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Abstract

We introduce WEBSIGHT, a vision-based au-
tonomous web agent, designed to interact with web envi-
ronments purely through visual perception, eliminating
dependence on HTML or DOM-based inputs. Central to
our approach we introduce our new model, WEBSIGHT-
7B, a fine-tuned vision-language model optimized for
UI element interaction, trained using LoRA on a web-
focused subset of the Wave-UI-25K dataset. WEBSIGHT
integrates this model into a modular multi-agent archi-
tecture, comprising planning, reasoning, vision-action,
and verification agents, coordinated through an episodic
memory mechanism.

WEBSIGHT-7B achieves a top-1 accuracy of 58.84%
on the Showdown Clicks benchmark, outperforming sev-
eral larger generalist models while maintaining lower
latency. The full WEBSIGHT agent achieves a 68.0%
success rate on the WebVoyager benchmark, surpass-
ing systems from labs such as OpenAI (61.0%) and
HCompany (Runner H, 67.0%). Among tasks com-
pleted, WEBSIGHT answers correctly 97.14% of the
time, indicating high precision. Together, WEBSIGHT
and WEBSIGHT-7B establish a new standard for inter-
pretable, robust, and efficient visual web navigation.

1. Introduction
Autonomous web agents capable of performing com-

plex web navigation tasks—such as automated form
filling, online shopping, and dynamic information re-
trieval—have emerged as a critical area of study within
artificial intelligence. Over recent years, substantial
progress has been driven by leveraging large language
models (LLMs), enabling browser agents to interpret
web content primarily through textual representations
like HTML code, Document Object Model (DOM)
trees, and accessibility metadata [39, 65, 67]. De-
spite their successes, these approaches present criti-
cal challenges when confronted with real-world scenar-
ios. Specifically, websites frequently feature incom-
plete or incorrect metadata, dynamic layouts, and com-

Figure 1. The WEBSIGHT Architecture

plex designs that degrade the reliability of structurally-
dependent agents [58, 66]. Furthermore, the compu-
tational demands of processing extensive textual and
structured inputs limit their scalability and interpretabil-
ity, hindering practical deployment [71, 35, 20].

In contrast, human users rely almost exclusively on
visual perception, effortlessly recognizing actionable in-
terface elements like buttons, input fields, and naviga-
tion bars based solely on visual layout and design cues,
irrespective of underlying metadata [17, 70]. Inspired
by this natural modality, we present two tightly inte-
grated contributions: WEBSIGHT, a vision-based au-
tonomous browser agent; and WEBSIGHT-7B, a task-
specific vision-language model trained to identify and
interact with user interface elements directly from ren-
dered web screenshots.

The WEBSIGHT agent is built on a robust multi-
agent orchestration framework that mimics human cog-
nitive processes. At its core are dedicated planning
agents, which devise comprehensive strategies outlin-
ing task sequences and continually track progression to-
wards goals [29, 50]. Concurrently, specialized reason-
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ing agents perform detailed analyses to pinpoint and ar-
ticulate precise subsequent actions necessary for task ad-
vancement [6, 20]. The critical component of our ar-
chitecture, the vision agent, leverages the WEBSIGHT-
7B model [45, 27] to make decisions on actions in the
browser. Post-action, dedicated verification agents rig-
orously evaluate the resultant webpage state changes
to ascertain accuracy and effectiveness of each interac-
tion [58, 66]. This integrative process is further bol-
stered by an episodic memory mechanism, dynamically
updating and iteratively refining agent strategies through
continuous verification cycles until completion criteria
are achieved [52, 35, 71]. Collectively, this orchestrated
multi-agent architecture closely mirrors human cogni-
tive and perceptual workflows, significantly enhancing
interpretability, adaptability, and robustness [17, 70].

At the core of this system, WEBSIGHT-7B is a
fine-tuned version of UI-TARS that we adapt to the
web domain [45]. Trained on augmented web-based
GUI datasets using LoRA fine-tuning, WEBSIGHT-
7B demonstrates substantial improvements in English-
language understanding and precision UI interaction
over generalist vision-language models [27]. We show
that the combination of architectural modularity and
a domain-specialized foundation model enables both
strong performance and practical deployability.

To validate our contributions, we evaluate WEB-
SIGHT and WEBSIGHT-7B on two challenging bench-
marks: WebVoyager and Showdown Clicks [22, 55, 59].
WEBSIGHT achieves a 68.0% success rate on WebVoy-
ager, outperforming comparable agents by 1–7 percent-
age points. On the Showdown Clicks benchmark, WEB-
SIGHT-7B attains a top-1 accuracy of 58.84%, surpass-
ing a range of larger general-purpose vision-language
models by 4–7 points. These results underscore the ben-
efits of a vision-first architecture and domain-specialized
model design for effective and efficient web interaction.

Through WEBSIGHT, we introduce a dual innova-
tion: a vision-first web agent and an accompanying
domain-optimized vision-language model. Together,
advance autonomous web agent research by explicitly
integrating human-like visual perception into agent de-
sign. Our approach offers a path toward robust, in-
terpretable, and computationally efficient autonomous
agents capable of generalizing across diverse web en-
vironments, aligning closely with human browsing be-
havior and intuitions.

We publicly share WEBSIGHT’s code on Github:
https://github.com/SuperAce100/
websight and WEBSIGHT-7B on Hugging-
Face: https://huggingface.co/tanvirb/
websight-7B.

2. Related Works

Early web navigation agents predominantly relied on
reinforcement learning techniques, demonstrating ba-
sic task execution capabilities [33, 60, 7]. The ad-
vent of deep reinforcement learning further enhanced
agent capabilities, enabling more sophisticated inter-
action strategies [38, 51, 25, 61]. However, these
agents often required extensive training environments
and struggled with generalization to unseen websites.

More recent advancements in large language models
(LLMs) such as GPT series [8, 42, 40] have significantly
improved autonomous agents’ abilities to generalize and
handle complex instructions [73, 36, 65]. Nonetheless,
these approaches remain heavily reliant on structured
textual inputs such as DOM trees and accessibility meta-
data, limiting their robustness against incomplete or in-
accurate metadata [58, 66, 71, 35].

Parallel to textual methods, computer vision ap-
proaches have significantly advanced, particularly in se-
mantic segmentation and object detection [24, 49, 14,
12, 69]. Recent progress in visual transformer architec-
tures and self-supervised learning has further pushed the
boundary of vision-based perception capabilities [18,
13, 46, 4, 62].

Integrating visual perception into web navigation has
also garnered attention. Early work utilized vision
heuristics for webpage understanding [11, 31, 16]. More
recent methods have employed deep learning models to
directly interpret visual webpage layouts, significantly
improving navigation robustness [70, 30, 48, 37].

Our multi-agent orchestration approach builds upon
foundational theories in multi-agent systems and plan-
ning [29, 50, 64], cognitive architectures [2, 32],
episodic memory integration [5, 44], and human-
inspired verification strategies [38, 54, 34] to achieve
more robust, interpretable, and efficient autonomous
web agents.

3. Data

UI Dataset Synthetic Augmentation

Original Data

• Image + bbox

• Type: button
• Text: ”Reminder”

• Purpose: reminders

Templates

”Click {element} to {purpose}”
”Tap {type} for {function}”

”Select {name}”

Augmented Prompts

”Click button to set reminders”

”Tap reminder for management”
”Select reminder button”

Figure 2. Synthetic augmentation pipeline for UI vision-
language model training. Original structured UI data is pro-
cessed through natural language templates to generate diverse
instruction variations.

We utilize AgentSea’s Wave-UI-25K dataset [1].
Wave-UI-25K comprises of 24,978 entries. Of this, we
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use the subset of 22,994 web-based screenshots with an-
notated browser interaction elements, as we are not fo-
cusing on alternative subsets like mobile and desktop.

Each dataset entry includes a screenshot, the bound-
ing box of a particular UI element within it, OCR ex-
tracted text from the image, and a natural language de-
scription of the purpose of the element and expected re-
sult from interacting with the element.

In Figure 2 we optimize the responsiveness of WEB-
SIGHT to a variety of natural language prompts by syn-
thetically augment the dataset with procedurally gener-
ated natural language prompts based on the semantic la-
bels.

Fine-tuning allows the UI-TARS model to refine its
attention and enhance task-specific efficacy, leverag-
ing existing visual representation capabilities to robustly
handle nuanced web interactions [15, 26, 47, 45]. We
also ensure the model’s proficiency in delivering pre-
cise English instructions and interactions specifically
tailored for web environments (Section 4.2.1).

We evaluate WEBSIGHT using established bench-
marks such as Showdown Clicks [59], which provides
a robust test to determine accuracy of click locations of
a VLM used in a Browser Agent. Additionally, we uti-
lize Skyvern AI’s filtered WebVoyager dataset [55], an
enhanced evaluation set derived from the original We-
bVoyager dataset [23]. Skyvern’s dataset specifically
removes tasks deemed impossible due to outdated web
page structures, ensuring more accurate and meaningful
performance assessments.

Figure 3. UI-TARS LoRA Fine Tuning Process to develop
WEBSIGHT-7B. Leverages Web Subset of Wave-UI-25k to
make UI-TARS English and browser specific.

4. Methods

WEBSIGHT is a visually-grounded multi-agent
framework specifically designed to emulate human

browser navigation behaviors. Unlike traditional LLM-
based agents that rely heavily on structured textual in-
puts such as HTML or accessibility metadata, WEB-
SIGHT leverages purely visual inputs—webpage screen-
shots—to interact effectively with web environments.

4.1. Preliminaries

Baselines To effectively benchmark WEBSIGHT’s
performance we determine the effectiveness of both
WEBSIGHT-7B and the WEBSIGHT agent. For WEB-
SIGHT-7B we compare its performance against state-of-
the-art (SOTA) Vision-Language Models (VLMs), all of
which are transformer-based and natively support mul-
timodal input. These include models such as GPT-4o,
Gemini 2.0 Flash, and Claude 3.7 Sonnet, as well as
other large-scale VLMs and vision-capable LLMs. For
the WEBSIGHT agent, we compare it to other SOTA
web agents, whether they utilize vision or not. These
agents include, Browserable, Browser Use, Skyvern 2.0,
Agent-E, as well as many more by other cutting edge
startups.

Problem Definition We formalize the problem us-
ing the following notation. Given an initial task β spec-
ified by the user, we assign it to the agent’s episodic
memory M and initialize the task state as T0 = β.
Based on T0, the system generates a plan P that WEB-
SIGHT executes. To select actions at, the reasoning
agent f processes the current status inputs, incorporat-
ing relevant information from V . Once f determines that
the task is complete, we mark the final state as Tcomplete.

4.2. WEBSIGHT-7B

We present WEBSIGHT-7B, a Vision Language
Model trained for targeted interaction with UI ele-
ments on screen given natural language prompts. We
integrated this model into our subsequent multi-agent
pipeline. We detail our process of developing the model
below:

4.2.1 Fine-tuning

In Figure 3, we fine-tune UI-TARS-1.5-7B [45] using
the Wave-UI-25K dataset [1]. Each training sample con-
sists of a procedurally generated natural language in-
struction and a website screenshot. Originally, UI-TARS
outputs frequently in Chinese and is too generalized to
GUI interactions, leading to performance issues in En-
glish settings and the web domain. Our fine-tuning ex-
plicitly enhances its capability to respond to focused
English instructions and accurately perform browser-
specific interactions. Fine-tuning improves domain-
specific performance by adapting general-purpose visual
representations to specialized tasks [26].
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We fine-tune UI-TARS using LLaMA-Factory [72]
with bf16 quantization and a LoRA approach on the at-
tention layers for faster training. Our fine-tuning lever-
ages supervised learning with a cross-entropy loss for
instruction generation. Within this setting, training on 2
NVIDIA L40S GPUs takes about 6 hours.

Further, from Figure 9 we see that a majority of the
learning is done in the beginning of the process, with the
returns tapering quickly. This is due to the web browser
and english support already existing in UI-TARS and the
fine tuning process only supporting and enhancing this
support. Further, the process adds a limited amount of
important new tokens. We detail this in more detail in
the appendix Section 7.2.

Figure 4. Episodic Memory Diagram dictates Task, Planning,
Step Tracking, and Current Web State that form the Episodic
Memory.

4.3. Multi-Agent Framework

WEBSIGHT implements a modified version the Re-
Act agent framework augmented with a planning agent
and separated reasoning and action sub-steps visualized
in Algorithm 1 [68]:

1. Planning Agents. These agents are responsible for
constructing high-level action plans based on user
instructions or task objectives. Leveraging clas-
sic chain-of-thought planning methodologies [63],
our planning agents formulate task sequences that
provide long-term context for the reasoning agents.
These plans are dynamically updated based on
feedback from verification agents.

2. Reasoning Agents. Situated below planning
agents, reasoning agents determine precise next-
step interactions necessary to progress the overall
task. Utilizing transformer-based reasoning archi-
tectures [15, 47], these agents translate high-level
plans into specific actionable steps such as ”click
the login button” or ”fill in a text box.”

3. Action Agent. Central to WEBSIGHT is our cus-
tom trained WEBSIGHT-7B based agent, which in-
terprets semantic instructions from the reasoning
agents and translates them into visual interactions
directly on screenshots.

4. Verification Agents. After the vision agent exe-
cutes an action, verification agents rigorously eval-
uate the resulting changes in the webpage state.
Utilizing visual reasoning, these agents verify task
progress, update memory, and determine what the
next step to be taken is–which was seen.

4.4. Episodic Memory

Integral to human-like interaction, in Figure 4 we in-
corporate a short-term episodic memory that records re-
cent interactions and webpage states [57]. This mem-
ory allows our agents to iteratively refine action strate-
gies, detect errors quickly, and prevent repetitive mis-
takes [5, 44]. The episodic memory is structured as
a limited-size buffer storing recent interaction-action-
outcome tuples, continuously updated and pruned based
on task relevance.

Algorithm 1 WEBSIGHT Agent Loop
1: Initialize episodic memoryM = ∅ and task state T0
2: Planning: Create plan P = {p1, p2, . . . , pn}
3: while Tt ̸= Tcomplete do
4: Reasoning: Determine next action

at = f(P,M, Tt)
5: Action: Execute WEBSIGHT visual action V(at)
6: Verification: Assess visual changes ∆Vt and

compute Tt+1

7: Episodic Memory Update:
M =M∪ {(at,∆Vt, Tt, Tt+1)}

8: if Tt+1 ≻ Tt then
9: Tt ← Tt+1

10: else
11: P ← UpdatePlan(P,M, Tt)
12: end if
13: end while
14: return Tcomplete

4.5. Alternative Approaches Considered

We initially explored purely monolithic architectures,
such as directly using large multimodal transformer
models [46, 18], to handle both perception and reason-
ing simultaneously. However, we found that decom-
posing perception and reasoning into specialized agents
provided greater interpretability, modularity, and accu-
racy. Additionally, preliminary experiments indicated
that fine-tuning domain-specific vision models resulted
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in better visual interaction accuracy than generalized
multimodal models.

Our multi-agent orchestration framework, combined
with targeted fine-tuning strategies, provides a robust
and efficient solution, explicitly mirroring human-like
browsing behaviors and ensuring practical applicability
in diverse web navigation tasks.

5. Experiments

We conduct two experiments to evaluate WEB-
SIGHT-7B and the WEBSIGHT agent. First, the
Showdown-Clicks benchmark, which isolates low-level
click accuracy, is used to evaluate WEBSIGHT-7B com-
pared to other leading VLMs. The WebVoyager bench-
mark, which measures end-to-end task completion in a
realistic multi-page web environment, is used to evalu-
ate the WEBSIGHT browser agent.

5.1. Showdown/Clicks

Showdown is a recent suite of offline and online tests
for computer-use agents, released by General Agents
in early 2025. The showdown-clicks track contains
5 679 human-collected left-click events on macOS, with
a public dev subset of 557 examples. The benchmark
is composed of a wide variety of challenging UI tasks
requiring complex skills like understanding icons, pro-
cessing semantic intent, and acting in situations where
there are multiple viable tasks[59].

Published baselines vary widely. The SOTA, Ope-
nAI’s o3-based CUA reaches 64.27% top-1 accuracy,
whereas a vanilla GPT-4o agent achieves only 5.2%,
underscoring the difficulty of ambiguous UI contexts.
Using the same test conditions, WEBSIGHT-7B at-
tains 58.84% accuracy, achieving higher accuracy than
VLMs with almost 10x more parameters. Furthermore,
WEBSIGHT-7B served on a single Nvidia H100 GPU is
significantly faster than OpenAI’s CUA for a slight drop
in accuracy.

Model Top-1 Accuracy (%) Latency (ms)

WEBSIGHT-7B 58.84 2841
OpenAI CUA (o3-based) 64.27 6385
Molmo-72B-0924 54.76 6599
Claude 3.7 Sonnet 53.68 9656
UI-TARS-72B-SFT 54.40 1977
OmniParser V2 + GPT-4o 51.71 12642
Gemini 2.0 Flash 33.39 3069
Qwen2.5-VL-72B-Instruct 24.78 3790
GPT-4o 5.21 2500

Table 1. Top-1 Accuracy on the Showdown/Clicks Benchmark
[59]

5.2. WebVoyager

The WebVoyager benchmark is a large-scale, real-
world evaluation suite designed to measure the capabil-
ities of autonomous web agents in handling interactive
tasks across dynamic websites [22]. It spans hundreds of
user intents on popular domains and tests abilities such
as DOM reasoning, form filling, and multi-step naviga-
tion. Unlike synthetic tasks, WebVoyager emphasizes
natural interaction and robustness in the open web, mak-
ing it a strong benchmark for evaluating practical utility
and generalization in vision-language agents.

Due to computational constraints and to ensure con-
sistent evaluation, we use the filtered subset of 50 tasks
introduced by Skyvern [55], which excludes outdated
live tasks that are no longer possible. Table 2 shows
performance across a variety of state-of-the-art agents
evaluated on either the full or filtered WebVoyager set
[56]. WEBSIGHT achieves a Success Rate of 68% on
Skyvern’s filtered WebVoyager Benchmark [55].

Agent Success Rate (%)

WEBSIGHT 68.0
Browserable 90.4
Browser Use 89.1
Skyvern 2.0 85.8
Claude Computer Use 77.5
Agent-E 73.1
Runner H 0.1 67.0
OpenAI Operator (GPT-4o) 61.0
WebVoyager Agent 57.1

Table 2. WebVoyager Benchmark Success Rates [10, 56, 9, 19,
21, 3, 41]

From Table 2 we see that the SOTA Browserable
achieves a success rate of 90.4%. Frontier labs like Ope-
nAI and Anthropic achieve results of 61% and 77.5%
respectively, highlighting the difficulty of developing a
sophisticated browser agent even for labs with many re-
sources.

5.3. Discussion & Analysis

5.3.1 WEBSIGHT-7B

We analyze screenshots of the failures in WEBSIGHT-
7B and identify 3 key failure modes:

1. Visual Grounding: While WEBSIGHT-7B excels
at identifying buttons and elements with text labels.
Figure 5 shows such a use case, where WEBSIGHT-
7B identifies the correct text but misses the interac-
tivity of the icon.

2. Extended Action Space: The action space of
WEBSIGHT-7B extends beyond clicks to include
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actions like text-input, scrolling, etc. Sometimes,
WEBSIGHT-7B chooses those actions when it does
not find a direct answer to the task. Figure 6 shows
such a failure mode, where the model chose to
scroll to see more posts instea fo clicking the visi-
ble one.

3. Icon Understanding: WEBSIGHT-7B also strug-
gles to distinguish between ambiguous icons that
may have been out of the training distribution. Fig-
ure 7 shows a case where WEBSIGHT-7B misiden-
tifies an icon and therefore makes an incorrect
click.

Two of these failure modes tend to deal with interac-
tion and understanding of icons, which highlights a key
weakness in the choice of training data. Appendix 7.3
contains more examples of failures. It is important to
note that these failure modes are all fairly uncommon
in normal web browsing, and WEBSIGHT-7B excels at
most clicking tasks.

5.3.2 WEBSIGHT Agent

In Figure 8, we observe that agents developed by star-
tups exhibit the highest success rates. This performance
likely reflects a concentrated focus on productization

Figure 5. Task: Click on the button to copy

Figure 6. Task: Click on the post by Chiya

Figure 7. Click on the Answer icon

and rapid iteration. In contrast, research-oriented labs
tend to pursue broader agendas, which may contribute
to comparatively lower performance metrics. Notably,
our agent outperforms those from both Frontier Labs and
several younger labs, as shown in Table 2.

Figure 8. WEBSIGHT performance against other agents

Due to the small size of the Skyvern WebVoyager be-
ing only 50 tasks, we manually analyze the 16 tasks that
fail to determine insights. We manually test each Plan-
ning agent’s plan, Reasoning agent’s proposed action,
and Action agent’s step to determine who was at fault,
to glean interpretability on where WEBSIGHT could be
improved. We know that if at any point WEBSIGHT
produced an incorrect result, the Verification Agent has
failed, since it did not catch the error.

Upon analysis of trajectories, we see that 15 of the 16
failures were due to the agent timing out, given our 10
minute restriction for WEBSIGHT to complete tasks. We
saw that these 15 failures all had infinite loops. Table 3
highlights that the LLMs that power the Planning and
Reasoning agent are WEBSIGHT’s weakest links. Some
potential ways infinite loops arose were:

• Planning agents sending WEBSIGHT into a place
with no results, where WEBSIGHT would click a
button, navigate backwards and repeat

• Reasoning agents repeatedly making the wrong de-
cision, sending WEBSIGHT to a page, navigating
backwards, and repeating

• Action agents repeatedly being unable to identify
buttons or correct click locations as they are too
small or fail to understand icons, and repeatedly do
nothing

Component Failure Count

Planning Agent 5
Reasoning Agent 7
Action Agent 3

Table 3. Failure Analysis of WEBSIGHT Agent by Component
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Further, we understand that of the 35 tasks that WEB-
SIGHT provided an answer to, 34 were correct. This is
a remarkable 97.14% accuracy, highlighting that WEB-
SIGHT only provided an answer to the task if it is confi-
dent about its answer.

6. Conclusion

6.1. Key Results

WEBSIGHT advances the capabilities of vision-based
web agents by integrating our new specialized vision-
language model (WEBSIGHT-7B) into a modular multi-
agent system. Our approach demonstrates several key
results:

• State-of-the-art performance for small models:
WEBSIGHT-7B achieves a Top-1 Accuracy of
58.84% on the challenging Showdown/Clicks
benchmark, outperforming many larger-scale mod-
els while operating with lower latency.

• Competitive end-to-end task completion: On
the WebVoyager benchmark, the full WEBSIGHT
agent achieves a 68.0% success rate, surpassing
several industry and lab-developed agents includ-
ing those from OpenAI and HCompany.

• High accuracy on completed tasks: Of the tasks
WEBSIGHT attempted within the time limit, it
achieved a 97.14% accuracy, highlighting the pre-
cision of its decision-making pipeline.

• Interpretable modular diagnostics: Through a
component-wise failure analysis, we identify Plan-
ning and Reasoning agents as primary sources of
failure—primarily due to infinite loops—and of-
fer targeted improvements, including upgraded lan-
guage models and tighter agent coupling.

Together, these results demonstrate that vision-first
agents are not only viable but highly competitive in prac-
tical web environments. WEBSIGHT offers a blueprint
for interpretable, accurate, and efficient browser agents.

6.2. Directions for Future Work

6.2.1 WEBSIGHT-7B Model

To address the failure modes explained above, future
work can be done in further fine-tuning the WEBSIGHT-
7B model on a more diverse dataset of UI elements, in-
cluding icons and scenes with multiple items with sim-
ilar semantics. Further dataset augmentation with col-
lected actions like scrolling can help with identification
of the correct action from the action space as well.

As is often the case with transformers, we can ex-
pect an increase in performance from a scaling of pa-
rameters. Every model that performs similarly to WEB-
SIGHT-7B on the showdown/clicks dataset is more than
10 times larger, so a larger model WEBSIGHT-72B or
similar could elicit more fine-grained reasoning capabil-
ities.

6.2.2 WEBSIGHT Agent

To address infinite loops in WEBSIGHT and improve
overall performance, we focus on enhancing the capabil-
ities of its individual agents. As discussed in the previ-
ous section, improvements to the WEBSIGHT-7B model
can directly benefit the Action Agent. Additionally, pro-
viding the Action Agent with richer context from the
Reasoning Agent may enhance decision quality. For
the Planning and Reasoning Agents, employing higher-
quality language models could yield significant gains.
Currently, due to cost constraints, we use GPT-4.1-mini;
however, more capable models such as Claude-Sonnet-4
are likely to mitigate many of the observed limitations
in planning and reasoning.

A promising future direction is enabling self-
improvement within the agent system. Ideally, an agent
should be able to detect when it is caught in an in-
finite loop—whether through repeating actions, failing
to progress toward a goal, or exhausting relevant con-
tent—and respond by generating a new plan, shifting its
strategy, or exploring an alternative page. This would
require mechanisms for pattern recognition across tra-
jectories and meta-level learning to adapt based on past
failures. Recent work on self-improving and reflec-
tive agents provides a foundation for such capabilities
[53, 28, 43].

6.2.3 WEBSIGHT Fused

With the emergence of reinforcement learning as a way
to improve the utility of test-time compute for agentic
flows, a final goal for WEBSIGHT would be a fully in-
tegrated agentic model that combines the clicking ac-
curacy and action selection of WEBSIGHT-7B with the
reasoning and planning capabilities of frontier LLMs. A
fused model could be trained using offline RL based on
a collected dataset of web browsing trajectories using
GRPO, resulting in a single model that acts end to end
in exactly the same way as a human. This is similar to
what OpenAI has done with their “Operator”.
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Appendix

7.1 Prompting

We share below the prompts that WEBSIGHT uses to
achieve its results. Through fine prompt engineering, we
iterated to the following versions that we found to work
best.

7.1.1 Planning Agent

The planning agent is only used at the beginning of
WEBSIGHT’s operations to determine the plan it will ex-
ecute. This agent’s system prompt is as follows:

You are a web automation
planner. Your job is to
break down web tasks into
simple steps that a browser
can follow.

Key points:
- Break tasks into basic steps
- Keep steps clear and direct
- Account for page loading

Keep your plans simple and
focused on the main goal.

The system prompt establishes context and instructions
for the planner. The agent’s user prompt for task specific
instructions is as follows:

Create a detailed plan for
a browsing agent to complete
the following task. Break it
down into specific, actionable
steps.

Task: {task}

For each step, include:
1. The specific action to
take, referring to specific
elements on the page

Format your response as a
numbered list of steps. Be
specific about URLs, element
types, and expected outcomes.
Respond in this format:
<step> STEP GOES HERE </step>
<step> STEP GOES HERE </step>
...

7.1.2 Reasoning Agent

The reasoning agent determines next steps and executes
fine details between interactions of the browsers. This
agent’s system prompt is as follows:

You are a web automation
agent using ReAct framework.
Your goal: complete tasks
efficiently and handle
failures gracefully.

CRITICAL RULES:
- Analyze screenshot carefully
before each action
- Use specific selectors and
exact text
- Wait for dynamic content
when needed
- Try alternatives if primary
approach fails
- When you’re done, return
"FINISHED" and then your final
response
- Don’t scroll unless
absolutely necessary

RESPONSE FORMAT:
<reasoning>Brief analysis
of current state and why
this action advances the
goal</reasoning>
<action>Specific action
(e.g., "Click the blue
’Login’ button", "Type
’user@email.com’ in email
field", "Navigate to
https://site.com")</action>

IF YOU ARE FINISHED:
<reasoning>Your reasoning
here</reasoning>
<action>FINISHED + your final
response</action>

Handle common patterns:
loading states, forms, modals,
authentication. Each Action
should be a single step and be
atomic (e.g. don’t click on a
button and then type in a text
field).

The system prompt establishes a lot of the key rules and
format and instructions for the reasoner. The agent’s
user prompt for state specific instructions is as follows:
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TASK: {plan}
HISTORY: {history}
SCREENSHOT: [Current page
state]

ANALYSIS REQUIRED:
1. What’s on screen right
now?
2. What’s the next logical
step toward the goal?
3. What could go wrong and
how to handle it?

<reasoning>
Current state: [What you see]
Next step: [Why this action
moves toward goal]
Risk mitigation: [Backup plan
if this fails]
</reasoning>

<action>[Precise action
instruction]</action>
BE CONCISE. BE ACCURATE.
HANDLE EDGE CASES.

7.1.3 Vision WEBSIGHT-7B Agent

The vision agent must deliver a simple actionable task to
the browser wrapper to complete. Therefore, we ensure
it is in the action space through the prompt. As this is
not a chat model, there is no system prompt, and only
one prompt that is displayed below:

You are a GUI agent. You are
given a task and your action
history, with screenshots.
You need to perform the next
action to complete the task.

Output Format
‘‘‘
Thought: ...
Action: ...
‘‘‘

Action Space

click(point=’<point>x1
y1</point>’)
left double(point=’<point>x1
y1</point>’)
right single(point=’<point>x1
y1</point>’)
drag(start point=’<point>x1

y1</point>’,
end point=’<point>x2
y2</point>’)
hotkey(key=’ctrl c’) Split
keys with a space and use
lowercase. Also, do not use
more than 3 keys in one hotkey
action.
type(content=’xxx’) Use
escape characters \\’, \\\",
and \\n in content part to
ensure we can parse the
content in normal python
string format. If you want
to submit your input, use \\n
at the end of content.
scroll(point=’<point>x1
y1</point>’, direction=’down
or up or right or left’)
Show more information on the
‘direction‘ side.
wait() Sleep for 5s and take
a screenshot to check for any
changes.
finished(content=’xxx’) Use
escape characters \\’, \\", and
\\n in content part to ensure
we can parse the content in
normal python string format.

Note
- Use {language} in ‘Thought‘
part.
- Write a small plan and
finally summarize your next
action (with its target
element) in one sentence in
‘Thought‘ part.

DO NOT REPEAT ACTIONS. If an
action is not successful, try
something else. If you’ve
already clicked on something,
don’t click on it again,
either try another action or
do something else like typing.

If you are stuck or a website
is blocked, use the finished
action to stop the agent with
the argument "STUCK"

User Instruction
{instruction}
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7.2 Fine-tuning

The finetuning process completes a majority of the
learning very quickly. There are a multitude of reasons
for this. First, websites are a large part of the UI-TARS
training data, and are not too far different from mobile
and desktop application data. Therefore, there is not too
much learning needed. Second, UI-TARS also supports
English as it’s outputs are a mix of English and Chinese,
so fine tuning the language for interpretability should be
quick.

Figure 9. UI-TARS LoRA Fine Tuning process Training Loss
vs Steps Graph

During the LoRA fine-tuning process, several spe-
cial tokens were introduced to extend the model’s ca-
pabilities for structured inputs, tool usage, and mul-
timodal interactions. These include <|im start|>
(151644) and <|im end|> (151645) for denoting
the start and end of instruction-style prompts, as
well as <|object ref start|> (151646) and
<|object ref end|> (151647) for marking ob-
ject references in input sequences. Visual and
spatial data are supported through tokens such as
<|box start|> (151648), <|box end|> (151649),
<|quad start|> (151650), and <|quad end|>
(151651), along with <|vision start|> (151652),
<|vision end|> (151653), and <|vision pad|>
(151654) for vision input boundaries and padding.

To handle image and video input formats, the tokens
<|image pad|> (151655) and <|video pad|>
(151656) were added. For managing tool in-
teractions, the tokens <tool call> (151657)
and </tool call> (151658) were introduced.
Code-related modifications are supported via
<|fim prefix|> (151659), <|fim middle|>
(151660), <|fim suffix|> (151661), and

<|fim pad|> (151662), enabling more flexible han-
dling of function-in-the-middle completions. Finally,
<|repo name|> (151663) and <|file sep|>
(151664) were included to represent code repository
metadata and file separation, respectively. The standard
<|endoftext|> token (151643) remains as a sen-
tinel for sequence termination. These additions enable
the fine-tuned model to operate effectively in a variety
of structured, interactive, and multimodal scenarios.
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7.3 WEBSIGHT-7B Failure Modes on Show-
down/Clicks

Predicted click location highlighted in and ground
truth bounding box highlighted in

Figure 10. Click on select event color dropdown

Figure 11. Click on arrow icons on right

Figure 12. Click on cat

Figure 13. Open message privately from the features dropdown
in the navbar

Figure 14. Select the green yellow red colour scale from colour
scales

Figure 15. Click on play icon
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