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Abstract

We present an end-to-end method for classifying galaxy
morphology in wide-field astronomical surveys. Our ap-
proach uses a multistep detection transformer (DETR) ar-
chitecture and integrates a convolutional or self-supervised
DINO-based backbone to localize and classify Ritchey-
Chrétien telescopic galaxy imagery in a single pass. We
apply this pipeline to three benchmark datasets: DemoR-
ings (binary ring vs. non-ring), GalaxyMNIST (four-class
morphology), and Galaxy Zoo 2 (seven-class morphology)
— leveraging Hungarian bipartite matching for joint box
and class supervision. We show that self-supervised DINO
features accelerate convergence and improve classification,
while DETR’s end-to-end formulation obviates heuristic re-
gion proposals.

1. Introduction

Galaxy morphology is a critical measure in observa-
tional astronomy and astrophysics, providing insight into
the physics behind galaxy formations and related galactic
constituents [8]]. Although there is an abundance of publicly
available data from telescopes (e.g. Hubble, James Webb),
analysis and interpretation of the galaxy imaging rely on
slow and labor-intensive processes rooted in domain knowl-
edge and attention to detail [6, 8]]. Interpreting the density
of data is a bottleneck of astronomical research, motivating
the search for automated methods to detect and label galaxy
morphology. Computer vision and deep vision methods
have shown promising results in the detection of celestial
objects within interpreting telescopic and multi-wavelength
imaging, providing the possibility for accurate and efficient
galaxy classification.

Although recent advances in machine learning have led
to significant progress in galaxy detection, current meth-
ods still face limitations in accurately classifying galaxies
by type [8 2, |9]. In particular, many existing approaches
rely on traditional convolutional pipelines and do not in-
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corporate attention-based mechanisms into their classifica-
tion frameworks. With the rise of deep learning, especially
transformer-based architectures, there is strong potential to
enhance galaxy classification by leveraging models that can
more effectively capture long-range spatial dependencies.

Our model takes sets of images, each containing one pri-
mary galaxy in need of classification. Trained using ground
truth galaxy description labels and ground truth boxes con-
taining the galaxy through primary component/object seg-
mentation, our DETR pipeline returns predicted labels and
precise locations (in the form of bounding boxes) for unla-
beled novel holdout image data galaxies.

The input to our algorithm is a single-frame, RGB-
encoded galaxy image (containing exactly one primary
galaxy). We then use a DETR-based model (a CNN or self-
supervised DINO backbone followed by a transformer de-
coder) to output a predicted morphological class (e.g., ring
vs. non-ring, smooth vs. spiral subtype, etc.) and a normal-
ized bounding box around the primary galaxy.

Through extensive hyperparameter optimization (tuning
learning rates, batch sizes, query counts, and scheduler
strategies) and ablation experiments, we show that DINO-
derived features accelerate convergence and boost classifi-
cation accuracy, while DETR’s end-to-end detection elimi-
nates the need for heuristic proposal steps. In our final ex-
periments, we achieve over 97% accuracy on hold-out splits
of GalaxyMNIST and outperform a ResNet-18 baseline by
25.3% in overall accuracy, demonstrating the effectiveness
of self-supervised features in astronomical object detection.

2. Related Works

2.1. GalaxyZoo and Large-Scale Survey Pipelines
of Astronomical Objects

The Galaxy Zoo initiative began in 2007 as a crowd-
sourced effort to classify galaxy morphologies by enlisting
volunteer citizen scientists [[L]. In Galaxy Zoo 2 (GZ2),
over 300,000 Sloan Digital Sky Survey (SDSS) images
were presented to volunteers, who collectively provided
detailed morphological vote fractions across more than a



dozen questions per galaxy (e.g., “Is it smooth or fea-
tured?”; “How many spiral arms?”) [13]. Each galaxy’s fi-
nal label is determined by aggregating these votes, yielding
robust but inherently slow, manual annotations.

While volunteer labeling produces high-quality morpho-
logical catalogs (e.g., over 100 million votes in GZ2), the
manual nature of these campaigns limits turnaround time
and scalability as survey data volumes grow [7]. For exam-
ple, labeling a new data release can take months to years
of continuous volunteer effort, delaying scientific analy-
sis and follow-up studies. Our work addresses this limita-
tion by providing an end-to-end, transformer-based pipeline
that automates both localization and classification of galax-
ies, thereby reducing reliance on manual vote fractions and
enabling near-real-time morphological catalogs for future
wide-field surveys.

2.2. Machine Learning and CNNs in Galaxy Mor-
phology Detection

Automating galaxy morphology classification has long
been a critical challenge in observational astronomy. Early
efforts combined handcrafted feature-extraction with classi-
cal machine-learning models (e.g., random forests, SVMs),
but these methods struggled when faced with large, noisy
datasets [1]. Previous works have used traditional ma-
chine learning techniques and convolutional neural net-
works (CNNs) in galaxy morphology ([2], [6]). Barchi et
al. (2020) compare traditional ML against deep-learning
approaches on galaxy morphology and find that once a
few thousand labeled examples are available, CNNs consis-
tently achieve higher accuracy than feature-based pipelines.
Furthermore, aggressive data augmentation (e.g. rotations,
flips, brightness/contrast jitter) significantly improves CNN
robustness on smaller galaxy datasets [6]. However, pre-
vious CNN approaches face limitations in being computa-
tionally expensive at a survey scale [[L1]. In the domain-
based context of galaxy detection, these approaches face
difficulties in identifying or classifying distant or occluded
features.

2.3. Developments in Transformer-Based Object
Detection

Object detection with transformers (DETR) has shown
promise in a variety of applications and classification
tasks. Carion et al. (2020) introduce an end-to-end
object-detection framework that replaces region-proposal
and non-max-suppression steps with a single transformer
encoder—decoder [3]. Jia et al. (2022) extend transformer
architectures (similar to DETR) to the specialized task of
finding gravitationally lensed arcs in galaxy-cluster imag-
ing [9]. The results suggest that transformer-based object
detectors are promising for applications in astronomy, as
they outperform Hough transforms and CNN-based archi-

tectures in several cluster fields. Building on this momen-
tum, our work represents the first demonstration—across
multiple galaxy morphology benchmarks—of integrating a
self-supervised DINO backbone into a DETR framework
for telescopic imagery. DINO (“Distillation with No La-
bels”) is a self-supervised Vision Transformer (ViT) pre-
training method that employs a student—teacher distillation
mechanism without requiring any annotated data [4].

3. Methods

We propose a method for multi-class galaxy classifica-
tion using the DEtection TRansformer (DETR) framework.
Our pipeline begins by passing input images through a self-
supervised DINO or a convolutional neural network (CNN)
backbone to extract dense feature tensors, where each patch
(or pixel) is represented by a high-dimensional tensor of
self-supervised or convolutional channel responses. These
feature tensors are then passed into a multi-head self-
attention transformer module, which uses a fixed set of
learned object queries to predict class labels and bound-
ing boxes in parallel. To supervise these predictions, we
apply the Hungarian Matching algorithm to associate each
predicted query with a corresponding ground truth object.
Ground truth bounding boxes are derived from segmenta-
tion masks using a connected-component-based box extrac-
tor, allowing us to provide supervision for both localization
and classification. This end-to-end pipeline enables joint
learning of spatial and semantic representations for robust
galaxy detection and classification.

Figure 1. End-to-end DETR-based galaxy classification pipeline.

3.1. Transformers for Galaxy Queries

We adopt a transformer-based architecture inspired by
DEtection TRansformers (DETR). First, we flatten the fea-
ture map z € REXCXH W’ phroduced by either the CNN
backbone (where C' is the number of convolutional output
channels) or the DINO backbone (where C' is the projected
embedding dimension, e.g., 256). Here, B is the batch size,
and H', W’ are the spatial dimensions of the feature map.
We reshape x into a sequence of tokens X € RB*SxD,
where S = H' x W', D=C.

Positional encodings—constructed from sine-cosine
functions—are added to X so that each token retains ex-
plicit spatial context when passed through the transformer
layers.

The transformer decoder uses a fixed set of NV learnable
object queries Q@ € RY*P motivated by the goal that each



query will attend to a distinct object or region in the origi-
nal image. In practice, N can be larger than the maximum
number of objects present; unmatched queries are treated as
“no object.”

Our architecture consists of:

* A three-layer transformer encoder, each layer contain-
ing multi-head self-attention and a feedforward net-
work. The encoder processes the entire token sequence
X to produce globally contextualized features.

* A three-layer transformer decoder, where each layer
first applies self-attention over the N object queries,
then cross-attention from those queries to the encoder
outputs. This cross-attention step allows each query to
aggregate information from all S token positions.

After decoding, we obtain a set of object-specific repre-
sentations Z € RBXN*D Each slice Z;,; € RY (for batch
index b and query index 7) encodes both spatial and seman-
tic information for a candidate object. We then feed Z into
parallel prediction heads:

* A class head that produces logits over K + 1 classes
(including a “no-object” category).

* A bounding-box head that regresses a normalized
(cx, cy, w, h) box for each query.

Training is supervised end-to-end via Hungarian bipar-
tite matching between the N predictions and the ground
truth objects.

3.1.1 CNN Feature Extraction

We use a convolutional neural network (CNN) backbone
to extract semantically rich, spatially compressed repre-
sentations of telescopic images. The CNN accepts in-
puts z € REX3XHXW and produces feature maps =’ €
]RBXCX%X%, where B is the batch size and C' = 256 is
the output channel dimension. In other words, the spatial
resolution is reduced by a factor of four in each dimension.
The CNN architecture is as follows:

1. Convl: Conv2d(3 — 64, kernel = 7, stride =
2, padding = 3), followed by BatchNorm and ReL.U.

2. MaxPool: MaxPool2d(kernel = 2, stride = 2).

3. Conv2: Conv2d(64 — 128, kernel = 3, stride =
1, padding = 1), followed by BatchNorm and ReLU.

4. Conv3: Conv2d(128 — 256, kernel = 3, stride =
1, padding = 1), followed by BatchNorm and ReLU.

Because the network is shallow, we used ReLLU for all
activations and did not observe any vanishing-gradient is-
sues, so we did not experiment with alternatives like leaky

ReLU. We chose a larger kernel (7) and stride (2) for the
first convolution to quickly reduce spatial dimensions with-
out losing important features. For Conv2 and Conv3, we
used kernel size 3, stride 1, and padding 1 to preserve the

T W resolution. The single MaxPool layer after Conv1

T X7
w

further halves the feature map to % X T

These feature maps preserve object-level structures in a
compact format and match the high-dimensional input re-
quirements of DETR. We selected this backbone architec-
ture to balance data compactness with the resolution needed

for precise localization in our DETR pipeline.

3.1.2 DINO Backbone Architecture

We use DINO as an alternate backbone architecture in our
DETR pipeline due to its anchor-guided query initialization
and denoising-based training. Previous literature has indi-
cated that DINO allow for more localized initialization and
more accurate training in earlier epochs. For noisy datasets
such as our SDSS-derived galaxy imagery, DINO reduces
the number of epochs needed to converge even as astronom-
ical imaging quality is affected by blurs and occlusions.

Our DINO Backbone is a Vision Transformer (ViT) self-
supervised on the ImageNet dataset (1.2M images) with-
out using its ground truth labels. DINO uses contrastive
learning methods such that the loss is acquired using a
momentum-updated “’student-teacher” mechanism as op-
posed to using traditional class labels. The DINO pretrain-
ing allows ViT patch embeddings a recognition of fine-
grained textures, edges, and high-level semantics before
downstream fine-tuning. After our image preprocessing,
we take an input tensor of z € R3*224%224 "indicating 3
RGB channels and an image size of 224 x 224. (Note: any
64 x 64 images from DemoRings and MNIST are upscaled
to 224.) The DINO Backbone outputs a feature tensor of
Fpino € RAZXH W’ “representing the embedding dimen-
sion and a downsampled spatial grid prepared for the rest of
our transformer pipeline. Due to limitations in computing
power, we base our weights on the self-supervised model
by Caron et al. 2021 [4].

3.2. Proposed Baseline: ResNet-18 Galaxy Mor-
phology Classification

For our baseline metric, we use an architecture based
on ResNet-18. ResNet-18 is a well-documented and
lightweight model featuring ImageNet-pretrained weights.
As a computationally feasible and 18-layer architecture,
ResNet-18 is widely used in visual classification and de-
tection tasks. In our specific use-case, ResNet-18 serves
as a reliable option to use to represent traditional CNNs in
contrast to our transformer-based pipelines. Previous liter-
ature in galaxy morphology have used ResNet-18 and other
ResNet variants as a baseline metric. [12}15].



The ResNet-18 classifies maps each image input of our
galaxy datasets to a predicted class through global aver-
age pooling and a linear layer. We take an input layer
of x € R3>H*W and downsize to a feature map of size
x € R2x2%512 A final average-pool reduces this to a 512-
dim vector, which is mapped to the K morphology classes.

3.3. Hungarian Matching Algorithm

The classification and box-regression heads of
our DETR transformer output prediction tensors of
size [B, num_queries, num_classes, box_dims],  where
num _classes varies by dataset and box_dims = 4 (corre-
sponding to the object’s center coordinate (c,, ¢,) and
width/height (w, h), as described in Section ??). Queries
are assigned to ground-truth boxes in a way that mini-
mizes the total SetCriterion loss. Since there is only one
ground-truth box per image in the Demo Rings dataset,
the matching problem reduces to identifying the single
transformer query that best matches the lone labeled object
in each image.

Our loss function and matching procedure follow Carion
et al. [3].

For each possible query-to-ground-truth assignment,
DETR computes a combined cost consisting of three com-
ponents: classification cost, L1 distance cost, and GloU
cost. The classification cost is computed by applying soft-
max to the predicted class logits for each query and then
taking the negative log-probability assigned to the true class
label. Because our dataset provides exactly one ground-
truth label (“ring galaxy”), we compute this cost only for
that class (and not over all classes).

Next, to evaluate spatial alignment, DETR con-
verts predicted and ground-truth boxes from cen-
ter format (cg, ¢y, w, h) to corner coordinates
(Zmins Ymins Tmax, Ymax)-  We then compute the L1
distance between each pair of matched boxes (measuring
absolute difference in center and scale) and calculate the
negative GIoU as an additional cost that rewards precise
overlap. The Hungarian algorithm finds the assignment
s that minimizes the total sum of these costs over all N
queries.

Implementation details for the matching and loss com-
putation are provided in Section 3.4.

3.4. Set Criterion

For our SetCriterion function, or DETR loss function,
we calculate loss after the Hungarian matching function has
assigned queries to ground truth objects.

Cross-entropy loss is first computed for the ground-
truth class scores using the softmax probabilities from the
queries: -log(p[ground-truth class]). Next, L1 loss is used
to measure the mean absolute error between the predicted
query box coordinates and the corresponding ground truth

box.

Finally, the total SetCriterion loss is obtained by sum-
ming the classification and bounding box losses across all
examples, weighting them by class_coef = 1 and bbox_coef
= 5, and averaging the result over the batch size. Seman-
tically, a higher weight is given to the bounding box loss
coefficient in order to prioritize locating objects in space
over correct classification labels.

4. Dataset and Features

The telescopic imagery from our datasets was taken as
part of the Sloan Digital Sky Survey (SDSS). Images were
annotated and categorized through Galaxy Zoo citizen sci-
ence campaigns. For our paper, we specifically use the
DemoRings, GalaxyMNIST [14], and GalaxyZoo2 datasets
[12].

Dataset Name Train Test Resolution Source
Size Size  (px)

DemoRings 800 200 64 x 64 Walmsley et al. (2024)
GalaxyMNIST 8000 20 64 x64 Willett et al. (2022)
Galaxy Zoo 2 180000 30000 424 x 424 Sichkar (2020)

Table 1. Summary of the three galaxy imagery datasets used in our
experiments.

For initial development and evaluation of our DETR
pipeline, we use the Demo Rings and MNIST test subsets
of the GZ2 dataset, which includes binary and four-class
classification tasks respectively. We use the Galaxy Zoo
2 (GZ2) dataset for training our final model. GZ2 con-
tains over 300,000 galaxy images annotated through crowd-
sourced visual classification [13]. More specifically, each
galaxy image in the GZ2 dataset was given a description la-
bel based on an at least 17 person majority vote. MNIST
and demo rings has already been pre-processed to match
the majority vote label with the respective image as ground
truth, while the raw gz2 dataset still contains the vote counts
for each possible label. Each image features a single pri-
mary galaxy, and binary labels were assigned based on
a majority vote from Galaxy Zoo citizen scientist partici-
pants. Our goal is to accurately classify the morphology of
each galaxies while leveraging object detection to localize
the primary object in each image.

4.1. Data Preprocessing and Augmentation
4.1.1 Pre-processing

We first resize every image to a fixed spatial dimen-
sion—namely 64 x 64 pixels—so that the batch of im-
ages can be stacked into a single tensor without shape mis-
matches. Uniform resizing also ensures that downstream
convolutional layers see the same input resolution on ev-
ery forward pass. After resizing, we call ToTensor(), which
converts an image or NumPy array in the range [0, 255] into



Dataset Name # Classes  Class Details

DemoRings 2 {no-ring, ring}

GalaxyMNIST 4 {smooth & round, smooth & cigar-
shaped, edge-on disk, unbarred spi-
ral}

Galaxy Zoo 2 7 {smooth & round, smooth & cigar-

shaped, edge-on disk, unbarred spi-
ral, barred spiral, smooth inbe-
tweeen, featured without bar or spi-
ral}

Table 2. Overview of each galaxy dataset: number of discrete
classes and detailed label information.

a PyTorch tensor in the range [0.0, 1.0] (of shape 3xHxW
for RGB). This conversion is needed since our network ex-
pects floating-point input.

For DETR and our baseline pipelines, we normalize our
data by subtracting 0.5 from each channel and dividing by
0.5, mapping pixel values from [0, 1] into approximately
[-1, +1] because it centers the data around zero and maps to
approximately unit variance, which helps stabilize training.

For our DINO pipeline, we use Normalize(mean=[0.485,
0.456, 0.406], std=[0.229, 0.224, 0.225]). This is as we use
a pretrained model for our DINO implementation [4]. Thus,
our DINO backbone is initialized with weights pretrained
on ImageNet, which has the aforementioned mean and stan-
dard deviation. This alignment preserves zero-mean, unit-
variance statistics in each channel, yielding stable feature-
map responses and well-conditioned gradients. As a re-
sult, the network converges rapidly and reliably when fine-
tuned on our astronomical images, rather than suffering
from shifted activation distributions or gradient instability.

For the final step of pre-processing, we convert each
image, label (for the MNIST dataset, each label is
an np.int64 scalar ranging from 0-3 corresponding
to the class index), and bounding box into tensors,
then pass our training, validation, and holdout sets into
torch.utils.data.DataLoader to build compati-
ble PyTorch datasets.

4.1.2 Augmentation

For training more advanced baseline tests and our final
GZ2 experiment, we apply the following data augmentation
transforms on the training set:

1. transforms.RandomHorizontalFlip () is
applied to each batch.

2. Additionally, transforms.RandomRotation ()
is applied with a random rotation angle in +10°.

For reference, Hausen and Robertson use additional ver-
tical flips and random crops of size 60 x 60 and 40 x 40
[8]. However, as we show, our pipeline achieves better re-
sults with less augmentation, maximizing holdout accuracy.

Most remaining misclassifications arise from bad or empty
images and human labeling error. Additionally for the GZ2
Dataset, some images had significant disagreement between
volunteers and so no classification was made. We filter out
these datapoints.

4.1.3 Ground Truth Box Label Extraction for Hungar-
ian Matching

The DETR pipeline is designed to incorporate both bound-
ing box regression and class label prediction into its loss
function. While ground truth class labels are provided in the
dataset, 2D axis-aligned bounding boxes for the galaxies are
not. To generate these bounding boxes, we follow a five-
step process under the following assumption: the galaxy
corresponding to the ground truth label (determined by a
majority vote) is the largest non-noise or “foreground” ob-
ject in each image frame across the dataset [8].

First, once the data is downloaded, each image is ex-
tracted and resized to 128 x 128 pixels (preserving RGB
channels) using a transform [6]. Second, the images
are converted to grayscale and represented as NumPy ar-
rays [2]. Third, a binary mask is created for each image by
thresholding pixel values above 50. Fourth, the largest con-
nected component in the mask is identified using OpenCV’s
connectedComponents function. Finally, the bound-
ing box coordinates are computed from the minimum and
maximum z and y values of the detected component and
normalized to the image size. The bounding box parame-
ters are calculated using the following equations:

(zomin + x_mazx)
center_x =

20-W
contera — (y-min 4+ y_mazx)
YT 0w
) (x-max — x_min)
dth =
wi W
) (y-max — y-min)
height =
eig 5

These values are stored as the ground truth bounding box
for each image and are used to supervise the DETR pipeline
via Hungarian matching.

5. Experiments

For our experiments, we ran three main baseline tests on
smaller binary and multiclass galaxy datasets, followed by
one final test on the full Galaxy Zoo 2 dataset. The first two
baselines focused on validating our pipeline’s functional-
ity; the final tests incorporated, more robust self-supervised
feature extraction, holdout accuracy, and thorough hyperpa-
rameter optimization.



Figure 2. Example images from the MNIST dataset with bounding
boxes and ground truth labels. Labels indicate the four classes.

5.1. Binary Classification on Ring Galaxies

To evaluate accuracy on the binary-class Demo Rings
dataset, we consider only exact matches to the ground-truth
labels. To prevent transformer queries from matching back-
ground or empty space, we added a “no-object” class along-
side the “Ring” and “No Ring” classes. The Demo Rings
set is relatively small (800 training, 200 validation), allow-
ing aggressive tuning at the expense of compute time. Al-
though each image contains one labeled object, we set the
number of learnable queries to N = 25 so the model had
ample capacity to refine. Since only one object appears per
image, query competition is not a concern. We used a sim-
ple CNN feature extractor (2.1). For a dataset with only ring
vs. non-ring galaxies, a shallow CNN sufficed, as confirmed
by achieving 100% validation accuracy on Demo Rings.

For the CNN backbone of our DETR, one key hyper-
parameter was the output dimension D. We needed: 1)
Enough feature channels for transformer queries to learn
rich representations. 2) D to be divisible by the number of
heads h in the multi-head attention module. For this base-
line (and the first GalaxyMNIST test), we chose D = 256 to
feed into an & = 8 head transformer. In practice, D = 256
provided sufficient capacity without excessive cost, and di-
viding evenly into 8 heads ensured each head received a
32-dimensional subspace.

On Demo Rings, the model achieved 100% validation
accuracy, confirming that the simple CNN + DETR setup
can perfectly classify ring vs. non-ring galaxies when only
one object per image must be detected.

5.2. Multi-Class Baseline on GalaxyMNIST

Next, we tested on the GalaxyMNIST dataset [14],
which contains ten times more images and four classes (all
distinct from Demo Rings). We downloaded GalaxyMNIST
and extracted features using the same CNN backbone. Vali-
dation accuracy dropped from 100% (Demo Rings) to 94%
on GalaxyMNIST. As an initial error diagnostic, we visual-
ized misclassified examples (5.5.1).

5.3. Hyperparameter Fine-Tuning for GalaxyM-
NIST

5.3.1 Pre-tuning Hyperparameters

To establish baseline performance, we began with rough es-
timates for key hyperparameters. To conserve memory, we
initially set the batch size to 8, later increasing it to 32 once
we confirmed that Colab’s T4 GPU could handle the load
without exceeding RAM limits.

For our learning rate, we started off with a smaller le-
4 to work with our complex DETR pipeline and AdamW
optimizer [10]. Additionally, we chose to run baseline tests
with only 5 epochs, which our smaller starting batch size
allowed for due to more frequent updates during training.

For our multi-head transformer model, we initialized the
hidden dimension (dpoege1) to 256, the number of attention
heads to 8, encoder and decoder layers to 3 each, and the
number of queries to 25.

5.3.2 Tuned Hyperparameters

Through our MNIST baseline tests, we tuned hyperparame-
ters for the final gz2 holdout tests. After upgrading to a Co-
lab Pro session with an A100 GPU, we increased the batch
size to 100. This allowed us to better leverage PyTorch’s
parallelization capabilities and train with faster epochs and
improved GPU utilization. After baseline tests, using a
larger batch size allowed us to increase epochs to 10, pro-
viding for additional full run throughs of the training data
set.

We experimented with a higher learning rate in an at-
tempt to accelerate convergence of the weights correspond-
ing to minimizing the loss function over epochs. However,
due to the complexity of the model, the DETR pipeline re-
mained very sensitive to changes in learning rate, so we ul-
timately decided to stick with the le-4 learning rate.

We also increased the transformer hidden dimension to
512 for better feature expressivity and reduced the number
of queries to 5, since the downstream task only required pre-
dicting the location and class of a single galaxy per image.

5.3.3 Learning Rate Scheduler

Additionally, we added a learning rate scheduler. Specifi-
cally, we used torch.optim’s ReduceLROnPlateau scheduler
with factor=0.5, patience=2, and threshold=1e-2 (see exper-
iments for rationale).

5.3.4 DINO Backbone and Holdout Split

To improve feature learning, we replaced the CNN
backbone with a self-supervised DINO backbone [3].
This choice immediately boosted validation accuracy by



2-3%. We also introduced a holdout set by reserv-
ing 10% of the GalaxyMNIST training data. To com-
pensate for reduced training size, we increased aug-
mentation by adding RandomHorizontalFlip and
RandomRotation. With no learning-rate scheduler, the
pre-optimized model achieved 97.00% holdout ac-
curacy.

5.3.5 Optimization and GalaxyMNIST Results

After hyperparameter tuning (5.3.7), the model reached
98.00% holdout accuracy, with an additional 0.5% gain us-
ing a validation accuracy plateau learning-rate scheduler.
Early saturation of validation accuracy after one epoch indi-
cated the efficacy of using DINO to find robust class feature
representations. Training accuracy began at approximately
50% after the first epoch but quickly increased to match
validation accuracy in subsequent epochs. This initial mis-
match between training and validation performance likely
stems from the model’s difficulty in immediately learning
stable feature representations from training data augmented
with random transformations. Since these augmentations
vary from batch to batch, they may introduce noise that tem-
porarily impedes convergence. Once the model adapts to
the augmented patterns, training accuracy rapidly catches
up. To push past 98%, we added dropout (probability 0.1)
after each encoder/decoder layer and reduced the learning
rate on plateau. Dropout prevented overfitting, and the
scheduler avoided oscillations from a too-high learning rate.
The final 0.5% improvement was meaningful given only 2%
room for progress.

5.3.6 Summarizing Baseline Experimental Results

* CNN backbone, no DINO: 94.00% validation accu-
racy.

* DINO backbone, no scheduler: 97.00% holdout ac-
curacy.

* DINO + tuning + scheduler: 98.00% holdout accu-
racy (4+0.5% with scheduler).

5.4. Large-Scale Multiclass Evaluation on Galaxy
Zoo 2

The Galaxy Zoo 2 is the largest dataset we test on, con-
sisting of nearly 300,000 galaxies. Notably, unlike the pre-
vious datasets, there are 7 classifications for galaxies. We
trained the most successful model achieved on the MNIST
dataset on this new dataset to verify that our methods are
generalizable. This dataset is slightly harder given the larger
number of samples and increased number of classes.

5.5. Results

Figure 3. Bounding boxes learned for gz2 holdout data.

We see that using transformers-based object detection
outperforms our ResNet-18 baseline when detecting galaxy
morphology. Our DETR-based architectures improve the
overall accuracy from our baseline metric by 23.50% (CNN
backbone) and 25.30% (DINO backbone) respectively. Us-
ing the best model configuration achieved on MNIST
(DINO backbone with Learning Rate scheduler, we achieve
a classification accuracy of over 95% on the GZ2 dataset.
Furthermore, our model is able to successfully learn precise
bounding boxes for GZ2 holdout dataset[3]

Class / Metric ResNet-18 DETR + CNN  DETR + DINO
smooth & round 0.85 1.00 0.99
smooth & cigar-shaped 0.72 0.98 0.99
edge-on-disk 0.58 0.98 0.99
unbarred-spiral 0.69 0.93 0.97
Overall Accuracy 72.45% 95.50% 97.75%
Macro-averaged F1 0.713 0.777 0.790
Weighted F1 0.713 0.972 0.988

Table 3. Comparison of per-class F1-scores and overall metrics
across three models on the MNIST dataset.
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Figure 4. (Top Left) DETR + CNN validation confusion matrix
(Top Right) DETR + DINO validation confusion matrix. (Bottom)
ResNet-18 validation confusion matrix.



Flat LR (1e-4) Scheduler

Metric Val  Hold-out  Val  Hold-out
Accuracy (%) 97.60 98.00 98.45 98.50
Macro Precision 0.792 0.800 0.799 0.800
Macro Recall 0.780 0.784 0.787 0.788
Macro Fy 0.786 0.790 0.793 0.794
Weighted Precision  0.991 0.996 0.998 1.000
Weighted Recall 0.976 0.980 0.985 0.985
Weighted Fy 0.983 0.988 0.991 0.992

Table 4. DETR with DINO performance comparison on GalaxyM-
NIST: “Flat LR (le-4)” vs. “ReduceLROnPlateau Scheduler.”
Metrics are reported for both the validation and hold-out splits.

Galaxy Zoo 2

Metric Val Hold-out
Accuracy (%) 96.55% 95.36%
Macro Precision 0.873 0.841
Macro Recall 0.800 0.807
Macro Fq 0.832 0.810
Weighted Precision 0.998 0.973
Weighted Recall 0.965 0.954
Weighted F 0.981 0.959

Table 5. DETR with DINO performance on Galaxy Zoo 2

5.5.1 Qualitative Failure Mode Analysis

Many of the misclassified stamps in Figure X arise from
extremely low signal-to-noise or partial occlusion, mak-
ing it nearly impossible to discern the correct morphol-
ogy even for a human observer. In several examples, the
galaxy appears as a faint, isolated “dot” or is obscured by
a bright foreground star or cosmic-ray artifact. When a
stamp contains only a tiny, low-contrast core, the network
cannot reliably extract features that distinguish, a “smooth
& cigar-shaped” profile from a faint spiral arm. In these
cases, the model frequently defaults to predicting a class
like “unbarred-spiral” or “background,” mirroring the un-
certainty one would expect if a trained astronomer were to
classify the same image.

Figure 5. Misclassified images from the MNIST dataset from the
DINO pipeline with predicted class and true class

Beyond pure image quality, some failure modes reflect
intrinsic ambiguity at the class boundary. For example, an
inclined disk with very faint arms can plausibly be labeled
either “edge-on disk” or “unbarred spiral,” and indeed the

Galaxy Zoo volunteers themselves occasionally disagreed
on these borderline examples. Given these observations, it
is clear that (a) any realistic classification system must ei-
ther filter out extremely low-signal stamps or assign them to
an “uncertain” category, and (b) augmenting the training set
with additional high-contrast examples (or using a higher-
resolution telescope) would help reduce these ambiguities.
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Figure 6. (Left) Training/validation loss curves without scheduler.
(Right) Training/validation loss curves with ReduceLROnPlateau
scheduler.

6. Conclusion

In conclusion, our works shows the promise of us-
ing DETR with a self supervised DINO feature extraction
method for galaxy detection and classification. We first
apply these methods to smaller datasets like Demo Rings
and Galaxy MNIST, and finally apply our best model ar-
chitecture to the Galaxy Zoo 2 dataset, where we achieve
a classification accuracy of over 95%. Adapting our meth-
ods across different datasets shows the robustness of these
results. Given that the crowd sourced datasets take years to
assemble, methods like this could be used to achieve ade-
quate summaries of new survey data immediately.

6.1. Future Works

Future work could incorporate additional data augmenta-
tion transforms such as random flilps, crops, and color jitter
to the training set. Augmentation may allow for increased
accuracy on novel, unlabeled datasets. [8].

Moreover, an automated data-filtering step (e.g., apply-
ing segmentation to each image and discarding those with-
out any connected component above a size threshold) could
remove poor-quality samples before training.
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