevant to this task (8). One analysis applied transfer 
learning to finetune a CNN-MLP framework. Though they 
achieved a high F1 score of 96%, the results are limited by 
the small size of the fine-tuning dataset—361 images. 

U-Nets are another approach explored in the literature 
for this task, but primarily for image segmentation. One 
study applied Swin-Unet in order to achieve a Dice 
Coefficient of 91.72% on the public ACDC dataset (9). 
Because U-Net is specifically designed for segmentation it 
is not as well-suited to the current work. 

While the application of ResNets to this task is 
currently limited, it has been explored for kidney MRI 
based classification of chronic kidney disease (10). While 
the model showed some promise, they found an accuracy 
of only 0.862±0.036. The current work utilizes ResNets as 
a baseline, comparison architecture to the ViT 
architecture. 

3. Methods 
The key architecture utilized is the Swin Transformer, 
specifically ‘swin_tiny_patch4_window7_224.’ This is 
a type of Vision Transformer with 12 Transformer 
blocks, but it is distinct from a vanilla ViT because it 
merges image patches through successive layers of the 
model. When we merge these patches, the number of 
channels increases. Another key attribute of the Swin 
Transformer is that it does not calculate global self-
attention, but only does so for specific windows 
(unmerged patches), as depicted in red in the below 
figure.  
 

 
 
 
 
 
 
 
 

 
 
 

 Swin Transformer architecture 
https://arxiv.org/abs/2103.14030v2 
 

Each of the 12 transformer blocks include an MLP, multi-
head self-attention, residual connections, and layer 
normalization layers. 

The second algorithm deployed in this work is 
ResNet50. As the name suggests, this architecture consists 
of 50 layers that perform convolution but also include 
residual connections. These connections mean that the 
network is trained to learn F(x) + x, rather than just F(x).  
 
 An issue with comparing transformers and ResNets is 
the issue of the sheer greater complexity of transformer 
architectures. To account for this, the ResNet50 
architecture was selected in order to ensure that both 
models have a comparable number of parameters (around 
28M). An additional fully connected layer was added to 
the vanilla ResNet50 in order to increase the number of 
model parameters to be comparable to the Swin 
Transformer architecture. 

A key difference between Swin and ResNet is the use of 
patches versus convolution. Swin uses patches that are 
processed chronologically through the self-attention 
transformer framework. Self-attention allows the model to 
compare the relevance of different patches to one another 
when calculating weights. Convolution, which is used in 
ResNets, entails simply sliding a filter of weights over all 
parts of the image which are then passed into the next 
layer. Both can be effective for image classification tasks 
but ViT has shown greater promise in learning finer 
details of CMR images. 
 Model inputs consisted of CMR images, x, and outputs 
consisted of classes 0 or 1 (normal or CAD). We utilized 
cross entropy loss, depicted below, where P(x) is 
probability of classifying the image in the correct class 
and Q(x) is probability of classifying the image in the 
class that was ultimately predicted. 
 

L = -Σ P(x) * log(Q(x)) 
 
Based on the common usage of the AdamWOptimizer in 
the literature, it was utilized to train both models. 
AdamWOptimizer applies weight decay to the weights to 
ensure the model is regularized, mitigating overfitting to 
the training set. 
 The models were trained both with pretrained ImageNet 
weights as well as randomly initialized weights. The 
models were fine-tuned using a hyperparameter search for 
ideal learning rates. 
 The current dataset did not include additional 
stratification of the patients beyond the ‘normal’ or ‘sick’ 
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labels, so additional techniques were deployed to label the 
images as ‘mild’, ‘moderate’, or ‘severe’ CAD. Initially, 
Open_AI LLM calls were attempted in order to label the 
images as a ‘ground truth,’ but since this was a medical 
image the labeling was not permitted. Similar attempts 
were made using the BLIP-2 ViT model, but it did not 
respond to the prompt well. Thus, I opted to use the CLIP 
transformer. I provided a set of three output labels (mild, 
moderate, and severe) and the algorithm (using pretrained 
weights) calculated cosine similarity between the labels 
and the images. CLIP works through contrastive learning, 
ensuring that cosine similarity is maximized for images 
that are most like their captions while it is minimized for 
images not like other captions. This model was deployed 
for classification of the validation dataset for downstream 
error analysis of the Swin classification architecture. 

4. Dataset and Features 
All CMR data comes from the CAD Dataset on Kaggle 

(11). The dataset consists of 51,000 images from CMR 
sequences. One image was extract from each CMR 
sequence, resulting in a total of 2875 images. Using a 
train/validation split of 0.8, I had 2300 images to train the 
model and 575 images in the validation set. Some 
examples of the images are below. 

 

 
 

To preprocess the data, all images were resized to a 
resolution of 224X224, which is necessary for the Swin 
Transformer framework. Because CMR images are 
grayscale, they were converted to a three-channel tensor. 
All images were normalized by the mean and standard 
deviation of ImageNet pretrained weights.  

Because of the small size of the dataset, I performed 
data augmentation by resizing the images, random 
horizontal flips, random rotation by 15 degrees, color jitter 
(brightness of 0.2, contrast of 0.2, saturation of 0.2, and 
hue of 0.05). Some examples of data augmentation are 
below. 

 
 

 

 

 

5. Experiments, Results, and Discussion 
Upon preprocessing, the CMR images were utilized in 

order to tune four models—the Swin Transformer with 
pretrained weights, the Swin transformer without 
pretrained weights, the ResNet50 with pretrained weights, 
and the ResNet50 without pretrained weights. Single-fold 
cross-validation was performed, and the mini-batch size 
was 32. This is because larger batch sizes caused memory 
issues and smaller batch sizes were less efficient. See 
Methods for description of the AdamWOptimizer. The 
ROC results after four epochs of training (when losses 
generally converged) are reported below. 
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AUC scores across all four models are also summarized in 
this table. 
 
Model AUC Score after 5 Epochs 
Resnet – not pretrained 0.69 
Resnet – pretrained  0.98 
Swin – not pretrained 0.57 
Swin – pretrained 0.98 
  
The notable result is how the pretrained weights make a 
substantial difference in model performance. For both the 
ResNet and Swin, lack of pretrained weights cause the 
model to suffer in performance. Additionally, it is 
interesting that the ResNet and Swin Transformer should 
reasonably similar performance. This could be due to the 
limited size of the dataset and lack of complexity in 
training examples, which prevent the transformer from 
outperforming the ResNet baseline. 

Furthermore, the pretrained ResNet and Swin were 
further fine-tuned using a hyperparameter search after two 
epochs. The results are shown below. 

 

 
 
For both models, the learning rate of 5e-05 allows for the 
best performance, and the second-best performing learning 
rate is 1e-4. This is interesting because it shows that there 
is not a clear direct relationship between decreasing 
learning rate and increasing model performance. After a 
certain point of 1e-5, higher learning rates perform better. 
This makes sense because a learning rate that is too low 
does not allow the model to efficiently improve the 
weights and is too slow. An overly fast learning rate, 
however, may not allow the model to learn from the 
gradients and complexities in the dataset.  

To get a sense of failure cases and highlight additional 
features of the images in the Swin transformer, a thorough 
error analysis was conducted. First, I manually labeled all 
565 validation set images based on the planar axis in 
which the CMR image was taken. Since there was a 
combination of short axis, vertical long axis, and 
horizontal long axis images, I hypothesized that some 
image types may be easier or more difficult for the model 
to classify. After stratifying the dataset, I assessed 
accuracy over the various buckets, as shown below. 
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It is clear that a majority of the images are short axis 
images, with a large number of unknown axis images. I 
also plotted proportional accuracies for each bucket of 
image type. 
 

 

Generally, it seems that accuracy is consistent across 
different image types, which is certainly a key strength of 
this model. Despite variations in image type, the model is 
able to classify relatively similarly across all. From a 
medical relevance standpoint, it seems as if there is no 

particular axis view that is particularly ‘salient’ or more 
useful in CAD classification according to this analysis. 
 To get a sense of saliency in my images, I employed 
gradCam to various images in the validation set, both 
correctly and incorrectly classified. GradCam 
demonstrates salient areas in bright colors and less salient 
areas in blue. 
 
Though the GradCam results should smoothly depict areas 
of greater aid in classification, we do not see this. Instead, 
the GradCam results are quite noisy. It is possible that the 
target layers I was analyzing had lower resolution since I 
had merged patches in my Swin transformer. Since 
GradCam is not designed for Swin Transformer, it is 
possible that this limitation prevented interpretability of 
the results. The results for incorrectly classified images are 
below. 
  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

While it is difficult to say quantitatively, from a qualitative 
perspective, the GradCam results do appear noisier (with 
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many choppy colorful lines), which is reassuring since 
these images were unable to be correctly classified. 
Looking at the examples shown above, it seems that the 
misclassified examples exhibit less contrast in the image, 
which may make it harder to classify correctly. 
 A final assessment employed in my error analysis was 
the use of the CLIP transformer in order to stratify the 
ground truth CAD images into buckets of mild, moderate, 
and severe CAD. Similar to the axis analysis, I evaluated 
model accuracy within each of these buckets. 

 
  
 A vast majority of the images were classified as 
‘severe’ by the CLIP transformer, which is the closest I 
could get to the ground truth since I did not have access to 
these bucket labels. Since CLIP is not pretrained on CMR 
images, this could have limited its accuracy. 
 

 
 
 It is interesting here that all mild cases were correctly 
classified whereas there was some error in the moderate 
and severe cases. One reason for this could be simply 
because there were many more moderate and severe cases, 
increasing the chance for error. Assessing this clinically, 
we would hypothesize that severe images are easier to 

classify since they show greater contrast with healthy 
images, but we see the opposite effect. This calls into 
question the classifications of the CLIP transformer, since 
it is not what we expect. Another explanation for this is a 
more complex clinical explanation—it is possible that in 
earlier stages of CAD, when the heart begins to fail, it 
exhibits signs of failure on CMR. In the moderate case, it 
may exhibit compensatory mechanisms such as 
hypertrophy (thickening of the heart walls). It is possible 
that this clinical mechanism is not well reflected in the 
CLIP model’s labels, thus causing misleading results. 
Overall, it seems the model is most promising for mild 
cases. 
 In terms of overfitting of the model, it seems unlikely 
because of high AUC scores on the validation set. To 
ensure this, future analyses could perform cross-validation 
on different sets of validation data. It is possible that the 
model is overfitting to this particular dataset; additional 
data from other sources is required to validate this. 

6. Conclusions 
The Swin Transformer and ResNet, pretrained 

architecture demonstrate equally highest performance 
(AUC=0.98) when compared to the other architectures. It 
makes sense that the pretrained architectures fell short 
because the limited size of the dataset made it difficult for 
the model to learn from scratch, given that there are 
millions of trainable parameters. Since Swin Transformers 
often require a larger number of data points to outperform 
the ResNet, we observed comparable success between the 
two. 

Remarkably, the Swin model’s classifications are 
consistent across varying planes in which images were 
taken. This is likely because the model was able to 
effectively identify relevant portions of the image (the 
ventricles and key blood vessels) respective of the 
background plane. Another notable finding is that the 
Swin model performs best on mild cases of CAD. 

A key limitation in the current analysis is the quality of 
the dataset. I noticed some superpositions and shadows on 
some training images which may have made learning key 
parameters difficult. An example is shown below. 

 

 
 
 Future directions could include testing unique Swin 

architectures with varying layers and patch sizes, 
deploying ensemble models of combined ResNet and 
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Swin architectures given their roughly equivalent success, 
performing a classification task of different clinical 
features (hypertrophy, valvular dysfunction, etc.), and 
training on larger, diverse datasets to prevent overfitting.  
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