Parameter Estimation of Digital Audio Effects from Spectrograms

Richard Lee Ethan Buck Wesley Larlarb
Stanford University Stanford University Stanford University
CCRMA Computer Science Computer Science

rilee@stanford.edu

Abstract

In this report, we explore the use of vision deep neural
networks for parameter estimation of three common audio
effects: limiter, bitcrusher, and delay via pairwise compar-
isons of their spectrograms. To do so, we first compiled
a novel dataset of Mel spectrograms of guitars with vary-
ing parameters set for unique, common audio effects. From
here, we then trained three vision models (vanilla 2DCNN,
Encoder-Decoder transfer learning, UNet transfer learn-
ing) and evaluated their efficacy.

1. Introduction

Across media landscapes, audio effects - such as reverb,
distortion, and dynamic range compression, to name a few
- are essential components of sounds that shape our percep-
tion. Originating in the production process, these effects
provide means of manipulating spatial, tonal, and tempo-
ral characteristics of audio signals, promoting uniqueness
of acoustic scenes distinct from their samples, instruments,
or original audio scenes. The same can be said for voice:
digital audio effects govern the space of possible sounds
that can be sculpted from original inputs. While many of
these effects have originated from traditional digital signal
processing techniques, modern deep learning has increas-
ingly democratized and permitted understanding of audio,
often through the lens of rapidly evolving models in com-
puter vision. Through this, the ability to automatically de-
tect and classify audio effects has become a key component
of recommendation systems, music information retrieval,
and machine listening.

Previous work in the field of digital audio effects mod-
eling has focused on feature extraction from raw audio or
spectrogram, with less emphasis given to the deep learn-
ing contexts of learning the transformative signatures of the
audio effects applied. When translating to the frequency do-
main via Fourier transforms, spectrograms have provided a
strong entry way into learnable patterns, such as transients,
saturation, and envelope shifts induced by these audio ef-

eljbuck@stanford.edu

wlarlarb@stanford.edu

fects. Spectrograms, in creating compact, 2D representa-
tions of signal energy across time and frequency, offer a po-
tent input modality for deep learning to translate machine
listening contexts to state-of-the-art computer vision tech-
niques. Additionally, while raw audio is represented as an
amplitude over time, many important audio features such as
pitch and timbre are most easily detected in the frequency
domain. While sampling-level modeling is more approach-
able with 1D raw audio, in most use cases, signatures of
audio signals are most aligned with human perception in
frequency analysis via log-magnitude or Mel spectrograms,
which are coherent inputs to 2D CNNs. This leveraging of
deep learning for computer vision provides entry to a range
of applications, including reverse engineering of production
workflows, restoration of degraded media, and style transfer
across learned parameters in AI-music generation.

1.1. Problem Statement

Given the importance of digital audio effects for mu-
sic production and the aforementioned promises of CV-
inspired, deep learning approaches to audio processing, we
have our sights on the following problem. Given a “wet”
audio signal, or in other words, an audio signal that has
been processed with some digital effect such as compres-
sion, reverb, delay, etc., our model should be able to esti-
mate the parameters of the effect which produced that wet
signal. As music producers, the authors of this paper be-
lieve this task to have wide creative applications. In par-
ticular, we are aware that music professionals commonly
produce, mix and master songs using a “reference track,”
i.e. an example recording with the desired sonic properties,
in order to try to replicate the effects chain present on that
track. If our model could successfully automate the pro-
cess of parameter-matching an effect to achieve the same
result as a reference track, this could save countless hours
for those working in the studio.

For this study, we aimed to reverse engineer parameters
of both linear and non-linear transforms based on audio ef-
fects plugins. Using wet and dry spectrograms output from
sampled audio, we focused our study on the following ef-

fects with respective rationale for their selection:

1. Limiter: a gain controlling module, limiters provide a
shift of amplitude or overall intensity of the audio, par-
ticularly when a certain threshold is hit on the decibel
scale. This was selected for it’s linear scaling on am-
plitude despite it’s non-linear effect on envelope over
time.

2. Bitcrush: Bitcrusher is an effect which resamples au-
dio at a lower bit rate. We sought to classify exactly
what bit depths were resampled as a way of being able
to (1) classify, perhaps, which console game audio was
originally recorded for or (2) permit reconstruction of
high quality audio from recordings designed for lower-
bit resolution devices. In bitcrushing, audio is quan-
tized to values of 2°1-4ePth which is akin to the effect of
audio codecs, and an important consideration for audio
machine learning on embedded systems at large.

Supplement: Sample Rate: in supplementation to the bit depth ef-

fect, sample rate considerations were experimented
with to see if reconstruction could be done with the
same model architecture. This, placed in context with
bit depth, indicates if our model is scalable to classifi-
cation of audio codecs at large or of analysis of how we
may translate audio samples across devices and sam-
pling rates.

3. Delay: Delay replays a signal after a set amount of
time, repeatedly doing this at an exponentially decay-
ing level. In creative applications, this can be used for
dramatic effect or to “sweeten up” a vocal or instru-
mental track. Delay is typically modeled via digital
signal processing of finite impulse responses (FIRs),
delay indicates the replay of audio after a set amount
of time.

1.2. Related Works

In the context of audio effect classification and extrac-
tion, Rice et al. (2023) denotes and explores general pur-
pose solutions to the inverse problem of removing effects
from sampled audio [3]. Designing RemFX, it was pro-
posed that a monolithic network, or a singular neural net-
work model, would be insufficient for adequate extraction
of various different effects. Thus, a compositional audio
effect removal architecture was proposed, FXAug, which
utilized the RemFX paradigm to add distractor effects to fit
randomly sampled parameters before removing the classi-
fied effects from a newly formed intermediate signal. In
terms of experimental setup, VocalSet was used for singing
voice audio, GuitarSet provided acoustic guitar, DSD100
bass guitar, and IDMT-SMT-Drums for drumkit samples.
From the data, removal models included Hybrid Demucs,

DCUNet, DPTNet, TCN, and UMX, while detection mod-
els utilized convolutional architectures trained on Mel spec-
trograms fed into linear layers on top of audio representative
networks such as PANNs, wav2vec2.0, and WAV2Clip. [3]

Applied to instrument specific conditions, Jiirgens et al.
(2020) fits the audio effects-parameter extraction problem
distinctly to guitars [1]. The authors noted that their ten
studied guitar effects could be split into three categories,
Nonlinear, Ambience, and Modulation contexts. Using both
monophonic and polyphonic samples, Hann windows were
applied to audio samples fed thorugh a FFT (Fast Fourier
Transform) to produce 649-dimensional input vectors for
an SVM classifier. With a delta of 1 except for MFCC (Mel
Frequency Cepstral Coefficients), where A = 20, estima-
tion effects were classified in those three denoted settings at
98% accuracy, particularly effective when using a 32 neu-
ron hidden layer. As the average errors for the parameters
of distortion, delay, and tremolo effect were between +5%
and +16%, the study noted that estimation was most ac-
curate for parameters of highest impact on the sound and
when commonly used, providing a margin potentially close
to estimation by human experts. [1]

Interpreting a specific, singular plugin class, Steinmetz
and Reiss (2022) evaluated real-time modeling of analog
dynamic range compression via very sparse convolutional
kernel architectures for efficient neural networks [0]. As
such, temporal convolutional networks (TCNs) were used
in this study to facilitate real-time operations on CPU, pro-
viding a shallower network to model analog mechanisms of
a Universal Audio LA-2A compressor. Similar to WaveNet,
the researchers introduced a modified TCN with a series
of convolutional blocks along with MLP including batch
normalization and feature-wise linear modulation (FiLM),
alongside a PReLU nonlinearity. Using the SignalTrain
dataset, 20 hours of LA-2A input-output recordings (fs =
44.1kH z) were processed through 10 layers of the TCN
with a dilation pattern of d,, = 2" with 32 channels at each
layer. An additional LSTM architecture was tested with a
recurrent layer of 32 hidden units; optimization via Adam
(Ir = 3%+10~* and 60 epochs with batch size 32 were tested
on 65536 samples. Via analysis of mean absolute error
in the time domain (Ly;,,.) and multi-resolution short-time
Fourier Transform error for the frequency domain (L freq),
metrics indicated high performance and efficiency of the
TCN model, which had a MAE of 1.38¢-2 and STFT of
0.587, indicating similar performance to the LSTM while
speeding up the training by a factor of 8. A listening study
was additionally conducted to evaluate model performance,
where a MUSHRA found that 19 audio engineering-trained
participants agreed that the TCN model output perceptual
similarity to the original LA-2A, while only using 1% of
the full training dataset inthe process. [0]

In a recent paper by Steinmetz et al. (2024), ST-ITO

(Style Transfer with Inference-Time Optimization) was in-
troduced as a novel method of audio production style trans-
fer, capable of searching the parameter space of an audio
effect chain at inference [7]. This meant that across sev-
eral effects chained together, regardless of arbitrary param-
eters affecting the input audio signal, the paper presented
contributions of (1) scalable pretraining for audio produc-
tion style similarity metrics (AFx-Rep), (2) ST-ITO, a style
transfer architecture that optimizes the control parameters
per similarity, (3) a multi-task benchmark for valuation of
these systems. Using 60 hours of content generated via
Pedalboard API with gain adjustments [-32dB, 0 dB], 1000
parameter configurations were randomly sampled, wherein
MFCCs and K-means clustering were conducted to create
a parameter space. Then, zero-shot style classification was
conducted revealing an average of 0.86 accuracy in classifi-
cation of the randomly chained paramaters. [7]

In this study, we built on the foundation of previous re-
search with an extended premise of testing specific plug-
ins at set values to reduce the arbitrary selection and pre-
training conditions. Instead, we hope that by constraining
our problem to focus on sounds within a particular musi-
cal context, our model will implicitly learn about the likely
prior distribution of audio signals, and thus will be capable
of doing some meaningful estimation of effects parameters
given the processed audio signals. We sought to construct
a flexible, deep architecture that could sufficiently serve as
a classifier or transfer model such that specific parameters
could be extracted using computer vision-oriented neural
networks via interpretation of spectrograms. Further, given
a novel architecture of a detachable decoder, our model is
able to use the features extracted in contexts specific to the
plugins they were trained on. As a form of data ablation, we
provide several model architectures using a baseline con-
vultional network, and pretraining of an encoder-decoder
model and Unet. Furthermore, our use of informed, scalable
parameter values in data augmentation allows appropriate
emulation of common plugin effects without restriction to a
specific model of plugin device (such as the LA-2A used in
[6]), also reducing the introduction of arbitrary values that
are either redundant or unrealistic to be used in typical au-
dio production.

2. Data Compilation
2.1. Collection

While there are several existing datasets for the invese
formulation of our problem (i.e. given dry signal and pa-
rameter values, output wet signal), there are, to our knowl-
edge, no datasets that map the wet signals to their associ-
ated parameter values. As such, we decided to create our
own wet signals from an existing dataset of dry sound files.
We downloaded GuitarSet, a collection of 360 recordings

Pedalboard

Bitcrusher Limiter Delay

<@ v
Threshold (dB):
[-1,-9]

. Max Times (ms):
Bit Depths: i sl
2**(depth) Release (ms): ack:

e Feedback: [07]
Quantization

Gain Reduction FIR Convolution

Mel Spectrogram

Power Spectrogram Mel Fiter Bank B Min-Max Norm

Pufm] = [Xufm]|* Silfl= 3 My B

Figure 1. Digital Audio Effects Generation pipeline

of guitar, from 6 players, 5 styles, 3 chord progressions,
and with slow versions, fast versions, comping and solo-
ing [2]. For the proof of concept, we selected ten 2-second
chunks of guitar sound, and then processed them using a
given plugin. We run the dry audio samples through a
Python script that applies an audio effect using Spotify’s
open-source Pedalboard API [5]. As detailed in the follow-
ing sections, the plugin effects were chosen to apply certain
parameters. Furthermore, for each GuitarSet audio sample,
the plugins were then applied to generate pairwise data (dry
and wet spectograms) that was stored on Google Cloud for
retrieval and training on Colab CPU and/or T4 GPU.

2.2. Augmentation (Plugin Effects)

To enhance the variety and generalizability of training
data, we applied a suite of audio effects using plugin-style
augmentations. Each plugin is parameter-swept to generate
distinct wet versions of the original dry signal. All wet/dry
pairs are aligned in duration (2 seconds) and resampled to
a consistent bit depth of 16 for comparison and supervised
learning.

2.2.1 Bitcrusher

We generated 16 wet samples with different bit depth values
ranging from [0, 1, ..., 14,15], as well as the ground truth
dry sample with a bit depth of 16. Additional sample rate
downsampling was conducted using TorchAudio to values
of [8, 11.025, 12, 16, 22.05, 24, 32, 44.1] kHz, which cor-
respond to telephony, PCM, VoIP, Zoom, half-CD, MPEG,
broadcasting, and MP3 standards, respectively.

2.2.2 Delay
For each recording, we created 8 training examples ranging

from O second delay to 0.25 second delay, with a constant
feedback parameter of 0.7.

2.2.3 Limiter

We generated 9 wet samples using all combinations of lim-
iter threshold values [0.0, —5.0, —9.0] dB and release times
[0.0, 500.0,900.0] ms, as well as the ground truth dry sam-
ple with a bit depth of 16.

2.3. Representation

Following many previous approaches, we will use spec-
trogram representations of the audio[1] [3] [6]. With time-
frequency representations, we can leverage image-based ar-
chitectures, like CNNs, that have historically outperformed
a purely time-domain input. There have been recent im-
provements in end-to-end models for audio, but these mod-
els typically require incredibly large datasets and compute
[4], neither of which are readily available for this prob-
lem. Within the possible time-frequency representations,
the spectrogram and the Mel-spectrogram are popular ap-
proaches. We will proceed first with the Mel-spectrogram
as it is a bit more popular for audio tasks, but we will try
both representations and see how they differ.

2.4. Augmentation

In order to facilitate faster training, we segmented each
audio file into 2-second chunks, as done in [I]. From
here, the only further augmentation is normalizing the
Mel-spectrograms. Mel spectrograms provide an effective
means of maintaining perceptual scale, dimensionality re-
duction, and compatibility with CNN architectures. [6].

2.5. Filtering

Mel spectrograms were constructed from the initial au-
dio dataset, with parameters of sample rate f; = 44.1kH z,
FFT, = 1024, hop length of 512, and 128 Mel filter banks.
The full Mel spectrogram formulation is detailed in the ap-
pendix.

3. Methodology
3.1. Model Architecture

Our model aims to drastically reduce the dimensionality
of audio input signals to a feature vector with class scores
of N many scalable parameters. Furthermore, it seeks to re-
construct a ’dry” or pre-plugin sampled audio, which must
have flexibility depending on the plugin parameters used to
generate the "wet” signal. As such, our model architectures
were the following:

(1) 2DConv downsampling layers feeding to a fully con-
nected network for classification / extraction of plugin
parameter feature vector

(2) U-Net down-to-upsampling for predicting dry signal
from wet, then feature extraction of parameters from
low-dimensional internal representations.

Input: Spectrogram (1, 128, 128)

CNN Layer 1

Conv2D (32— 64)
RelLU
MaxPool2D | 2
S

(32, 64, 64)

CNN Layer 2

Conv2D
RelLU
MaxPool2D | 2

(64, 32, 32)

CNN Layer 2

Conv2D
RelLU
MaxPool2D |2

1 (128, 16, 16)
| Flatten [128*16*16 = 32,768 features] |

FC Layer

| Output: (batch_size, num_params) |

Figure 2. 2DConv downsampling feature extractor architecture

convap Conv2d. convan
ReLU Rell — ‘,% ReLU Rely
e b [hapont || 12 na:;o))| 12 MaxPool | | T2
T P e
d t) *
sttt Sututuing]
Linear

Figure 3. Full U-Net model architecture (path from feature vector
(middle) to either linear classification (bottom) or reconstruction
decoder (right))

Ultimately, our system will feature a Encoder-Decoder
premise to (2), where-in we will train the full image transfer
network, then freeze the weights of the encoder and add a
finally linear layer to aid parameter estimation.

3.1.1 Hyperparameters

The following hyperparameters were chosen off of initial
training and remained the same throughout testing of each
plugin across all epochs for consistency of training and eval-
vation: BatchSize : 16, LR : 1le — 4, Epochs : 30. For all
regression tests, an L.1 Loss was calculated using an Adam
optimizer. For image transfer an L2 loss was employed with

Adam as well. All cases were trained with a schedule with
v = 0.5 and StepSize = 5.

4. Experiments & Results

4.1. Limiter Testing with Conv2D Downsampler

To verify the behavior of the limiter, we compared the
sample-wise differences between dry and wet signals un-
der different threshold values. As expected, more extreme
thresholds led to greater deviations from the original signal:

Sample-wise Mean Squared Error

—— MSE: Dataset Limited (-9 dB)
0.15 ~—— MSE: Dataset Limited (-5 dB)
—— MSE: Hard Limited (0 dB)

PR | TRRSRE XAy P

0.00 0.25 050 075 1.00 125 150 175 2.00
Time (s)

Figure 4. Sample-wise difference between dry signal and limiter-
processed signals at different thresholds.

Loss over Epochs

0325
0300
0275
0250

3
0225
0.200

0175

0150

Figure 5. Training and validation losses across 30 epochs

Figure 5 shows our training and validation losses while
training on a small subset of our data (/N = 72). This indi-
cates that our downsampling encoder model architecture is
indeed able to learn on our data and will be a starting point
for training larger amounts of data.

Figure 6 indicates a series of spectrograms that describe
the feature maps output from each convolutional layer.
These images exhibit intensity ratings within similar fre-
quency bands, indicating that the model is interpolating on
similar frequencies where the guitar is playing, as well as
where transients lie.

As a preliminary benchmark, we compare our model
to random chance. Let z1,22 € [0,1] be the ground
truth plugin values and %1, %2 € [0, 1] be our model’s es-
timated parameters. Assuming random chance, we have
& ~ Uniform(0, 1), z ~ Uniform(0, 1). We can calculate

1ol
1
E(& — x) :/ / |z — yldedy = = ~ 0.333
o Jo 3

We can see from our MAE values, our initial Conv2D
model does not performing any better than random chance.
However, we proceed in the following sections on training

Feature Maps: block_0
block 0-ch0 block 0-ch1 block 0-ch2 block 0-ch3 block 0-ch4

block 0 - ch 5

block 0-ch6 block 0-ch7

Feature Maps: block_1

block 1-ch2 block 1-ch3 block 1-cha block 1-ch6 block_1-ch7

1

block 2-ch5 block 2-ch6 block 2-ch 7

Figure 6. Feature maps of first 8 output channels of three convolu-
tion layers

Dataset MSE | MAE
Train (N = 72) | 0.1615 | 0.3377
Valid (N = 8) 0.1603 | 0.3228
Test (N = 8) 0.1620 | 0.3454
Table 1. Limiter regression evaluation results on train, validation,

and test datasets.

the model in an Encoder-Decoder manner to see if that is
due to limiter parameter features, or if additional training
on other parameters promotes scalable training accuracy.

4.2. Bit Depth Extraction

We compared the three models discussed on a 1000 sam-
ple subset of our training dataset.

4.2.1 CNN

The results of our CNN training are shown below.

Dataset MSE MAE
Train (N = 800) | 0.0054 | 0.0499
Valid (N = 100) | 0.0085 | 0.0716
Test (N = 100) 0.0062 | 0.062

Table 2. Bitcrusher regression evaluation results on train, valida-
tion, and test datasets trained with CNN.

As is evident, this performed much better than our pre-
vious test with our limiter. We believe this is because we
only inference on one parameter (as opposed to two) and
the difference that a bitcrusher effect makes might be more

obvious to learn than that of a limiter. A confusion matrix
of our results are shown in figure 7.

CNN Bit Depth Estimation Confusion Matrix (Rounded)

3
'
o
-
-
~
-
o
o
o
o
°
o
°
o
°
o
o
IS

4

‘
a
:
’
:

o
:
H
:
:
:
:
:
:
:
:
:

5
'
o
°
o
°
~
~
e
o
-
o
°
o
°
o
o
o
o

7
'
o
°
o
°
o
o
~
-
~
-
°
o
°
o
°
o
o

Actual Bit Depth

9 8

L

o o
o o
o o
o o
o o
o o
o o
o o

oo

= o
- o
o =~
o o
o o
o o
o o
o o

1 10

' I
o o o
° o o
o o o
o o o
o o o
o o o
o o o
o o o
o o M
o = &
s o =
~
°
o
o
o
o

13 12
|
o
°
)
°
)
o
)
o
)
o
°

16 15 14
' '
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o
"
~
-
~
o

)
5]
o
°
°
°
o
o
5]
o
5]
o
°
-
~
-
~
o

Predicted Bit Depth

Figure 7. Confusion matrix of CNN bitcrusher test set.

4.2.2 Encoder-Decoder

The results of our Encoder-Decoder with transfer learning
are shown below.

Dataset MSE MAE
Train (N = 800) | 0.0249 | 0.1112
Valid (N = 100) | 0.0259 | 0.1214
Test (N = 100) 0.0257 | 0.1195

Table 3. Bitcrusher Encoder-Decoder regression evaluation (with
frozen weights) results on train, validation, and test datasets.

We can see that this performs about half as well as just
using a CNN. A confusion matrix of our results are shown
in Figure 8. Compared to the CNN downsampler, there ap-
pears to be fewer features represented in the 13-16 bit depth
classification range.

4.2.3 UNet with Transfer Learning

The results of our UNet with transfer learning are shown
below.

Dataset MSE MAE
Train (N = 800) | 0.3139 | 0.4728
Valid (N = 100) | 0.3202 | 0.4802
Test (N = 100) 0.3201 | 0.4816

Table 4. Bitcrusher UNet regression evaluation (with frozen
weights) results on train, validation, and test datasets.

Due to the low performance of the transfer learning, we
supplemented this Bitcrusher reconstruction with additional
consideration via testing of sampling rate.

UNet Transfer Learning Confusion Matrix (no skip connections)

o- 0 0o 0o 0o 0 0 0o 0O O O O O O O 0 O

-0 1 0o 0 0o 0 0 0 0 0 0 0o 0 0o 0 0o

Actual Bit Depth
1 10 8
[\
o o o °
o o o o
o o o °
o o o °
o o o °
o o o °
o o o °
o o o °
o o o -
o o o °
~
~
o
°
°
°
°

|
°
°
°
°
°
°
°
°
°
°

'
°
°
°
o
°
°
°
°
°
°

16 15 14 13 12
'

R o
]
o
<
o
°
o
o
]
o

l
o
o
o
o
- o
°
o
o
o
o

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Predicted Bit Depth

Figure 8. Confusion matrix of Encoder-Decoder bitcrusher test set.

4.2.4 UNet Reconstruction of Downsampled Audio

High-Frequency Energy Ratio per Sample

0.250 | === Input (Downsampled) ¢
—— Reconstructed
0.2251 — Ground Truth

0.200

0175

0.150

HF Ratio

0125

0.100

0.075

0.050

sample Index (Every 2nd)

Figure 9. High Frequency Ratio Indicating U-Net Aliasing Reduc-
tion

On testing the alternatively “bitcrushed” audio, where
the bitcrushing effect was emulated via downsampling of
audio sampling rates as opposed to bit depth quantization,
per Figure 9 our U-Net Reconstructed audio appeared to
have a lower overall high-frequency energy ratio per sam-
ple than the downsampled input. This indicates that our
U-Net overall has less aliasing, as high frequency content
that does not match the ground truth is an indicator of poor
reconstruction.

As one additional experiment in this supplement, we fed
44.1 kHz dry signals into the U-Net to see how reconstruc-
tion may be affected by the downsampling and upsampling
nature of the full U-Net.

Input (Downsampled) Reconstructed

Ground Truth

Figure 10. Spectrograms of 44.1 kHz Dry Input (left), Recon-
structed U-Net Output (middle), and Ground Truth (right)

This indicates that our U-Net is able to maintain high-
lighted features of the original spectrogram input, even
when no effect, or downsampling, is applied. However,
there is this “watercoloring” effect, wherein there is interpo-
lation occurring between feature values in the decoder when
upsampling back to a reconstructed output.

;;;;;

Figure 11. Reconstruction minus Target High Frequency Differ-
ence Loss Graph

The reconstruction effectiveness is found in Figure 11,
where the heat map indicates that there are indications of
low reconstruction loss across all frequencies (highlighted
by the blue portions in the frequency domain).

4.3. Delay

We also utilized our models to estimate the delay value
of a delay effect. To bolster training accuracy, 2 second
recordings were extracted from all 360 samples in the orig-
inal GuitarSet dataset, resulting in a total of 2800 training
examples.

4.3.1 CNN

Our results with the CNN architecture on the delay param-
eter estimation task are show below:

Dataset MSE MAE

Train (N = 2240) | 0.00025 | 0.01167
Valid (N = 280) 0.00032 | 0.01342
Test (N = 280) 0.00026 | 0.01212

4.3.2 UNet with Transfer Learning

Our results with pretraining the UNet, then freezing the en-
coder half and training only the fully connected output layer
on the delay parameter estimation task are show below:

Dataset MSE MAE

Train (N = 2240) | 0.00042 | 0.01491
Valid (N = 280) 0.00059 | 0.01751
Test (N = 280) 0.00044 | 0.01584

baseline model Delay Estimation Confusion Matrix On Test Set

0 40

31

62
|

30

93
<)
=)

n
~
o
o
©
o
o
IN]
o

G
E
=
<0 0 0 0 6
A
oA 20
5]
]
g
9 0 0 0 0
]
-15
3 0 0 0 0
-10
3 0 0 0 0
N
-5

250

- o
o

o

o

! . !] !] '
0 31 62 93 125 156 187 218 250
Predicted Delay (ms)

Figure 12. Confusion matrix of CNN delay test set.

pretrained model Delay Estimation Confusien Matrix On Test Set

o 11 0 0 0 0 "] 0 0
35

31

30

93 62
'

o

=)

o

5]

o

o

©

=)

o

Actual Delay (ms)
125
o
o
o
-

& 0 0 0 0 -15
a
~
5 0 0 0 0 | 10
3 0 0 0 0
=

-5
a 0 0 0 0
~

| i i i '
0 31 62 93 125 156 187 218 250
Predicted Delay (ms)

Figure 13. Confusion matrix of Unet with pretraining delay on test
set.

5. Conclusion

In this work, we presented a series of designed deep
learning architectures of estimating digital effect parame-
ters trained on Mel spectrogram representations, serving
as a cross-modal means of interpreting audio via advanced
computer vision techniques. By constructing our own
dataset from dry guitar recordings, we processed bitcrush-
ing and sample rate changes to mimic audio codec con-
straints, limiter parameters for gain attenuation and enve-
lope modulation, and delay effects for impulse response
convolution effects. This incurred a structured and scalable

dataset to test our feature-vector classifier as well as a novel
detachable decoder for reconstruction approach, with addi-
tional consideration of down-to-upsampling transfer learn-
ing effects of a full U-Net.

Our experiments indicated that downsampling CNNs can
very effectively monitor bit depth with respect to bitcrush-
ing plugin parameters, with promising accuracy well be-
yond random chance. We then amplified our model into
Encoder-Decoder and U-Net structures, exploring signal re-
construction in the frequency domain as well as transfer
learning on discrete parameters. While the U-Net improved
alias suppression and representation quality, it exhibited re-
duced parameter regression accuracy when compared to the
CNN, highlighting trade-offs in generalizability.

These findings reinforce notions that while deep learn-
ing can generalize and interpolate from visual features and
perceptual cues in audio spectrograms, a “one-size-fits-all”
model may not be optimal across diverse audio effects with
varying parameter spaces when utilizing a limitedly scoped
dataset. Future work could explore implementation of hy-
brid architectures with plugin-conditioned decoders with
additional features such as self attention or cross-attention
between plugin weights. We would like to continue the
detachable decoder paradigm with models that are keen to
navigate the parameter spaces of distinct plugins with pre-
training via models such as wav2vec and CLAP [7]. Our
study navigates foundations for machine interpretation of
audio production landscapes, caving insight into the pro-
cess for which artificial intelligence may enhance creativity
and understanding of audio applications in contexts such as
automated mixing, intelligent audio restoration, and neural
audio codecs.

6. Acknowledgments & Contributions

We’d like to thank the CS231n instructors and course
staff for a very informative quarter and their guidance lead-
ing up to this report. From conceptualization to data aug-
mentation to model architecting and testing, the authors
worked in collaboration. We are grateful to the GuitarSet
and Pedalboard contributors.

References

[1] H. Jirgens, R. Hinrichs, and J. Ostermann. Recognizing gui-
tar effects and their parameter settings. In Proceedings of
the 23rd International Conference on Digital Audio Effects
(DAFx), Vienna, Austria, 2020. 2, 4

[2] J.P.X.Y. Q. Xi, R. Bittner and J. P. Bello. Guitarset: A dataset
for guitar transcription. In 19th International Society for Mu-
sic Information Retrieval Conference, Paris, France, 2018. 3

[3] M. Rice, C.J. Steinmetz, G. Fazekas, and J. D. Reiss. General
purpose audio effect removal, 2023. 2, 4

[4] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and
O. Vinyals. Learning the speech front-end with raw waveform
cldnns. In Interspeech 2015, pages 1-5, 2015. 4

[5] P. Sobot. Pedalboard, July 2021. 3

[6] C. J. Steinmetz and J. D. Reiss. Efficient neural networks
for real-time modeling of analog dynamic range compression,
2022. 2,3, 4

[7]1 C.J. Steinmetz, S. Singh, M. Comunita, I. Ibnyahya, S. Yuan,
E. Benetos, and J. D. Reiss. St-ito: Controlling audio effects
for style transfer with inference-time optimization, 2024. 3, 8

7. Appendix

For generation of our Mel Spectrograms, the following
sequence of equations and transformations were used:

Framing and Windowing. Let x[n] be the time-domain
signal, divided into overlapping frames using a window
function w[n] of length N and hop size H. The k-th frame
is:

zp[n] =zn+ kH]-wn], 0<n<N (1)
Short-Time Fourier Transform (STFT). Each frame is

transformed into the frequency domain using the discrete
Fourier transform:

i

F2mmn

xg[n] e 7N,
0

Xk[m] =

n

0<m<N (2

Power Spectrogram. The power of each STFT coeffi-
cient is computed as:

Py[m] = | Xg[m][* 3)

Mel Filter Bank Projection. Let M € R¥*M be a mel
filterbank matrix with F' mel bins and M = N/2 4+ 1 FFT
bins. The mel spectrogram is:

M—-1
Sklf] = Mym - Pilm])

m=0

or in matrix form:

S=M-P (5)

where P € RMXT 'S ¢ RFXT and T is the number of
frames.

Logarithmic Compression (dB scale). To mimic percep-
tual loudness, mel spectrogram values are converted to deci-
bels:

dBy[f] = 10 - logyo(Sk[f] + €) (6)

where € is a small constant to prevent log(0).
Min-Max Normalization. The dB-scaled spectrogram is
normalized to [0, 1]:

~ ~ dBg[f] — min(dB)
Selfl = max(dB) — min(dB) 4 ¢

)

where ¢ is a small constant added for numerical stability.

