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Abstract

We present a novel approach for 3D hand reconstruction
from multi-view data by combining 3D Gaussian splatting
with a learned anatomical prior derived from real-world
hand scans in the MANO dataset. Each hand is represented
as a set of Gaussian splats that can be rendered efficiently.
A compact AnatomicalPrior network, trained on MANO’s
low-dimensional shape and pose parameters, constrains the
Gaussians to lie on realistic hand geometry. Our method
uses high-resolution hand scans and associated paramet-
ric model information to enforce anatomical plausibility,
helping restrict our model to valid hand shapes. To train
our model, we preprocess raw MANO scans by augmenting
point clouds and depth maps, and rendering four random
viewpoints per sample. During training, we progressively
increase the number of Gaussians and adjust loss weights
so that the model initially relies more on anatomical con-
straints before shifting its focus to data-driven refinement.
We find that our hybrid Gaussian–prior framework deliv-
ers excellent reconstruction accuracy and anatomical co-
herence, making it efficient and suitable for applications
in virtual reality, robotics, and computer graphics. Future
work will explore real-world images, integration of richer
implicit shape representations, and dynamic hand motion
capture, as well as enhancements to the model that improve
its handling of occlusion.

1. Introduction

Accurate reconstruction of the human hand in three di-
mensions from limited or noisy image data is a fundamen-
tal challenge for augmented reality, virtual try-on systems,
and human–computer interfaces. It is challenging due to the
complex anatomy of the hand (articulated joints and non-
rigid shapes) and the limited viewpoints or occlusions in
typical imagery. Traditional model-based approaches fit a
parametric hand model (such as MANO [12]) to image ob-
servations, enforcing anatomical validity but often lacking

fine surface detail. On the other hand, neural volumetric
approaches like neural radiance fields (NeRF) [10] or im-
plicit surfaces (e.g., DeepSDF [4]) can capture rich detail
from multi-view images, but they do not inherently guar-
antee anatomically plausible shapes and can be computa-
tionally heavy for real-time use. Recent advances in 3D
Gaussian splatting [2] have shown that representing scenes
with explicit Gaussian primitives enables efficient differen-
tiable rendering and real-time performance. Gaussian splat-
ting has mostly been applied to static scenes or entire human
bodies, but its application to articulated objects like hands
remains under-explored.

In this work, we introduce a hybrid approach that lever-
ages a learned anatomical prior for hand shape within a
Gaussian splatting reconstruction framework. By incorpo-
rating a deep implicit AnatomicalPrior model trained on the
MANO hand shape space, we restrict the optimization to
valid hand shapes, addressing the ambiguity and noise that
arise when reconstructing from limited image data. Un-
like prior works that utilize an SDF field to represent hand
geometry (e.g., DeepSDF-based methods [4]), our method
entirely avoids using an SDF. This removal simplifies the
pipeline and circumvents the need to query a neural net-
work for every spatial point during rendering. Instead, the
shape is encoded in the parameters of a discrete set of Gaus-
sian ellipsoids, which can be rendered efficiently. Our ap-
proach optimizes both the global hand shape (via a latent
code fed into the AnatomicalPrior network) and local sur-
face refinements (via the positions, orientations, and scales
of the Gaussians). This hybrid optimization strategy com-
bines the strengths of model-based and data-driven meth-
ods. The anatomical prior provides a strong regularization
towards realistic hand geometry, while the Gaussian splats
allow fine-grained adjustments to match image evidence. In
short, the input to our model is a raw 3D point cloud (de-
rived from image data) and the output is a reconstruction
of the corresponding hand model in the dataset. Specifi-
cally, the reconstruction is expressed as a dense 3D point
cloud, the predicted surface normals for the reconstructed
surface, and the predicted 3D vertices and joints of a para-
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metric MANO hand model.
We validate our method on a multi-view dataset of hand

images with known ground truth geometry. The results
demonstrate that integrating an anatomical prior yields re-
constructions that are closer to the ground truth compared to
baseline methods without such priors. Our Gaussian-based
hand representation is also inherently animatable via the un-
derlying hand model’s parameters, which could enable ap-
plications in graphics and AR/VR. In summary, our contri-
butions are: (1) a novel integration of a deep implicit hand
shape prior (learned from MANO) with a Gaussian splatting
representation for 3D hand reconstruction, (2) a hybrid opti-
mization approach that jointly refines global shape parame-
ters and local primitives for accurate multi-view alignment,
and (3) a quantitative and qualitative evaluation showing
improved reconstruction fidelity and anatomical plausibil-
ity over baseline approaches. Our pipeline aims to produce
high quality and anatomically coherent 3D hand reconstruc-
tions suitable for a variety of applications.

2. Related Work
Parametric Hand Models Statistically rigged hand mod-
els such as MANO [12] provide a low-dimensional parame-
terization of hand pose and shape. MANO represents a hand
mesh with a set of joint angles (pose) and principal com-
ponents for shape, learned from scans of real hands. Such
models have been widely used for model-based tracking and
pose estimation from images by optimizing the parameters
to fit observed keypoints or silhouettes. While parametric
models ensure realistic anatomy by construction, they may
miss person-specific surface details and require a good ini-
tialization to fit high-dimensional image data. Our work
leverages the MANO shape space as a source of an anatom-
ical prior: rather than directly using the MANO mesh dur-
ing reconstruction, we train a neural network to learn the
space of plausible hand shapes from MANO, which guides
our Gaussian representation.

Neural Implicit Shape Representations Learned im-
plicit functions have emerged as a powerful way to rep-
resent 3D geometry. DeepSDF [4] introduced an auto-
decoder framework where an MLP learns a continuous
signed distance field of an object class from sparse 3D data,
with a latent code encoding each shape. Follow-up works
have applied similar ideas to human bodies and hands, in-
cluding articulated implicit models that incorporate joint
transforms [13]. These implicit approaches can represent
complex surfaces at arbitrary resolution and have been com-
bined with differentiable rendering for image-based recon-
struction [6]. However, purely implicit methods typically
require many network evaluations per ray or pixel, making
them slow [14], and they do not inherently encode knowl-
edge of specific anatomies unless trained extensively on that

domain . Our approach differs in that we do not represent
the hand via an implicit field at inference time. Instead,
we learn an implicit prior that generates parameters of an
explicit shape representation (Gaussians). Thus, we retain
the efficiency of an explicit point-based model while still
benefiting from a learned shape space. Importantly, by re-
moving the need for an SDF during optimization, we avoid
heavy computation while still constraining reconstructions
to plausible shapes via the latent code.

Volumetric and Point-Based Rendering Neural radi-
ance fields (NeRF) [10] demonstrated that volume ren-
dering of learned continuous density and color fields can
achieve high-fidelity novel view synthesis. However,
NeRF’s voxel or MLP representations are computationally
intensive for high resolution, and free-form densities can
lead to unrealistic shapes without regularization. 3D Gaus-
sian splatting has recently been proposed by Kerbl et al. [2]
as an alternative scene representation for radiance fields, re-
placing dense voxel grids with a set of anisotropic Gaus-
sian primitives in space. Each Gaussian Gi has parameters
(µi,Σi, ci, αi) for position, covariance (shape/orientation),
color, and opacity. To render an image, each Gaussian
projects to an ellipse on the image plane. The contribution
to a pixel at location u can be modeled by a splatting kernel
(e.g., a 2D Gaussian footprint) weighted by the Gaussian’s
color and opacity. Summing contributions of all Gaussians
yields the rendered image. Because this process is highly
parallelizable on GPU and the number of Gaussians is much
smaller than the number of sampled points in NeRF, ren-
dering can be real-time. This method has shown impressive
results for static scenes and even full human bodies. For
articulated objects like hands, a few works have started to
explore similar representations. For example, Pokhariya et
al. propose an articulated Gaussian representation for hands
to capture contact in grasps [3], and Liu et al. handle com-
plex multi-part articulated objects like complex cabinetry
[9]. Our approach is conceptually aligned with these in us-
ing Gaussians for an articulated hand, but we focus on the
reconstruction scenario from multi-view images and explic-
itly integrate a learned shape prior. In contrast to a purely
template-free optimization of Gaussians (which can suffer
from floating or misaligned primitives), our Anatomical-
Prior steers the solution toward a coherent hand structure
from the start.

Multi-View Hand Reconstruction Reconstructing hands
from multiple calibrated camera views has been tackled
by both model-based optimization methods and learning-
based techniques. Classical model-fitting methods optimize
hand pose and shape parameters to minimize the reprojec-
tion error of observed image features, such as 2D keypoints
or silhouettes, across multiple views [1, 12]. These meth-
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ods benefit from explicit anatomical regularization but typ-
ically cannot capture detailed geometric nuances beyond
the parametric model. Conversely, learning-based volumet-
ric methods, such as those using truncated signed-distance
functions (TSDF) or occupancy networks [5], fuse multi-
ple views into voxel representations to reconstruct fine de-
tails but may require extensive camera coverage or depth
input to achieve robust reconstructions. NeRF and differ-
entiable rendering frameworks like IDR [6] have demon-
strated impressive results in capturing photorealistic appear-
ance and detailed geometry, though they often incur high
computational costs. Our proposed method bridges the
gap between these paradigms, integrating Gaussian splat-
ting [2], which enables efficient multi-view rendering, with
a learned anatomical shape prior derived from the MANO
dataset [12]. This combination allows our method to main-
tain anatomical plausibility and computational efficiency,
enabling accurate and detailed hand reconstruction from
limited views.

3. Dataset
Our hybrid hand reconstruction model is trained and

evaluated using the MANO dataset, which consists of real
3D hand scans and their corresponding parametric model
information. The dataset is consists of n = 1, 554 high-
resolution 3D scans of human hands acquired from 31 dif-
ferent subjects. Each scan captures fine details of hand
surface geometry across a wide variety of poses, ranging
from fully open palms to tightly closed fists. Using a prin-
cipal component analysis (PCA) approach on these scans,
the MANO model compresses each hand’s geometry into a
low-dimensional representation consisting of 10 shape co-
efficients and up to 30 pose coefficients. The shape co-
efficients, denoted by β ∈ R10, encode subject-specific
variations such as palm width, finger thickness, and bone
length proportions. The pose coefficients, θ ∈ R30, capture
joint articulations and global orientation. A single forward
pass through the MANO model, given (θ, β), outputs a de-
tailed 3D hand mesh V ∈ R778×3 (778 vertices) and corre-
sponding joint positions J ∈ R21×3. Because this mapping
from low-dimensional parameters to a full-resolution mesh
is differentiable, it is particularly useful for neural network
training and optimization. For our purposes, the MANO
dataset serves two roles: (1) as a source of ground-truth
hand scans for supervising our Gaussian-based reconstruc-
tions, and (2) as a provider of parametric information that
enforces anatomical plausibility through our learned prior.

Within the MANO distribution, two primary file formats
are employed to store model definitions and 3D geometry:
pickle files and PLY files. The pickle files contain the com-
pressed binary representations of the learned model param-
eters that define the mathematical structure of the MANO
hand. These parameters include blend weights used for

linear blend skinning, pose-dependent deformation correc-
tions, joint regressor matrices that calculate joint locations
from mesh vertices, and PCA basis vectors for the shape
subspace. The PLY files store actual 3D mesh data in a
standardized polygon format. In the context of MANO,
PLY files often represent either (a) raw hand scan meshes
acquired from subject scans, with vertices, faces, and poten-
tially per-vertex normals, or (b) MANO-generated meshes
for given (θ, β) parameters. Each PLY file contains a list of
vertices VGT ∈ RNv×3 and faces FGT ∈ NNf×3, as well as
optional attributes such as surface normals and colors. We
use PLY files both for feeding ground-truth geometry into
our losses (e.g., Chamfer distance computations) and for ex-
porting intermediate or final mesh outputs for visualization.

Our HandDataset class orchestrates the loading of both
raw scan data and parametric model supervision. We em-
ployed a train:val:test split of 80%:10%:10%. For each
hand sample, the dataset first reads the raw scan from a
PLY file into a dense point cloud containing approximately
Ns ≈ 50,000 points. If per-vertex normals are available,
they are also retrieved. In parallel, the dataset loads the
corresponding pose and shape parameters (θ, β) stored in a
pickle file. These parameters are passed through the loaded
MANO model to produce a ground-truth mesh VGT and
joint set JGT. Next, the dataset renders depth maps from
four distinct viewpoints around the hand. Camera extrin-
sics are sampled uniformly on a hemisphere centered at the
palm’s root joint, and intrinsics assume a focal length of ap-
proximately 500 pixels. The resulting depth maps are stored
as 256× 256 images that represent the ground-truth geom-
etry from each view.

4. Methods

4.1. Data Preprocessing

To improve the model’s robustness to real-world vari-
ability, we apply on-the-fly augmentation steps to both point
clouds and depth maps. For the point clouds derived from
raw scans, we perform a small random rotation around the
world y-axis by sampling an angle uniformly in [0, 2π).
A random scale factor is then applied, drawn from a uni-
form distribution in the range [0.9, 1.1], to simulate varia-
tions in hand size or camera distance. Finally, each point is
offset by a small random translation sampled from a zero-
mean Gaussian distribution with standard deviation 0.01 (in
model units) to imitate slight hand movements. For depth
maps, we add zero-mean Gaussian noise with a standard
deviation of roughly 1 millimeter to simulate sensor imper-
fections, and we randomly zero out 5% of depth pixels to
replicate dropout or occlusions. These augmentations are
critical for improving generalization, as they expose the net-
work to variations in pose alignment, scale, and partial oc-
clusions that are common in real capture scenarios. In ad-
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Figure 1. Examples of hand models in MANO dataset

dition, our dataset loader re-samples new camera extrinsics
for each epoch (generating four new random viewpoints per
hand sample per epoch) so that the network sees a diverse
set of viewing angles during training.

Before feeding data into the model, we apply several
preprocessing steps to ensure numerical stability and con-
sistent coordinate frames. First, we center the point cloud
such that the wrist joint (computed via MANO’s joint re-

gressor) lies at the origin (0, 0, 0). We then scale each
hand so that its palm width measures exactly one model
unit: specifically, we compute the Euclidean distance be-
tween the MANO-defined base vertices of the index and
little fingers, and apply a uniform scaling factor so that
this distance becomes one. Depth maps are clipped to a
maximum range of one meter and normalized to the inter-
val [0, 1], with invalid or missing depth pixels masked out
during loss computation. For ground-truth supervision of
point-based losses (e.g., Chamfer distance), we uniformly
sample NGT = 50,000 points on the ground-truth mesh VGT.
We also interpolate surface normals at these sampled points
from per-vertex normals (if available) to compute a normal
consistency loss. This preprocessing ensures that both the
input point clouds and depth maps, as well as the ground-
truth supervision data, share a unified scale and coordinate
system, facilitating stable training.

Additionally, to facilitate effective multi-view learning,
we generate four distinct camera views per hand sample.
Cameras are placed randomly on a hemisphere surrounding
the hand, and depth images are rendered from these posi-
tions to create diverse multi-view training data.

This data pipeline, leveraging real-world scan data and
comprehensive augmentation strategies, provides a robust
training framework that enables our model to accurately re-
construct anatomically plausible hand geometries from re-
alistic input conditions.

4.2. Model Architecture and Hyperparameters

Our hybrid model combines three main components:

Gaussian Splatting Model: We represent the hand ge-
ometry using a set of learned 3D Gaussians as was done
in Kerbl et al. Each Gaussian is parameterized by its mean
position µi, scale σi, rotation (quaternion qi), opacity αi,
and appearance features fi. The density at any given point
x is computed as:

density(x) =
∑
i

αi exp

(
−1

2
(x− µi)

⊤Σ−1
i (x− µi)

)
where Σi = Ri · diag(exp(σi))

2 ·R⊤
i .

Anatomical Prior Model: We leverage the MANO
hand model, parameterized by shape coefficients β (10-
dimensional PCA), pose parameters θ (30 PCA compo-
nents), and global rotation R. The MANO model outputs
hand vertices V and joints J as:

V, J = MANO(θ, β)

Hybrid Reconstruction Pipeline: The reconstruction
pipeline consists of the following steps:
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• Point Encoding: Encode input point cloud into a la-
tent vector.

• Gaussian Point Generation: Generate Gaussian-
distributed points around mean positions.

• Prior Point Generation: Produce anatomically plau-
sible points using MANO vertices and learned densi-
ties.

• Point Combination: Merge Gaussian and prior-
generated points via a learned weighting network.

Our loss function integrates multiple components to
guide training effectively:

Lchamfer = mean(min
y

||x− y||22 +min
x

||y − x||22)

Lnormal = mean(1− ⟨npred, ngt⟩)
Lprior = mean(||Vpred − Vgt||1)
Lview = mean(|proj depth − gt depth|)

The total combined loss is:

Ltotal = wcLchamfer + wnLnormal + wpLprior + wvLview

with wc progressively adjusted during training using the for-
mula min(0.8, epoch no/15.0) and wp adjusted using the
formula max(0.05, 0.15∗ (1−epoch no)/25.0). These co-
efficients help focus our model on the priors during early
training. Furthermore, we fix wn = 0.15 and wv = 0.1 to
control the normal loss and the view loss (which is the mean
L1 difference between the projected depths of the predicted
point cloud and the ground truth depths), respectively.

To train the model, we use the following hyperparame-
ters. The batch size is set to 32 point clouds per iteration,
which is reasonable given our dataset size of n = 1, 554.
We employ the Adam optimizer with an initial learning rate
of 1× 10−4. A learning rate scheduler decreases the learn-
ing rate by a factor of 0.5 if the validation loss does not
improve for 5 consecutive epochs, with a minimum learn-
ing rate of 1 × 10−6. Mixed precision training is enabled
via automatic mixed precision (AMP) to reduce memory
usage, and gradients are clipped to a maximum norm of 1.0
to prevent exploding updates. We train for a maximum of
100 epochs, using early stopping with patience of 5 epochs
if the validation Chamfer distance does not decrease. For
the Gaussian Splatting component, we employ a progressive
training strategy, initially using fewer Gaussians and grad-
ually increasing their count as training progresses. Specifi-
cally, we begin with 500 Gaussians and incrementally scale
up to 2000 over training epochs, stabilizing and enhancing
model capacity.

The anatomical prior network is comprised of sepa-
rate encoders for pose and shape parameters (51D and

Figure 2. Overview of all model and pipeline components.

10D, respectively) that map to a shared 128-dimensional
latent space. The HandPoseEncoder uses a multi-layer
MLP architecture with dropout for regularization, while the
AnatomyDecoder generates mesh vertices and joint posi-
tions. Architecture details for the Point Encoder (used to
extract a 256-dimensional latent from input point coordi-
nates) include three fully connected layers with hidden sizes
[64, 128, 256] and ReLU activations. The resulting 256-
dimensional latent is then split into separate branches: one
feeding the MANO latent encoder, and the other informing
a small prior density predictor (a two-layer MLP with hid-
den sizes [64, 32] and a scalar sigmoid output) that supplies
a learned density at MANO vertices. The DepthEncoder for
multi-view input is a small U-Net variant (four downsam-
pling layers, four upsampling layers) that outputs per-pixel
feature maps used for depth reprojection loss.

We implemented our pipeline using PyTorch [11] (along
with NumPy [7], Open3D [16], and the PyTorch MANO
hand model implementation [8]), leveraging CUDA accel-
eration for both Gaussian splatting and anatomical prior
evaluation.

5. Experiments and Discussion

5.1. Evaluation Metrics

We evaluate our model using the Chamfer distance, av-
eraged over the relevant portion of the dataset (hereafter re-
ferred to as Chamfer loss). We computed the avearCham-
fer Distance between the reconstructed surface point cloud
(which was obtained by sampling the centers of the splat-
ted Gaussians) and the corresponding ground-truth MANO
mesh, where the Chamfer distance [15] between two point
clouds P1 = {xi ∈ R3}ni=1 and P2 = {xj ∈ R3}mj=1 is
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Figure 3. In this example, our baseline Gaussian splatting ap-
proach produces a rough approximation of the MANO hand shape,
but introduces noticeable artifacts (around the pinky and thumb re-
gions), motivating the use of an anatomical SDF prior.

defined as:

chamfer(P1, P2) =
1

2n

n∑
i=1

|xi − NN(xi, P2)|

+
1

2m

m∑
j=1

|xj − NN(xj , P1)|

where
NN(x, P ) = argminx′∈P ∥x− x′∥.

5.2. Quantitative Results

We compare our method against pure Gaussian splatting
(no anatomical prior), where the Chamfer loss is evaluated
on the test set.

Method Epochs Learning Rate Chamfer

Pure GS 10 1e-4 0.0810
GS with Priors 5 1e-4 0.0604
GS with Priors 17 1e-4 0.0268

As an initial run, we trained a model for 5 epochs us-
ing a learning rate of 1e-4, achieving a Chamfer loss on the
test set of 0.0604. We then allowed the model to run for a
maximum of 100 epochs with early stopping as discussed
in our model architecture and hyperparameters section. Our
final model trained for 17 epochs using a learning rate of
1e-4, achieving an average Chamfer loss on the test set of
0.0268. Our utilization of anatomical priors served as im-
plicit regularization and prevented overfitting, ensuring that
our reconstructions produced realistic hand-like structures.

5.3. Qualitative Results

As shown in Figure 3, we find that our method pro-
duces geometrically accurate and anatomically plausible
hand models. While we are generally able to recover a good

Figure 4. Selected reconstructions compared to ground truths

approximation of the hand shape using our methodology,
this approach often generated artifacts in regions with lim-
ited visual coverage or in more complex hand poses. In
particular, reconstructing hand poses with large objects in
them was difficult, such as a pose wherein a hand grasps a
large tennis ball (as shown in Figure 5). We hypothesize that
the complexity of this scene makes it difficult for our model
to differentiate between the hand and the object, especially
when significant occlusion occurs. This highlights the need
for stronger object-aware reasoning in future iterations of
our approach, with the potential to incorporate some form
of explicit object modeling.

6. Conclusion
We have presented a novel method for 3D hand re-

construction from multi-view data, effectively integrating
Gaussian splatting with anatomical priors derived from real-
world hand scans provided by the MANO dataset. Our hy-
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Figure 5. Reconstruction of a hand holding a tennis ball

brid approach uniquely combines the flexibility and detail-
oriented nature of Gaussian splatting with strong anatom-
ical constraints, significantly outperforming purely data-
driven or purely parametric approaches. By progressively
scaling the complexity of our Gaussian representation and
dynamically adjusting the influence of anatomical priors,
our model consistently achieves high-fidelity and anatom-
ically accurate hand reconstructions.

Despite these strengths, our method has some limita-
tions. First, it assumes accurate camera calibration and
relatively clean input data. In real-world settings with
complex backgrounds and variable illumination, its perfor-
mance may degrade. Second, our anatomical prior is based
solely on the MANO shape space, which does not account
for pose-dependent surface deformations or fine details such
as skin wrinkles. Third, the MANO dataset is relatively
small (n = 1, 544), particularly for computer vision tasks
like the one at hand. Incorporating a larger and more ro-
bust dataset may assist in model generalization (including
by training on a wider variety of poses and occlusions)
and may additionally provide a superior assessment of our
model’s abilities. Fourth, the progressive Gaussian scaling
strategy, while effective, increases computational demand
as Gaussian counts grow, potentially limiting real-time ap-
plicability.

Future work should address these limitations by enhanc-
ing robustness to real-world conditions. Integrating seg-
mentation or keypoint detection networks can help in sce-
narios with cluttered backgrounds and occlusions. Incorpo-
rating more expressive implicit shape representations such
as DeepSDF or neural blend shapes could capture finer
anatomical details and pose-dependent deformations be-
yond the MANO prior. Exploring explicit object modeling
may also enable better generalization to complex poses in-
volving occlusion.

Additionally, working beyond still poses and extending
our framework to dynamic sequences opens opportunities
for markerless hand motion capture. Introducing temporal
consistency losses and motion priors would ensure stable
reconstructions across frames, enabling applications in ani-

mation and virtual reality. Finally, deeper anatomical mod-
eling (incorporating tendon-driven dynamics, collision de-
tection, etc.) could further enhance realism and expand po-
tential applications to surgical training, prosthetic design,
and detailed hand-driven interaction in augmented reality
systems. These increased complexities

In summary, our hybrid Gaussian-anatomical approach
lays a robust foundation for anatomically accurate, efficient
3D hand reconstruction. Addressing its current limitations
through improved priors, real-world robustness, and dy-
namic modeling will pave the way for broader adoption and
new applications in computer vision and graphics.
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