Visual scrolling detection to enhance GUI agent training

Chena Lee
Stanford University

chenalee@stanford.edu

Abstract

We address the problem of automatically detecting user
scrolling actions (and, more generally, mouse-based GUI
actions) from screen-recorded videos. We implement and
evaluate two approaches: (1) a Lucas—Kanade (LK)-based
optical flow pipeline with post-processed motion filtering,
and (2) a TimeSformer-based transformer model trained
with soft temporal labeling to handle annotation uncer-
tainty.

We use the GUI-World dataset, where annotations are
sparse and temporally imprecise. The LK method achieves
higher recall and lower precision (0.237 precision, 0.369
recall across 500 videos), despite extensive post-processing
and tuning. The TimeSformer model offers more flexible
multi-class detection and achieves improved scroll detec-
tion results (0.414 precision, 1.000 recall across over 4000
videos) when trained from scratch using BCEWithLogit-
sLoss and oversampled scroll data. Notably, we found that
precision was impacted by missing or delayed annotations,
and that many model-predicted scrolls appeared valid de-
spite being labeled as false positives.

We describe our methods, dataset, experiments, and
analysis of both quantitative and qualitative results, in-
cluding observed failure modes and annotation noise. We
conclude with proposed future work leveraging large-scale
unlabeled video corpora and suggest that self-supervised
temporal modeling could mitigate annotation challenges in
GUI action detection.

1. Introduction
1.1. Problem Statement and Motivation

Detecting scrolling actions in user interface (UI) videos
is crucial for training GUI agents that can navigate real-
istic, dynamic software environments. Unlike clicks or
keystrokes, scrolling involves sustained, often subtle ver-
tical motion that is not trivially localized to a single frame.
Accurately identifying when and how users scroll enables
downstream agents to understand context shifts (e.g., re-

vealing new UI elements) and execute tasks in complex
desktop applications.

Our goal is to automatically label scrolling segments
(and, by extension, other mouse actions) from unlabeled
or sparsely annotated videos, reducing reliance on manual
annotation. Once annotated, these segments can be used
to train deep learning—based GUI agents that generalize to
real-world software—particularly in domains like health-
care, where rigid systems and poor interoperability pose
challenges.

We note that manual annotations in datasets like GUI-
World are often imprecise, especially for scrolling. Annota-
tors provide only a single frame index for each action, typ-
ically delayed by several frames relative to when the scroll
ended. This introduces ambiguity in both evaluation and
training.

1.2. Input and Output Definitions

Input: A variable-length video of GUI activity (e.g.,
screen recording of a desktop application), represented as
a sequence of RGB frames {F}}1_;

Output (LK Method): A set of time ranges S =
{[ts1,te1], [ts2s te2], - - - } indicating frame ranges where
vertical scrolling occurs.

Output (Transformer Method): For each contiguous clip
of L frames (e.g., L=32), the model outputs a sequence of
soft-labeled probabilities p; . over C action classes (e.g.,
scroll, click, none), fort=1, ..., L.

1.3. Contributions

* Revisit and implement a sparse optical flow—based
LK pipeline for scrolling detection, including sliding-
window smoothing and post-processing filters to re-
duce false positives.

e Train a TimeSformer (spatiotemporal transformer)
model on the GUI-World dataset, using soft labeling
(Gaussian weights over a “label window” of frames)
to handle annotation uncertainty.

* Compare LK and transformer approaches on identical



data splits, analyzing both quantitative metrics (preci-
sion, recall, loss) and qualitative failure modes.

* Highlight the impact of class imbalance and impre-
cise annotations on training, and evaluate robustness
via controlled overfitting.

* Discuss future directions, including large-scale un-
labeled pretraining inspired by OpenAl’s Minecraft
agent.

2. Related Work

Prior work related to detecting GUI-based actions in
videos spans three broad categories: classical optical flow
methods, transformer-based video models, and GUI-Agent
related work.

Classical Optical Flow:

e Lucas—Kanade (LK) [1] remains a lightweight, inter-
pretable baseline for motion tracking. Its sparse fea-
ture matching is susceptible to Ul noise and jitter.

» Farnebick [9] and DeepFlow approaches offer dense
alternatives, but introduce high memory use and false
positives in desktop GUI settings.

¢ FlowNet [2] and RAFT [3] use CNNs to estimate flow,
improving robustness to large displacements, but re-
quire large labeled datasets and GPU runtime.

Transformer-Based:

e TimeSformer [6] introduced factorized spatial-
temporal attention for action recognition.

e ViViT [10] and Video Swin Transformer [11] ex-
tend Vision Transformers (ViT) [7] to handle long se-
quences with patch-level semantics.

e VPT [4] shows the value of large-scale pretraining on
unlabeled video, highlighting the potential of using
GUI screen recordings in a similar way.

GUI-Agent:

* UGround [5] maps natural language commands to Ul
regions using LLMs and synthetic screenshots, but
does not handle motion detection or temporal dynam-
ics. Dataset they used is synthetically generated.

* Screen2Vec [12] learns GUI screen embeddings.

e DeepClick [13] detects click actions using
CNN+LSTM, a simpler task than modeling scroll,
which requires capturing sustained movement.

Many existing GUI datasets are synthetic or mobile-
based, and fail to capture the complex scrolling behavior
present in desktop applications. Our work contributes a
side-by-side evaluation of classical vs. modern approaches
using a noisy real-world dataset.

3. Methods

3.1. Lucas{Kanade (LK) Based Motion Segmenta-
tion

This section outlines the implementation details for both
the classical Lucas—Kanade (LK) optical flow pipeline and
the transformer-based TimeSformer model. We describe
the feature extraction and post-processing used in the LK
method, the model architecture and loss function used for
the transformer, and the evaluation logic applied to both.

Our optical flow pipeline builds on the Lucas—Kanade
method to detect scrolling based on sparse vertical displace-
ments. For each frame pair, we compute feature tracks us-
ing cv2.goodFeaturesToTrack and estimate motion via
cv2.calcOptical FlowPyr LK. We extract vertical motion
vectors and apply a direction threshold and consistency fil-
ter to detect candidate scrolling frames.

To reduce noise, we use a sliding window of size 5 and
trend-based labeling followed by a hysteresis smoothing
step that requires consistent trends to persist for multiple
frames before changing class. We then merge adjacent can-
didate segments using track continuity heuristics: if a suf-
ficient number of tracked points show consistent displace-
ment direction and magnitude across a gap, the segments
are fused.

Specifically, if two scrolling segments are separated by a
short gap (< 10 frames), we analyze the optical flow tracks
from the last frame of the first segment and the first frame
of the second. If a sufficient number of tracked points (>
25% or at least 100) continue their motion across this gap
in the same direction (scroll up or down), we consider this
evidence of consistent scrolling and merge the segments.
This continuity heuristic is essential to address intermittent
tracking loss and small pauses during user scrolling, which
otherwise result in fragmented detections.

To filter out false positives, we require segments to pass
multiple post-hoc checks: total vertical displacement must
exceed 40 pixels; the 75th percentile of track length must be
above 20 pixels; at least 30 ”long” tracks must exist in the
segment; and the average vertical motion per frame must
exceed 2.0 px/frame. Visualizations of track overlays and
flow fields are generated to assist manual inspection.

3.2. TimeSformer-Based Classification

We train a TimeSformer model from scratch on GUI-
World clips. Each clip consists of 32 RGB frames, sampled
with a stride of 2, and resized to 128128 resolution.

Because annotations label only a single (approximate)
midpoint frame per scroll, we apply soft labeling with a
Gaussian kernel spanning £10 frames. This creates a tem-
porally smoothed ground truth label for the “scroll” class.

The model is trained using BCEWithLogitsLoss,
with a high pos_weight to address the extreme class imbal-



w-,

Figure 1. Tracks created to identify scrolling behavior

ance between “’scroll” and no scroll” labels. Empirically,
we found that training heavily penalized false negatives im-
proved the model’s ability to detect rare scroll segments, but
also led to overfitting when trained for long durations. To
further counteract class imbalance, we oversample scroll-
labeled training clips by a factor of 2x. This ensures better
representation of rare scroll events during training. All in-
puts are resized to 128x128, and no pretrained weights are
used.

Our implementation adopts a simplified but faithful ver-
sion of the TimeSformer architecture. Each video clip of
shape is first passed through a patch embedding module
that flattens each frame into non-overlapping patches and
projects them into a fixed embedding dimension. We use 4
transformer encoder layers with 4 heads each.

The core of the model alternates between spatial and
temporal attention:

- Spatial attention is applied across patches within each
frame by reshaping the sequence as , where is the number
of patches per frame.

- After spatial encoding, the output is reshaped back to
and averaged over patches to yield one token per frame.

- Temporal attention is then applied across the frames
using a positional encoding of shape , added to each frame
embedding.

Finally, the model predicts a classification score for each
frame using a linear head over the temporally encoded to-
kens.

3.3. Evaluation

To handle annotation uncertainty, we allow detected seg-
ments to match ground-truth scrolls with up to +10 frame
tolerance. A true positive is defined as any predicted seg-
ment overlapping a labeled scroll region within this win-
dow. We compute precision, recall, and F1 score across
all test videos. We also report per-video averages to assess
consistency.

4. Dataset and Features

We used the GUI-World dataset, which consists of over
4000 videos capturing real user interactions with desktop

applications. Each video includes a sparse set of anno-
tations indicating GUI actions such as clicks, hovers, and
scrolls. The annotations are temporally imprecise, typically
annotating just a single frame per action and with some de-
lay. This is particularly problematic for scrolling, which by
nature spans multiple frames and cannot be meaningfully
captured by a single timestamp.

From the full dataset, we extracted approximately 231
videos for training and testing. Each frame is resized to
128x128 resolution and stored as RGB. To feed the model,
we sample contiguous clips of 16-32 frames at a stride of
2-4, resulting in overlapping clip windows. Frames are
normalized but no augmentations (e.g., cropping, flipping)
were applied.

For each annotated scroll, we assign soft labels using a
Gaussian kernel centered on the annotated frame, covering
nearby 10 frames. In cases with no annotation, frames
default to “none” class. The dataset is highly imbalanced,
with frames annotated as scroll events constituting less than
1% of all frames. Scrolls often go unlabeled, complicating
supervised training and evaluation.

The annotations are stored in structured JSON format,
which includes frame-specific events along with metadata
and QA descriptions. For example:

{

"system": "Windows",

"app": ["Todoist"],

"goal": "Create a new team",

"keyframes": [

{"frame": 24, "mouse": "hover"},

{"frame": 291, "mouse": "click", "keyboard":
{"frame": 330, "mouse": "scroll"}

]l

"video_path": "software/12.mp4"

}

This annotation sparsity impacts both training and eval-
uation. During evaluation, the model may detect real scrolls
that were never labeled by annotators, which would incor-
rectly count as false positives. Thus, the reported precision
may underestimate true model performance.

5. Experiments, Results, and Discussion
5.1. Experimental Setup

We trained and evaluated both the LK-based and
TimeSformer-based models using the GUI-World videos.
For TimeSformer, we trained from scratch using the Adam
optimizer with a learning rate of 5e~#, and batch size of 16.
We trained for up to 10 epochs. No pretrained weights were
used.

To handle label imbalance, we used
BCEWithLogitsLoss with a high positive class

"input



weight (e.g., pos_-weight = 100.0) to emphasize scroll
detection. We did not perform cross-validation due to
compute constraints and instead reserved a portion of the
videos as a validation set.

LK-based detections were produced using optical flow
post-processing with tunable thresholds and segment merg-
ing logic (see Section 2). All hyperparameters (motion
threshold, track count, segment length) were optimized
manually based on qualitative inspection.

5.2. Metrics and Definitions

We evaluate model performance using precision, recall,
and F1 score. A true positive is defined as a predicted
scroll segment that overlaps any annotated scroll within £10
frames. Let TP, F'P, and F'N denote true positives, false
positives, and false negatives respectively:

Precision = rre Recall = e
TP+ FP’ TP+ FN’
Fl—9 Precision - Recall

" Precision + Recall

Note that because annotations are sparse and incomplete,
some model-correct scroll detections are labeled as false
positives. Thus, precision may underestimate true model
quality.

LK Method Results (500 videos)

Metric Value
Overall Precision 0.237
Overall Recall 0.369
Overall F1 Score 0.289

True Positives 52
False Positives 167
False Negatives 89

Avg Precision / Video | 0.528
Avg Recall / Video | 0.801
Avg F1 Score / Video | 0.533

Table 1. Evaluation metrics for LK method on 500 GUI videos.

Interesting true failure cases included a video where an
UI item was added by a user. This caused all components
below the new UI item to be pushed down, making LK
pipeline think this is scrolling.

Transformer (TimeSformer) Results:

These experiments demonstrate key trade-offs in scroll
detection performance. A moderate pos_weight of 5.0 al-
ready yields strong recall (;0.9), but increasing to 10.0 helps
eliminate remaining false negatives, achieving 100% recall.
However, this comes at the cost of precision, which begins
to degrade with prolonged training—dropping from 0.423
after 1 epoch to 0.267 after 3 epochs. This suggests that

Movie List

Want to Watch
Add a Movie

4 Genera
i

Figure 2. False positive case. Added Ul item pushed bottom com-
ponents down at once.

Metric Value
Overall Precision | 0.423
Overall Recall 1.000
Overall F1 Score | 0.594

True Positives 22638
False Positives 30933
False Negatives 0

Table 2. Evaluation metrics for TimeSformer on over 4000 GUI
videos. pos_weight = 10.0, 1 epoch training

Metric Value
Overall Precision | 0.407
Overall Recall 0.903
Overall F1 Score | 0.561
True Positives 19692
False Positives 28687
False Negatives 2106

Table 3. Evaluation metrics for TimeSformer on over 4000 GUI
videos. pos_weight = 5.0, 1 epoch training

the model becomes increasingly prone to overfitting, inter-
preting ambiguous motion patterns (e.g., mouse hovers) as
scrolls. Notably, recall remains consistently high, indicat-
ing that false negatives are relatively easy to eliminate with
sufficient positive weighting and oversampling, while pre-
cision must be managed more carefully through regulariza-
tion or better labeling.



Metric Value
Overall Precision | 0.407
Overall Recall 0.997
Overall F1 Score | 0.578
True Positives 21733
False Positives 31647
False Negatives 65

Table 4. Evaluation metrics for TimeSformer on over 4000 GUI
videos. pos_weight = 5.0, 2 epoch training

Metric Value
Overall Precision | 0.267
Overall Recall 1.0
Overall F1 Score | 0.422

True Positives 21798
False Positives 59834
False Negatives 0

Table 5. Evaluation metrics for TimeSformer on over 4000 GUI
videos. pos_weight = 5.0, 3 epoch training

e Validation loss reached as low as 0.024 after 100
epochs under overfitting.

» After 1 epoch, training loss reached 0.4848 with vali-
dation loss 0.4760 with pos_weight 10.0.

5.3. Hyperparameters

We explored the effect of changing pos_weight in the
BCE loss to penalize misclassified scroll frames more heav-
ily. Lower weights led to underprediction, while high values
improved recall but worsened precision due to false posi-
tives on mouse movement frames. Frame stride, clip length,
and embedding dimensions used were stride=2, clip=32,
embed=192.

5.4. Qualitative Results and Error Modes

Despite strong quantitative performance, qualitative in-
spection revealed key limitations of both the model and
the dataset. Many apparent false positives involved mouse
movements, or drag gestures that resemble short scrolls.
These cases reflect the difficulty of defining clear semantic
boundaries between GUI gestures in the absence of high-
quality annotation.

In several examples, the model correctly detected
scrolling segments that were visually obvious (e.g., verti-
cal list movement, scrollbar motion), but no corresponding
labels existed in the dataset. These cases were penalized
during evaluation due to annotation sparsity. Conversely,
the model sometimes split a single scroll action into multi-
ple detections—especially when the user paused or wobbled
mid-scroll. Since the dataset annotates only one frame per

Figure 3. Original dataset did not label scroll action

action, these splits count as redundant true positives or even
false positives depending on overlap logic.

Predicted scroll probabilities showed that high
pos_weight values caused the model to saturate
quickly—producing extended high-confidence scroll
spans around short gestures. This aggressive labeling ex-
plains the tradeoff between improving recall and degrading
precision. A more nuanced labeling policy, or access to
frame-level dense scroll annotations, would help mitigate
these artifacts and produce a more faithful segmentation.

In summary, while our model achieves near-perfect re-
call under some configurations, the noisiness and sparsity
of the underlying annotations place a ceiling on achievable
precision. Future improvements should focus on improving
label quality and explicitly modeling gesture uncertainty.

6. Conclusion and Future Work

In this report, we examined two distinct approaches for
detecting scrolling actions in GUI screen recordings: a
classical Lucas—Kanade (LK) optical flow pipeline and a
transformer-based TimeSformer model. The LK pipeline,
while interpretable and lightweight, achieved modest per-
formance (F1 = 0.289), struggling with the subtlety of GUI
scroll motion and the noise inherent in sparse tracking.
Conversely, the TimeSformer model trained with soft la-
bels and class balancing strategies proved far more effec-
tive, achieving an F1 score of 0.594 after just one epoch.

These results highlight that transformer-based architec-
tures are better suited for the temporal and spatial com-
plexity of scroll detection, especially when paired with
thoughtful loss weighting and data balancing. Our use of
pos_weight and oversampling allowed the model to reach
perfect recall, and multiple epochs demonstrated the preci-
sion—recall tradeoff inherent in overfitting vs. generaliza-
tion.

In future work, we aim to address two major limitations:
annotation quality and model generalization. Sparse and
imprecise annotations currently limit the precision of both



training and evaluation. One promising direction is leverag-
ing large-scale unlabeled video corpora for self-supervised
pretraining, inspired by recent advances in Minecraft agents
and ViT-based video models. With more compute and ac-
cess to richer labels or human-in-the-loop corrections, we
also plan to incorporate multi-modal cues (e.g., cursor tra-
jectories, text boxes, UI trees) to boost robustness and dis-
ambiguate ambiguous visual patterns.

References

[1] Bruce D. Lucas and Takeo Kanade. “An Iterative Im-
age Registration Technique with an Application to Stereo
Vision.” International Joint Conference on Artificial Intelli-
gence (IJCAI), 1981.

[2] Alexey Dosovitskiy et al. “FlowNet: Learning Opti-
cal Flow with Convolutional Networks.” IEEE International
Conference on Computer Vision (ICCV), 2015.

[3] Zachary Teed and Jia Deng. “RAFT: Recurrent All-
Pairs Field Transforms for Optical Flow.” European Confer-
ence on Computer Vision (ECCV), 2020.

[4] Eric Wu et al. “VPT: Learning Visual Prompt Tuning
for Vision Transformers.” arXiv preprint arXiv:2203.12152,
2022.

[5] Yujia Liang et al. “UGround: Open-Vocabulary GUI
Grounding using Vision-Language Models.” arXiv preprint
arXiv:2305.17086, 2023.

[6] Gedas Bertasius, Heng Wang, and Lorenzo Torresani.
“Is Space-Time Attention All You Need for Video Under-
standing?” International Conference on Machine Learning
(ICML), 2021.

[7] Alexey Dosovitskiy et al. “An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale.”
arXiv preprint arXiv:2010.11929, 2020.

[8] Ze Liu et al. “Video Swin Transformer.” IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[9] Gunnar Farnebiack. ‘“Two-Frame Motion Estima-
tion Based on Polynomial Expansion.” Scandinavian Con-
ference on Image Analysis, 2003.

[10] Anurag Arnab et al. “ViViT: A Video Vision Trans-
former.” IEEE/CVF International Conference on Computer
Vision (ICCV), 2021.

[11] Huazheng Geng et al. “Screen2Vec: Semantic Em-
bedding of GUI Screens and GUI Elements.” arXiv preprint
arXiv:2205.15493, 2022.

[12] SeongMin Kim, Yena Lee, and Sung-Bae Cho.
“DeepClick: Classification of Mouse Clicking Activities
Based on CNN and LSTM.” IEEE Access, 2019.



